

Ethnomedicinal plants used by the local people of Changunarayan Municipality, Bhaktapur, Nepal

Kalpana Dulal, Sujan Chaudhary, Yadav Uprety, Neera Shrestha, Sudarshana Shakya and Nabin Narayan Munankarmi

Correspondence

Kalpana Dulal¹, Sujan Chaudhary², Yadav Uprety³, Neera Shrestha¹, Sudarshana Shakya^{1*} and Nabin Narayan Munankarmi^{1*}

¹Department of Botany, Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal ²Department of Botany, Amrit Campus, Tribhuvan University, Kathmandu, Nepal ³Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal

*Corresponding Authors: nabin2045@gmail.com, Shakya.Sudarshana@gmail.com

Ethnobotany Research and Applications 23:37 (2022)

Research

Abstract

Background: For centuries, the Changunarayan municipality has been inhabited by people who have a long tradition of using medicinal plants to treat human ailments. Habitat degradation and improper harvesting are the major threats to the medicinal plant species in this area. The present study aims at documenting and identifying plant-based ethnomedicinal knowledge of the local people in order to preserve the dwindling indigenous knowledge.

Methods: The primary information on the medicinal plants were collected through field observation, interviews, and a semi-structured questionnaire. A frequency index value was determined to compare the medicinal plants that were used frequently by the local people. Moreover, the factor of informant consensus (F_{IC}) was determined for the assessment of homogeneity on the informants' knowledge regarding medicinal plants. A Pearson correlation test and a simple linear regression were performed to evaluate the relationship between the age of respondents and plants described by them.

Results: A total of 96 medicinal plant species belonging to 56 families and 85 genera were used for the 40 different ailments documented in the municipality. Herbs (n = 47) occurred most frequently in the study area, and the most frequently used plant part was leaves (n = 30). The majority of the species were collected from the wild (57%). *Ocimum tenuiflorum* and *Curcuma longa* had the highest frequency index of 65%. The value of Chi-square test between genders and the number of plants described by them was determined to be significant (p-value < 0.001). A positive correlation (r = 0.708) was found between the age groups of informants and the number of plants described by them. The F_{IC} value in the study ranged from 0.4 (cardio-vascular) to 0.90 (fever).

Conclusion: The medicinal plants have been playing an enormous role in the health care of the villagers, though the study area is very close to the capital city. The plants used in the study might open the way for the development of a scientifically verified botanical derivatives for modern medicine. Valuable traditional knowledge was limited to the older generation, which indicates a huge gap in knowledge transmission from the older to the younger generation.

Keywords: Ailments, Local interventions, Threats, Traditional knowledge

Background

Ethnobotany includes ethnomedicine, which is a collection of empirical local practices rooted in local and indigenous knowledge systems (Bussmann & Sharon 2006). It is frequently passed down orally from generation to generation with the goal of understanding the social, cultural, and economic variables that influence health problems and overcoming them (Kunwar & Bussmann 2008). Ethnomedicinal studies are important source of information for discovering novel compounds that can lead to drug discovery (Umair *et al.* 2017). In fact, the systematic documentation of traditional knowledge on utilization of native plant species has contributed to a number of vital drugs (Cox 2000, Umair *et al.* 2017). Documenting traditional knowledge and practices is also crucial for establishing medicinal plant management and conservation programs (Njoroge *et al.* 2004). Plant resources are still being used in many regions of Nepal to fulfill subsistence requirements or to market as edible fruits, vegetables, fodder, medicinal herbs, and raw materials for home construction and domestic products, according to a large number of ethnobotanical studies published in Nepal (Manandhar 1989, Bhattarai *et al.* 2020, Mallik *et al.* 2010, Uprety *et al.* 2010, Bhattarai 2018, Kunwar *et al.* 2018, Pradhan *et al.* 2020, Chaudhary *et al.* 2020, Mallik *et al.* 2020, Khakurel *et al.* 2021).

Nepal is rich in biodiversity because of sharp physiographic and climatic variations. The country is enthralled by 13,067 plant species, including 6973 angiosperms (Groombridge & Jenkins 2002). Some 125 ethnic groups are inhabited in the country (CBS 2011). These groups are highly dependent on biological resources and also contribute to their conservation and management, resulting into rich biocultural diversity. Nepal has a strong cultural foundation in traditional medicine and may be found in a variety of forms, including ethnic or tribal groupings, rituals or ceremonial acts, spiritual practices, diets, or self-healing methods (Koirala & Khaniya 2009). Medicinal plants play a vital role in Nepalese livelihoods. Only 15-20% of Nepal's population living in and around cities has access to modern medical services, while the remainder relies on traditional remedies (Sharma *et al.* 2004). Plants and plant products have augmented human culture since time immemorial (Chaudhary *et al.* 2020). In Nepal, there are about 8.4 million indigenous people of different groups inhabiting various terrains. They possess their own culture, religious rites, and rich traditional medicinal practices (Rokaya *et al.* 2010). For centuries, indigenous peoples and local communities have been using traditional knowledge under local laws, customs, and traditions to cure different diseases. Indigenous knowledge not only identifies local resources, but also offers a management framework for them (Koirala & Khaniya 2009).

Deforestation and human encroachment are fast leading to agricultural land and urbanization in the former jungle, posing a significant danger to the usage of medicinal plants, their products, and local traditional practices (Gachhadar 2006) which can be related to Changunarayan Municipality, Bhaktapur, Nepal. Furthermore, because allopathic drugs are readily available, they have supplanted traditional medical methods (Thorsen & Pouliot 2016). However, as medicinal plants and its accompanying traditional knowledge become more popular, the number of people and national and international institutions seeking information on them is fast growing (Gachhadar 2006). Due to a lack of documentation and a change in lifestyle, traditional medicinal practice is on the danger of extinction on a local and regional level (Rajbanshi & Thapa 2019). Furthermore, researchers from Africa (Cock & Van Vuuren 2020), Europe (Musarella *et al.* 2019), United States (Bennett & Prance 2000), Oceania (Shewamene *et al.* 2020), and Asia (Singh *et al.* 2021) have also recorded the loss of traditional medical knowledge. The present study documented the medicinal plants used by the people of Changunarayan municipality for the treatment of different human ailments as well as livestock, and also the method of using the medicinal plants for the treatment of disease.

Materials and Methods

Study area

The study was conducted in the Changunarayan municipality of Bhaktapur district, which is located in the Bagmati Province, Central Nepal (Figure 1). The Changunarayan municipality is located in the northern part of Bhaktapur and is 18 km away from the capital city (Kathmandu) of Nepal. It got its name from the very famous temple, Changunarayan, which is listed as a World Heritage Site. The municipality covers an elevational range of 1372 m to 2191 m above sea level (asl) with a geographical area of 62.98 km². The average annual temperature and rainfall in Bhaktapur is 19.07°C and 1140.3 mm respectively (GoN 2019). The municipality includes 9 wards within it. The Changunarayan municipality had a population of 88612, of which 44073 were men and 44539 were women (CBS 2021). The major ethnic groups are Brahmin, Chhetri, and Newar, and the major religions are Hindu, Buddhist, Christian, and Muslims.

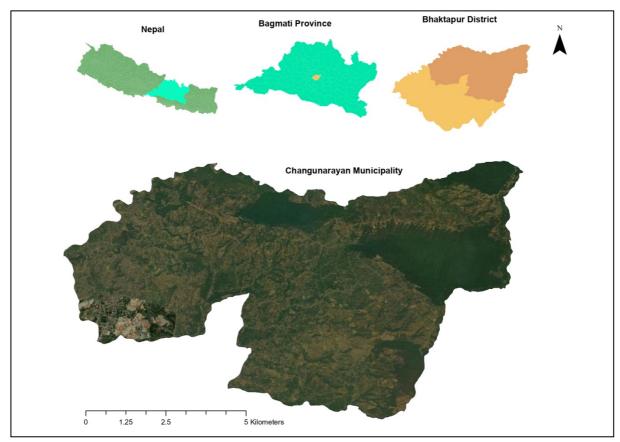


Figure 1. Map of the study area.



Figure 2. The number of respondents under five age group categories

Demographic data and primary data collection

The ethnomedicinal survey involved a total of 60 informants from the municipality. Among the 60 respondents, 27 were women and 33 were men. In the age group category, 6 respondents were between 80 and 100, 18 between 60 and 80, 23 between 40 and 60, 11 between 20 and 40, and 2 respondents below 20 (Figure 2). In the present study, the respondents below 40, between 40 and 60 and above 60 years old were referred as young age, middle

age and old age respectively. However, the respondents below 20 years of age were regarded as young teenagers. A simple random sampling method was used to select representative general informants. Moreover, eight key informants were selected following the purposive sampling described by Tongco (2007) because of their experience and knowledge regarding medicinal plants. Key respondents were farmers, *Pujaris, Dhamis* and *Shamans* of the local area. In Nepal, *Pujaris* and *Dhamis* are people who have a belief in God and ghosts and are supposed to treat health ailments and bad spirits with their holy power. They mostly use different types of plants in this process, which may sometimes not be used. Young teenagers (below 20) were also selected in the present study to reduce biasness and know about the knowledge gap and transfer of knowledge regarding medicinal plants from the older generation to the younger one. The informant's ages ranged from 16-94. The purpose of the study was initially described to all the respondents before the collection of data. Verbal consent was obtained from all the respondents to document and publication of their knowledge.

The ethnomedicinal data was collected in the months of April and June 2019. During preliminary data collection, ethnomedicinal data was collected from informants using semi-structured and open-ended questionnaires. Primary data was collected by going door to door and being face-to-face with local researchers and local experts. The questionnaires were prepared in English, but the interviews were conducted in local languages for convenience and accuracy. The present study has followed the code of ethics, principle and guidelines set by International Society of Ethnobiology (2006).

Plant collection, identification and herbarium preparation

The plant species were collected with the help of respondents. A list of medicinal plants with their local names was noted and photographs were taken initially. Identification of the plants were done by taking help from local knowledgeable people and comparing available local names with the documented names and photographs (if available) published/mentioned in various books and other literature (Shrestha 1998, Joshi & Joshi 2006, DPR 2016). However, most of the identification was done with the help of the experts. Nomenclature followed the catalogue of life (https://www.catalogueoflife.org/col/search/).The collected plant specimens were dried and pressed. The herbarium specimens were prepared according to Lawrence (1951). Accession codes (CHG) were given to the herbarium specimens and were submitted to the Bhaktpaur Multiple Campus herbarium of Bhaktapur Multiple Campus, Nepal.

Data analysis

The information collected through field visits was compiled, categorized and analyzed into local names of the plants, family, life form, parts used, plant habitat and medicinal use of the plants in the excel sheet. More than 180 research articles (2000-2022 AD) were reviewed from Google scholar, Research4life, Researchgate and Pubmed for the citation of similar use reports from Nepal in Table 1. Moreover, ethnomedicinal review article of each species was also considered for citation of similar use reports from Nepal. Descriptive analysis (pie chart, bar graph, and tables) was performed in MS Excel 2007. Normality of data was tested with Shapiro-Wilk test for Pearson Correlation test. A simple linear regression and Pearson correlation test was performed to observe the relationship between respondents and number of plants described by them. Moreover, a chi-square test for independence was carried out to test for a significant difference between the genders and the number of plants described by them. All these statistical analyses were performed in R version 4.0.3. A frequency index was also calculated for the quantitative analysis. The frequency index is the mathematical expression of the percentage frequency of mentions of a single botanical species by informants (Mahwasane *et al.* 2013). The following formula was used to calculate the frequency index:

$$\mathsf{FI} = \frac{\mathsf{FC} \times 100}{\mathsf{N}}$$

Where FC is the number of informants who mentioned the use of the species and N is the total number of informants (Madikizela *et al.* 2012).

Family	Scientific name	Voucher number	Species collected from an altitude (m)	Local name	Habit	FI value	Parts used	Habitat	Medicinal use	Similar use reports
Acanthaceae	<i>Justicia adhatoda</i> L.	CHG 52	1745	Asuro	S	5	Leaf	C	Leaf boil in water with Tulsi and taken for fever	Tamang <i>et al.</i> 2017; Gubhaju & Gaha 2019
Acoraceae	Acorus calamus L.	CHG 7	1555	Bojho	H	52.5	Rhizome	С	Rhizome eaten for sore throat, neck problem, cough	Acharya & Pokhrel 2006; Tamang <i>et al.</i> 2017; Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019; Thapa 2020; Poudel <i>et</i> <i>al.</i> 2021
Amaranthaceae	<i>Achyranthes</i> <i>aspera</i> L.	CHG11	1547	Datiwan	Н	25	Root	w	Root juice taken for fever and help in easy fall of placenta in delivered women	Magar <i>et al.</i> 2022
Amaranthaceae	<i>Amaranthus</i> <i>spinosus</i> L.	CHG 63	1478	Ludey	S	47.5	Seed	С	Seed grinded and paste used in itching (skin problems)	Joshi & Joshi 2000
Amaryllidaceae	Allium sativum L.	CHG 64	1589	Lasun	H	32.5	Whole plant	C	Bulb used for gastric, constipation	Ndukwu & Ben-Nwadibia 2005; Tamang <i>et al.</i> 2017; Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019
Anacardiaceae	<i>Semecarpus anacardium</i> L.	CHG 81	1678	Bhalayo	T	2.5	Fruit	W	Fruit used as anthelminthic, fever	Not found
Apiaceae	<i>Centella asiatica</i> L.	CHG 61	1443	Ghodtapre	Н	52.5	Leaf, root	W	Used as cooling tonic, urine purifier,	Acharya & Pokhrel 2006; Bhattarai 2017; Tamang <i>et al.</i> 2017; Gubhaju & Gaha 2019;

Table 1. List of medicinal plants used by the local people of Changunarayan municipality with family, local name, life form, parts used, habitat and medicinal uses

									fever, memory	Bhatt & Kunwar 2020; Poudel
									booster	<i>et al.</i> 2021
Apiaceae	<i>Coriandrum</i> <i>sativum</i> L.	CHG 89	1536	Dhaniya	Н	7.5	Aerial part	С	Maintain proper digestion	Platel & Srinivasan 2004
Araceae	<i>Colocasia esculenta</i> L.	CHG 44	1650	Karkalo	Н	5	Latex	С	Latex used in swollen body part	Not found
Asparagaceae	Agave americana L.	CHG 12	1714	Kettuke	S	10	Leaf	W	Leaf juice used for constipation	Ojha Khatri <i>et al.</i> 2021
Asparagaceae	<i>Asparagus</i> <i>racemosus</i> Willd.	CHG 2	1690	Kurilo	S	12.5	Tender shoot, root	С	Nerve disease, reduce body pain, root powder increase lactation	Rai & Singh 2015; Bhattarai 2017; Tamang <i>et al.</i> 2017; Thapa 2020
Asphodelaceae	Aloe vera L.	CHG 3	1515	Ghiukumari	Н	47.5	Leaf	С	Gel used in burnt, wounds, regulation of menstruation, constipation	Bhattarai 2017; Tamang <i>et al.</i> 2017; Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019; Thapa 2020; Miya <i>et al.</i> 2021
Asteraceae	<i>Ageratina adenophora</i> (Spreng.) R. King & H. Rob.	CHG 6	1565	Banmara	S	42.5	Leaf	W	Leaf juice used to stop bleeding in cuts	Tamang <i>et al.</i> 2017; Shah & Lamichhane 2017; Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019; Budha-Magar <i>et al.</i> 2020
Asteraceae	<i>Artemisia vulgaris</i> L.	CHG 62	1551	Titepati	H	57.5	Leaf	W	Leaf paste used on cuts to stop bleeding, gastric, decrease pressure and sugar, anthelminthic, typhoid	Nadeem <i>et al.</i> 2013; Shrestha <i>et al.</i> 2016; Tamang <i>et al.</i> 2017; Hussain 2020

Asteraceae	<i>Cirsium wallichi</i> DC.	CHG 90	1554	Thakailo	Н	15	Root	W	Root given to delivered women for	Poudel <i>et al.</i> 2021; Gautam & Timilsina 2022
									energy, treat fever	
Asteraceae	<i>Smallanthus</i> <i>sonchifolius</i> (Poepp. & Endl.) H.Rob.	CHG 67	1665	Bhuisyau	н	5	Tuber	С	Control diabetes	Ojha Khatri <i>et al</i> .2021; Bhaila <i>et al</i> .2022
Asteraceae	Sonchus oleraceus L.	CHG 72	1536	Kandpate	H	2.5	Root	W	Root paste applied for earache, leaf latex used for cuts and wounds	Not found
Asteraceae	<i>Tagetes erecta</i> L.	CHG 38	1558	Sayapatri	Н	5	Flower	С	Appetite loss, pneumonia	Bhaila <i>et al.</i> 2022
Berberidaceae	<i>Berberis aristata</i> DC.	CHG 9	1459	Chutro	S	10	Stem	W	Paste used in skin problems, eye boils (aankha pakeko),	Shah & Lamichhane 2017; Gautam & Timilsina 2022
Berberidaceae	<i>Berberis</i> <i>napaulensis</i> (DC.) Spreng	CHG 92	1510	Jamaino mandro	S	5	Bark	W	Bark paste applied in eye inflammation, eye problems	Manandhar 2002; Baral & Kurmi 2006; Shrestha <i>et al.</i> 2014
Bignoniaceae	Oroxylum indicum L.	CHG 23	1745	Tatelo	T	10	Seed	С	Used to treat blood in stool (ragatmasi), appetite	Miya <i>et al.</i> 2021; Bhaila <i>et al.</i> 2022
Boraginaceae	<i>Rochelia zeylanica</i> Vahl.	CHG 57	1578	Kanike kuro	H	27.5	Root	W	Root paste taken for diarrhoea (aaupareko)	Not found
Brassicaceae	<i>Nasturtium officinale</i> R.Br.	CHG27	1885	Simsag	Н	5	Aerial part	W	Control sugar and pressure level	Not found

Campanulaceae	<i>Lobelia pyramidalis</i> Wall.	CHG 83	1678	Eklebir	Н	2.5	Bark	W	Increase fertility	Bhaila <i>et al.</i> 2022
Cannabaceae	<i>Cannabis sativa</i> L.	CHG 60	1546	Ganja	H	20	Seeds	W	Seeds given to livestock to cure dysentery, relief pain	Dhami 2008; Gautam & Timilsina 2022
Caryophyllaceae	<i>Drymaria cordata</i> L.	CHG 15	1493	Abijalo	Н	5	Leaf	W	Leaf juice taken during indigestion, appetizer	Bhaila <i>et al.</i> 2022; Gautam & Timilsina 2022
Combretaceae	<i>Terminalia chebula</i> Retz.	CHG 74	1406	Harro	T	15	Seed, bark	W	Burnt seed (prepared in flame of fire)are taken for cough, bark chewed in urinary problems	Tamang <i>et al</i> .2017; Gautam & Timilsina 2022
Convolvulaceae	<i>Cuscuta reflexa</i> Roxb.	CHG 87	1391	Akasbeli	H	50	Whole plant	W	Whole plant used for jaundice	Bhattarai 2017; Tamang <i>et al.</i> 2017; Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019; Thapa 2020; Poudel <i>et al.</i> 2021
Crassulaceae	<i>Bryophyllum</i> sp.	CHG 13	1611	Ghiu pate	Н	5	Leaves	С	Leaf paste used in ear problems	Not found
Cucurbitaceae	Cucumis sativus L.	CHG 58	1502	Kakro	Cl	12.5	Fruit	С	Stone problem, act as cooling tonic of the body	Bhaila <i>et al.</i> 2022
Cucurbitaceae	<i>Momordica charantia</i> L.	CHG 37	1546	Tite karela	Cl	20	Fruit	С	Control pressure and sugar level,	Adhikari <i>et al.</i> 2019; Gubhaju & Gaha 2019; Pradhan <i>et al.</i> 2020; Poudel <i>et al.</i> 2021
Cyperaceae	<i>Cyperus rotundus</i> L.	CHG 47	1480	Mothe	Н	12.5	Stem, leaves	W	Anthelminthic for livestock	Adhikari <i>et al.</i> 2019
Dioscoreaceae	<i>Dioscorea</i> <i>deltoidea</i> Wall.	CHG 16	1545	Bhyakur	Н	7.5	Rhizome	W	Boiled rhizome taken in	Miya <i>et al.</i> 2021

									abdominal pain	
Dioscoreaceae	<i>Dioscorea alata</i> L.	CHG 49	1654	Tarul	Cl	55	Rhizome	С	Rhizome eaten for throat pain	Not found
Ericaceae	<i>Gaultheria</i> <i>fragrantissima</i> Wall.	CHG 54	1580	Dhasingare	S	10	Young shoot	W	Juice used as antiseptic, injury	Bhaila <i>et al.</i> 2022
Ericaceae	<i>Lyonia ovalifolia</i> Wall.	CHG 51	1556	Angeri	T	5	Leaves	W	Leaf paste applied on body for few minutes and the bath to reduce itching problems	Shah & Lamichhane 2017; Tamang <i>et al.</i> 2017; Adhikari <i>et al.</i> 2019; Gautam & Timilsina 2022
Ericaceae	<i>Rhododendron</i> <i>arboreum</i> Sm.	CHG 80	1880	Laligurans	Т	50	Flower	W	Heck stuck, stone problem, clear voice	Adhikari <i>et al.</i> 2019; Budha- Magar <i>et al.</i> 2020
Euphorbiaceae	<i>Euphorbia royleana</i> Boiss.	CHG 46	1470	Siudi	H	20	Leaf	W	Fever, stop bleeding, appetite	Bhaila <i>et al.</i> 2022
Fabaceae	<i>Bauhinia variegata</i> L.	CHG 1	1548	Koiralo	Т	7.5	Bark	W	Bark used for body ache, indigestion	Pradhan <i>et al.</i> 2020; Bhaila <i>et al.</i> 2022
Fabaceae	<i>Lablab purpureus</i> L.	CHG 48	1546	Tate simi	Cl	5	Leaf	С	Leaf juice used in skin scars, allergy	Not found
Fabaceae	<i>Macrotyloma</i> <i>uniflorum</i> Lam.	CHG 21	1554	Gahat	Н	15	Aerial part	С	Used to treat chicken pox, stone problem	Tamang <i>et al.</i> 2017
Iridaceae	Gladiolus spp.	CHG 85	1457	Tarbare phool	Н	37.5	Root	С	Root juice used for indigestion and appetite	Not found
Juglandaceae	<i>Juglans regia</i> L.	CHG 19	1685	Okhar	Т	10	Leaf	С	Anthelminthic, tooth problems	Tamang <i>et al.</i> 2017; Budha- Magar <i>et al.</i> 2020
Lamiaceae	<i>Mentha arvensis</i> L.	CHG 93	1523	Babari	Н	20	Aerial part	W	Fever, headache	Bhaila <i>et al.</i> 2022

Lamiaceae	<i>Mentha piperita</i> L.	CHG 82	1578	Vicks	Н	15	Young leaves	C	Cough, sore throat, common cold	Shah & Mello 2004
Lamiaceae	Ocimum tenuiflorum L.	CHG 35	1550	Tulsi	Н	65	Leaf	С	Leaf boil in water and taken for fever, cough	Tamang <i>et al.</i> 2017; Poudel <i>et al.</i> 2021
Lamiaceae	<i>Vitex negundo</i> L.	CHG73	1590	Simali	S	5	Leaf, bark	W	Sinusitis	Tamang <i>et al.</i> 2017; Bhaila <i>et al.</i> 2022
Lauraceae	<i>Cinnamomum</i> <i>tamala</i> BuchHam	CHG 42	1449	Tejpat	Т	17.5	Bark, leaf	W	Fever, cough	Adhikari <i>et al.</i> 2019; Bhaila <i>et al.</i> 2022; Gautam & Timilsina 2022
Lauraceae	<i>Persea americana</i> Mill.	CHG 32	1548	Avocado	Т	25	Fruit	С	Lower the cholesterol level	Not found
Malvaceae	<i>Hibiscus rosa-</i> <i>sinensis</i> L.	CHG 53	1524	Ghanti phool	S	15	Flower	С	Flower act as urine purifier	Pradhan <i>et al.</i> 2020
Meliaceae	<i>Azadirachta indica</i> A. Juss.	CHG 10	1597	Neem	T	52.5	Leaf, bark	С	Leaf juice for fever, for control of sugar level, high blood pressure	Bhattarai 2017; Thapa 2020; Gautam & Timilsina 2022
Meliaceae	<i>Melia azedarach</i> L.	CHG 20	1519	Bakaino	Т	50	Seed	W	Seed taken as anthelminthic, antidandruff function	Thapa 2020
Menispermaceae	<i>Cissampelos</i> <i>arenicola</i> M.Nee and R.Ortiz	CHG 59	1693	Batulpate	Н	15	Aerial part	W	Stop bleeding in delivered women, also livestock	Bhaila <i>et al.</i> 2022
Menispermaceae	<i>Tinospora sinensis</i> Lour.	CHG 71	1547	Gujro gano	Cl	20	Root	W	Root juice maintain appetite, reduce body ache	Singh <i>et al.</i> 2011
Moraceae	<i>Ficus religiosa</i> L.	CHG 17	1582	Peepal	Т	5	Bark	W	Bark used to treat skin	Joshi & Joshi 2000; Pradhan <i>et al.</i> 2020

									itching	
									problems	
Moraceae	<i>Ficus semicordata</i> Buch-Ham.	CHG 14	1690	Khanayo	Т	5	Leaf	W	Milky latex is used to treat kidney stone, given to animals after delivery for easy removal of placenta	Kunwar & Bussmann 2006
Myricaceae	<i>Myrica esculenta</i> Buch-Ham. ex D.Don	CHG 29	1960	Hade kafal	Т	20	Bark and leaf	W	Used to stop bleeding in delivered women	Bhaila <i>et al.</i> 2022
Myrtaceae	<i>Psidium guajava</i> L.	CHG 65	1560	Amba	Т	7.5	Leaf, fruits	С	Fresh leaves are chewed to control sugar level, indigestion	Ojha Khatri <i>et al.</i> 2021; Bhaila <i>et al.</i> 2022
Myrtaceae	<i>Syzygium cumini</i> (L.) Skeels	CHG 75	1595	Jamun	T	7.5	Fruit	С	Fruits taken in indigestion and constipation	Bhatt & Kunwar, 2020
Nephrolepidaceae	<i>Nephrolepis</i> <i>cordifolia</i> L.	CHG 31	1654	Pani amala	Н	5	Rhizome	W	Appetizer, cooling tonic of the body	Tamang <i>et al.</i> 2017; Singh <i>et al.</i> 2018
Nyctaginaceae	<i>Mirabilis jalapa</i> L.	CHG 30	1521	Lwang khursani	Н	5	Root	W	Root paste is used to control sugar	Not found
Oleaceae	<i>Jasminum mesnyi</i> Hance.	CHG 50	1538	Jai phool	S	5	Leaf	С	Tonsil, reduce pressure, leaf juice applied in khatira (red rashes on the body)	Not found
Oleaceae	<i>Nyctanthes arbor- tristis</i> L.	CHG28	1536	Parijat	Т	50	Leaf, bark	С	Control sugar level, fever	Ojha Khatri <i>et al.</i> 2021

Phyllanthaceae	<i>Phyllanthus parvifolius</i> Buch- Ham. Ex D.Don	CHG 25	1546	Khareti	S	30	Root	W	Paste of roots with oil is applied on cuts and wounds	Shah & Lamichhane 2017
Phyllanthaceae	<i>Phyllanthus emblica</i> L.	CHG 33	1440	Amala	Т	15	Fruit	С	Asthma, gastritis, throat pain	Singh <i>et al.</i> 2012; Gubhaju & Gaha 2019; Bhaila <i>et al.</i> 2022
Plantaginaceae	Plantago major L.	CHG 34	1665	Thulo chiraite	Н	22.5	Root, leaf	W	Leaves used for fever; root used as anthelminthic in livestock	Tamang <i>et al.</i> 2017
Plumbaginaceae	<i>Plumbago zeylanica</i> L.	CHG 24	1590	Chitu	Н	5	Root	W	Paste of root is taken as appetizer, abdominal disorder	Pradhan <i>et al.</i> 2020; Miya <i>et</i> <i>al.</i> 2021
Poaceae	<i>Imperata cylindrica</i> L.	CHG 84	1645	Siru	Н	7.5	Root	W	Treat intestinal worm	Gubhaju & Gaha 2019; Budha-Magar <i>et al.</i> 2020; Bhaila <i>et al.</i> 2022
Poaceae	<i>Phalaris arundinacea</i> L.	CHG 22	1460	Seto dubo	Н	45	Leaf	W	Leaf paste used to treat albinism (Dubi)	Not found
Poaceae	<i>Saccharum</i> officinarum L.	CHG 68	1765	Ukhu	S	5	Leaf	С	Taken by delivered women for easy fall of placenta, to cure jaundice	Adhikari <i>et al</i> .2019; Thapa 2020
Polygonaceae	Polygonum sp.	CHG 95	1398	Pirre jhar	Н	5	Young shoot	W	Used to cure dysentery in livestock	Not found
Polygonaceae	<i>Rumex nepalensis</i> Spreng.	CHG 78	1545	Halhale	H	10	Rhizome	W	Paste of rhizome is applied to cure swelling	Singh <i>et al.</i> 2012

Primulaceae	<i>Maesa chisia</i> BuchHam. ex D.Don	CHG 94	1456	Bilouni	S	2.5	Root	W	Root bark used as insecticidal	Balami 2004; Mahato & Chaudhary 2005
Ranunculaceae	<i>Ranunculus</i> sceleratus L.	CHG 96	1625	Thaple	Н	10	Root	W	Root juice act as appetizer	Not found
Rosaceae	<i>Rubus ellipticus</i> Sm.	CHG 66	1667	Aaiselu	S	37.5	Root	W	Root paste applied in cuts and wound, stomachache	Adhikari <i>et al.</i> 2019; Poudel <i>et al.</i> 2021; Bhaila <i>et al.</i> 2022
Rutaceae	Aegle marmelos L.	CHG 5	1694	Belpatra	T	15	Leaf, fruit	С	Used to treat fever, fruit decrease the sugar level, juice of fruit is used for constipation	Bhattarai 2017; Thapa 2020; Ojha Khatri <i>et al.</i> 2021
Rutaceae	<i>Citrus aurantifolia</i> (Christ.) Swingle	CHG 43	1789	Kagati	T	7.5	Fruit	C	Fruit juice applied in fracture part, decrease cholesterol	Ojha Khatri <i>et al.</i> 2021
Rutaceae	Citrus medica L.	CHG 45	1507	Bimiro	Т	12.5	Fruit	С	Fruit is good for indigestion	Not found
Rutaceae	<i>Citrus reticulata</i> Blanco.	CHG 40	1547	Suntala	T	5	Fruit peel	C	Paste of cover applied as face mask to reduce pimples	Not found
Rutaceae	Zanthoxylum armatum DC.	CHG 39	1896	Timur	Т	15	Seed	W	Seeds use for indigestion	Budha-Magar <i>et al.</i> 2020; Bhaila <i>et al.</i> 2022
Santalaceae	<i>Osyris wightiana</i> Wall.	CHG 26	1600	Nundhiki	S	62.5	Bark	W	Paste of bark is applied on fracture	Bhaila <i>et al.</i> 2022
Sapindaceae	<i>Sapindus mukorossi</i> Gaertn.	CHG 79	1861	Reetha	S	7.5	Fruit	С	Insecticidal, promotes hair growth	Pradhan <i>et al.</i> 2020

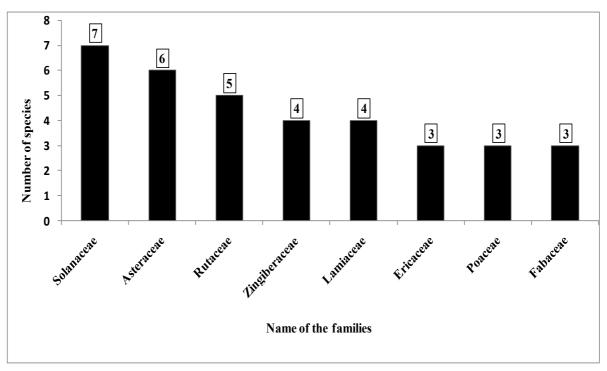
Saxifragaceae	<i>Astilbe rivularis</i> Buchham. ex D. don.	CHG8	-	Thulo okhati	H	27.5	Root	W	Root paste given in pre and post pregnancy	Shrestha <i>et al.</i> 2016
Solanaceae	Capsicum microcarpum Cav.	CHG 91	1558	Akabare khursani	Н	12.5	Fruit	С	Gastritis, indigestion	Pradhan <i>et al.</i> 2020; Bhaila <i>et al.</i> 2022
Solanaceae	Datura metel L.	CHG 86	1650	Dhaturo	Н	5	Leaves	W	Used as appetizer and for cough	Tamang <i>et al.</i> 2017
Solanaceae	<i>Nicotiana tabacum</i> L.	CHG 36	1547	Kancho pat	S	2.5	Leaf	W	Leaf paste used in itching	Not found
Solanaceae	<i>Solanum lycopersicum</i> L.	CHG 77	1561	Tamatar	H	7.5	Fruit	С	Fruit juice applied on fire burnt area of the body	Not found
Solanaceae	<i>Solanum nigrum</i> L.	CHG 70	1562	Kaligedi	Н	10	Fruit	W	Fever, gastric, cough	Ojha Khatri <i>et al</i> .2021
Solanaceae	<i>Solanum pseudocapsicum</i> L.	CHG 76	1405	Khorsani phool	Н	5	Fruit	С	Piles	Not found
Solanaceae	<i>Solanum virginianum</i> L.	CHG 69	1545	Kantakari	Н	30	Seed	W	Seed paste used for toothache	Bhaila <i>et al.</i> 2022
Urticaceae	<i>Gonostegia hirta</i> Blume.	CHG 18	1526	Maslari	Н	50	Root	W	Paste applied in fracture to reduce pain	Ojha Khatri <i>et al.</i> 2021
Verbenaceae	<i>Duranta erecta</i> L.	CHG 55	1589	Nilkanda	S	7.5	Whole plant	W	Used as anthelminthic, insect repellent	Srivastava & Shanker 2022
Zingiberaceae	Amomum subulatum Roxb.	CHG 4	1396	Alainchi	S	22.5	Fruit	С	Prevent sore throat	Paudyal <i>et al.</i> 2021
Zingiberaceae	<i>Curcuma caesia</i> Roxb.	CHG 41	1585	Kalo haledo	Н	30	Rhizome	W	Used to treat gastritis, appetizer, blood purifier	Ojha Khatri <i>et al.</i> 2021; Poudel <i>et al.</i> 2021

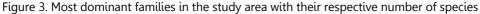
Zingiberaceae	<i>Curcuma longa</i> L.	CHG 88	1545	Beshar	Н	65	Rhizome	С	Decoction of	Bhattarai 2017; Adhikari <i>et al.</i>
									rhizome used	2019; Gubhaju & Gaha 2019;
									as antiseptic,	Thapa 2020
									boil in water	
									and taken for	
									cough,	
									common cold,	
									used as face	
									cleanser and	
									face mask	
Zingiberaceae	<i>Curcuma</i> sp.	CHG 56	1530	Pahele	Н	45	Rhizome	W	Maintain	Not found
									appetite, used	
									to treat body	
									ache	

H: herb, S: shrub, T: tree, Cl: climber; W : wild, C: cultivated.

For assessing homogeneity on the informants' knowledge, the factor of informants consensus (F_{IC}) for distinct disease categories was determined following Trotter and Logan (1986) and Heinrich *et al.* (2009).

$$F_{IC} = \frac{Nur - Nt}{Nur - 1}$$


Where N_{ur} is the number of use reports and N_t is the number of used plants for the treatment of different ailments.


Results and Discussion

Diversity of medicinal plants

A total of 96 plants belonging to 56 botanical families and 85 genera were documented from the study area (Table 1). Among total plant species, ninety-four species were used for humans and six species were used for livestock.

The families with the highest number of species were Solanaceae (7 species) followed by Asteraceae (6 species), Rutaceae (5 species), Lamiaceae (4 species), Zingiberaceae (4 species), Fabaceae (3 species), Poaceae (3 species) and Ericaceae (3 species) (Figure 3). Thirteen families represented 2 species each while the remaining 35 families constituted single species representation. The high number species under Solanaceae family may be due to the suited sub-tropical climatic condition to them. The widespread usage of Solanaceae has also been documented (Murad *et al.* 2013) and is typically attributed to their abundance of secondary metabolites including alkaloids and steroids (Ullah *et al.* 2014). The dominancy of Asteraceae might be due to the reason that it is the largest family of flowering plants, and their members are found in every region of the globe except Antarctica (Ansari *et al.* 2017). Moreover, the presence of high number of species under Asteraceae family may be due to their bioactive compounds (Thomas *et al.* 2009).

Knowledge distribution among genders and age groups

Young teenagers below the age of 20 were not interested in the present investigation due to the lack of knowledge regarding medicinal plants. Moreover, no respondents below 20 years of age were involved in the study of Bhaila *et al.* (2022). According to the Pearson correlation (r = 0.708) and a linear regression ($R^2 = 0.502$) (Figure 4), old - aged people were found to have a sound knowledge of medicinal plants in comparison to young people (Figure 4). The result was also supported by Mussarat *et al.* (2014), Ojha Khatri *et al.* (2021), Bhaila *et al.* (2022), and Magar *et al.* (2022) where old-aged people had more knowledge compared to young people regarding medicinal plants. Moreover, we observed a significant difference (p-value < 0.001) between the men and women regarding the number of medicinal plants described by them (Table 2). Women vast knowledge of medicinal plants may be due

to the fact that most women in rural communities are active in household activities and spend more time at home collecting wood, timber, local vegetables, and herbs from their surroundings (Figueiredo *et al.* 1997, Voeks & Leony 2004, Quinlan and Quinlan 2007, Mussarat *et al.* 2014).

Table 2. Chi-square test between the genders and number of plants described by them.

	Men	Women	
Number of total plants described	68	87	X ² =10.84
Number of undescribed plants	28	9	p-value < 0.001
Total number of plants	96	96	

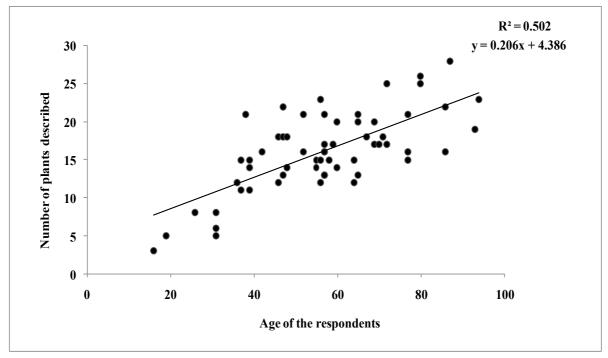


Figure 4. A simple linear regression between the age of respondents and the number of plants described by them

Habit, habitat and plant parts used

The majority of the species were herbs (47 species), followed by trees (23 species), shrubs (21 species) and climbers (5 species) (Figure 5). Similar findings were reported by Uprety *et al.* (2010), Ojha Khatri *et al.* (2021), Bhaila *et al.* (2022) and Magar *et al.* (2022) in which herbs were the primary sources of medicinal plants. It might be due to the easy collection, storage, transportation, and extraction of active components from herbs than other forms (Shrestha & Dhillion 2003). Moreover, herbs contain important secondary metabolites in higher amount for their life strategies (Stepp & Moerman 2001). Among the documented plant species, 56 species (58%) were collected in the wild and 40 species (42%) were cultivated (Table 1).

The most frequently used part was leaves (n = 30), followed by roots (n = 17), fruits (n = 15), barks (n = 11), rhizomes (n = 8), shoots/aerial part (n = 9), seeds (n = 6), flowers (n = 3), whole plant (n = 3), stems (n = 2), tuber (n = 1) and latex (n = 1) (Figure 6). The local people of Changunarayan had used leaves vigorously for medicinal purposes. Leaves are an important part of nutrient synthesis; they have a higher biochemical activity, which could be a reason for their frequent use as medicine (Poudyal *et al.* 2012). Similar results were also reported by Acharya and Acharya (2009), Singh (2017), and Chaudhary *et al.* (2020) from other parts of the country where leaves were used mostly among the plant parts.

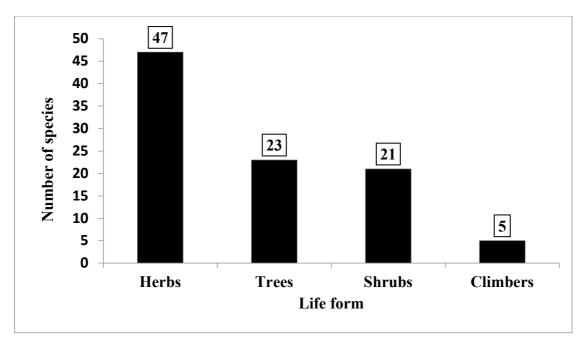


Figure 5. Life form of the plant species

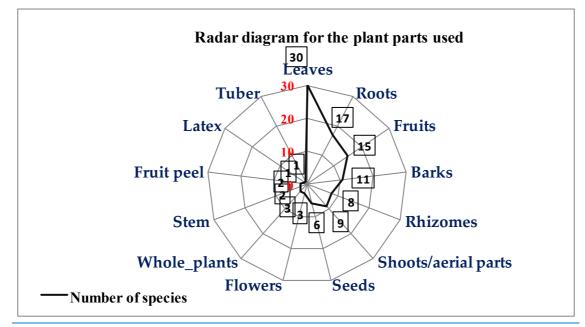


Figure 6. Different parts of the plant used for medicinal purpose

Frequency index and Informants consensus factor

Altogether 40 different ailments were recorded, which were treated by using different plant species. Fever, cough, cold, stomachache, throat pain, indigestion, skin problems, constipation, fracture, dysentery, and diarrhea were the most commonly treated ailments. The ailments treated by many plants in the present study agreed with the previous studies (cited in Table 1). This makes clear that the use of medicinal plants by the local people of Changunarayan was reliable. However, medicinal use of twenty-one plants was not found in the searched ethnomedicinal literatures of Nepal, which may be the new use to ethnomedicinal practices in Nepal.

The frequency index showed that *Ocimum tenuiflorum* and *Curcuma longa* were the most used plant species, having a frequency index of 65% (Figure 7) while *Lobelia pyramidalis, Maesa chisia, Nicotiana tabacum,* and *Semecarpus anacardium* were the least utilized, with a frequency index of 2.5% (Table 1). The aerial parts of *Ocimum tenuiflorum* contain different medicinal compounds like phenolics, flavonoids, essential oil, steroids, and fatty acid derivatives (Singh & Chaudhuri 2018) and the plant is used against fever and cough. According to religious belief

of Hindus in Nepal, the next reason behind the high frequency index of *Ocimum tenuiflorum* (**Tulsi**) may be because Hindu Nepalese worship **Tulsi** as their religious plant, which is seen almost in every person's house. In addition to this, the leaves of **Tulsi** contain euginal, urosolic acid, eugenol, carvacrol and limatrol (Pattanayak *et al.* 2010). Among the available chemicals, eugenol is highly responsible for therapeutic potentials (Pattanayak *et al.* 2010). *Azadirachta indica* and *Centella asiatica* were moderately known plant species. *Azadirachta indica* were used to maintain sugar and pressure level in the body while *Centella asiatica* is used as urine purifier and memory booster. Phytochemicals such as saponins, reducing sugars, tannins, glycosides, alkaloids and flavonoids were found in the leave extracts of *Azadirachta indica*, which are often used supplements to treat a range of health problems and skin irritations (Dash *et al.* 2017). *Centella asiatica* was also moderately known plants according to the frequency index calculated by Rajbanshi and Thapa (2019).

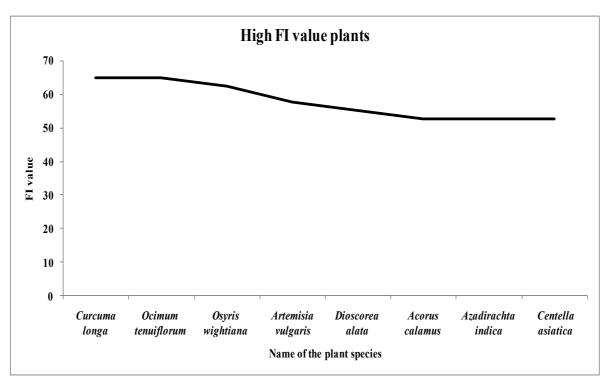


Figure 7. Top eight plant species with highest FI values

Consensus analysis in ethnobotanical research gives a measure of dependability for every given claim that provides credible evidence, and their product runs from 0 to 1 (Singh et al. 2012). For the purpose of investigating the factor of informant consensus, reported forty distinct diseases were divided into 11 categories based on Singh et al. (2012) (Table 3). In our study, the FIC value varied from 0.40 to 0.90. Fever had the highest FIC value (0.90), followed by miscellaneous (0.86), dermatological condition (0.85), gastro-intestinal disorder (0.81), oral and dental disorder (0.80) (Table 4). However, the average Fic value was recorded to be 0.74 and least agreement of respondents was on cardio-vascular disorder (0.40). A high F_{IC} value implies that informants agree on taxon selection, whereas a low number indicates disagreement (Raghupathy et al. 2008). Many researchers (Singh et al. 2012, Shrestha et al. 2014, Malla et al. 2015, Shrestha et al. 2016, Poudel et al. 2021) from Nepal have used this method to check the agreement of respondents in particular medicinal plants, for treating any ailments. All those previous studies revealed that the use of medicinal plants for the treatment of various human illnesses is still in practice across different ethnic groups. The present study also supports the use of medicinal plants by the local people of the study area and their agreements on use of taxa. Although different ethnic groups were present in our study, a high Fic value in our study might be due to the presence of all the plants in the same community and same geographical region. Fever had a highest F_{IC} value, which has been given higher priority in the present study. This might be due to the fact that fever is the most prevalent and often occurring main health issue in humans, and the local people of Changunarayan have been creating their own treatment methods by examining the medicinal potential of various plant species. A particular plant species was used for one or more than one ailment category in the study. In the present study, the species were found to be used for one, two, three or five ailments categories. Artemesia vulgaris was used to treat fever, dermatological disorders, gastro-intestinal disorders, cardio-vascular disorders and miscellaneous ailments.

Cannabis sativa, and *Polygonum* sp. were used to treat dysentery in livestock while *Cissampelos arenicola* and *Ficus semicordata* were used to stop bleeding in livestock and for easy removal of placenta after delivery respectively (Table 1). However, *Cyperus rotundus* and *Plantago major* were used as anthelmintic in livestock. The use of *Cannabis sativa* against dysentery in cattle, pigs, goats and sheep was also reported which showed agreement to our study (Gakuubi & Wanzala 2012). The number of plants in our study used to treat livestock was very less in number which showed the less utilization of plants in material medica of livestock.

Table 3. List of eleven different ailment categories in the study

Ailment categories	Different ailments included under particular category		
Respiratory disorder	Pneumonia, cough, cold, asthma		
Skeleto- muscular pain	Swelling, fracture, body pain		
Dermatological disorder	Cuts, burns and wounds, skin problems, antiseptic, albinism, hair growth		
Mental aliments	Memory booster		
Gastro-intestinal disorder	Constipation, Diarrhea, Dysentery, Piles, Appetizer, Anthelminthic		
Ureo-genital disorders	Urine purifier, Stone problem, Menstruation, Fertility		
Oral and dental disorders	Tooth problems		
Ear, Nose, Eye, Throat problems	Sinusitis, Ear problems, Eye problems, Throat problems, Neck problems,		
	Heck stuck		
Fever	Fever		
Cardio- vascular disorder	Blood pressure, Blood purifier		
Miscellaneous	Diabetes, Cholesterol, Lactation, Delivery, Jaundice		

Table 4. List of medicinal plants used for the treatment of different ailments and respective F_{IC} value for every ailment category.

Ailment categories	Medicinal plants used for ailments	Number of Plants used (N _t)	Number of use reports (N _{ur})	Fic value
Fever	Nyctanthes arbor-tristis, Achyranthes	10	92	0.90
	aspera, <u>Aegle marmelos</u> , <u>Azadirachta</u>			
	<u>indica</u> , Artemisia vulgaris , Justicia			
	adhatoda, Cirsium wallichi, Mentha			
	arvensis, Ocimum tenuiflorum, Solanum nigrum			
Respiratory disorder	Acorus calamus, Cinnamomum tamala ,	10	43	0.78
	Curcuma domestica, Mentha piperita ,			
	Ocimum tenuiflorum, Ammomum			
	subulatum, Phyllanthus emblica,			
	Dioscorea alata, Tagetes erecta, Vitex			
	negundo			
Skeleto- muscular pain	Citrus aurantifolia, Osyris wightiana ,	5	18	0.76
	Gonostegia hirta, Asparagus			
	racemosus, Bauhinia variegate			
Dermatological	Ageratina adenophora , Aloe vera,	16	101	0.85
disorder	<i>Curcuma</i> sp., Euphorbia royleana ,			
	Macrotyloma uniflorum, Rubus			
	ellipticus, <u>Artemisia vulgaris</u> ,			
	Solanum lycopersicum, Citrus			
	sinensis, Dolichos lablab, Ficus			
	religiosa, Colocasia esculenta, Rumex			
	nepalensis, Gaultheria fragrantissima,			
	Sapindus mukorosi, Phalaris			
	arundinacea			
Mental aliments	Centella asiatica , <u>Asparagus</u> <u>racemosus</u>	2	4	0.66
Gastro-intestinal	Allium sativum, Bauhinia variegata,	31	162	0.81
disorder	Capsicum microcarpum, Coriandrum			

·	sativum , Curcuma sp., Curcuma caesia,			
	Dioscorea deltoidea, Drymaria			
	cordata, Zanthoxylum armatum,			
	Citrus medica, Solanum			
	pseudocapsicum, Cannabis sativa,			
	Cynoglossum zeylanicum, Oroxylum			
	indicum, Polygonum sp. <u>Artemisia</u>			
	<u>vulgaris</u> , Duranta repens, Juglans			
	regia, Melia azedarach, Semecarpus			
	anacardium, Imperata cylindrica,			
	Cyperus rotundus, Datura metel,			
	Plumbago zeylanica, Rannunculus			
	sceleratus, Nephrolepis cordifolia,			
	<u>Aegle marmelos</u> , Allium sativum , Aloe			
	vera, Syzygium jambos, Cuscuta			
	reflexa, Saccharum officinarum			
Ureno-genital	Aloe vera, <u>Asparagus racemosus</u> ,	13	34	0.63
disorders	Cissampelos pariera , Achyranthes			
	aspera, Myrica esculenta, Astible			
	rivularis, Lobelia pyramidalis,			
	Centella asiatica, Terminalia chebula,			
	Hibiscus rosa sinensis, Cucumis			
	sativus, Ficus semicordata,			
	Macrotyloma uniflorum			
Oral and dental	Juglans regia, Solanum xanthocarpum	2	6	0.80
disorders				
Ear, Nose, Eye, Throat	Acorus calamus, Jasminum mesyni ,	7	29	0.78
problems	Rhododendron arboreum, Berberis			
	aristata, Berberis napaulensis,			
	<i>Bryophyllum</i> sp., <i>Sonchus oleraceus</i>			
Cardio- vascular	Artemesia vulgaris , <u>Azadirachta indica</u> ,	4	6	0.40
disorder	Momordica charantia , Curcuma caesia			
Miscellaneous	<u>Aegle marmelos</u> , Artemesia vulgaris ,	10	69	0.86
(Diabetes, Cholesterol,)	Mirabilis jalapa, Nasturtium			
	officinale, Nyctanthes arbor-tristis,			
	Psidium guajava, Smallanthus			
	sonchifolius, <u>Azadirachta indica</u> , Citrus			
	aurantifolia, Persea Americana			

Names of species in bold and italic represent a plant used for one ailment category; only italic represents two ailment categories; italic and underlined represents three ailment categories; bold, italic and underlined represents five ailment categories.

Threats and cultivation

Most of the medicinal plants were collected from the wild for the treatment of various ailments prevalent in the study area. However, this study revealed that the practice of cultivating (including in pots, gardens and fields) useful medicinal and ornamental plants in the study area was quite good. Most of the households have been practicing cultivating many medicinal herbs in their pots and gardens. However, three households have been cultivating *Asparagus racemosus, Tagetes erecta, Citrus limon* and *Astilbe rivularis* in their cultivating fields. This study recommends the cultivation of medicinal plants in their fields rather than in pots and gardens for economic demands. This will help decrease the harvesting pressure of those plants in the wild. Harvesting of medicinal plants is found to be commonly practiced worldwide (Kadir *et al.* 2012, Timalsina & Singh 2014). According to the information provided by the respondents, the number of medicinal plants in the study area was decreasing day by day. Most of the respondents (40%) reported that habitat degradation was a major threat to medicinal plants. After habitat degradation, 30% of respondents pointed out improper harvesting as a crucial threat, followed by overexploitation (19%), illegal trade (7.5%) and grazing (5%) (Figure 8).

These plants provide a significant contribution to the treatment of human and cattle illnesses. Improper harvesting, illicit trading, habitat destruction, grazing, and overexploitation were discovered to be the fundamental reasons of their decline. Resources are being exploited and environments are being destroyed as a result of expanding urbanization and industrialization, as well as unabated population increase and human interventions. Medicinal plants from different parts of Nepal have been discovered to be threatened in the same way (Bhattarai *et al.* 2010, Hasan *et al.* 2013, Kumari *et al.* 2012, Malla *et al.* 2015). As a result, developing proper conservation methods for quickly growing medicinal plants is critical in order to avoid natural resource depletion (Singh 2013).

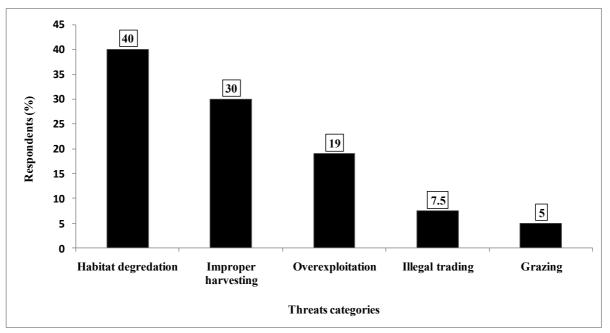


Figure 8. Major threats to the medicinal plants of the study area.

Conclusions

Though the study area was very near to the capital city, local people are still using medicinal plants for their primary health care.. A large number of species were used to treat fever and gastrointestinal disorders, which indicates their higher prevalence in the area. Moreover, the plants in the study area must be rigorously tested for possible bioactive components that can aid in the development of innovative medications using phytochemical and pharmacological methods. The majority of the medicinal plants documented in the present study chiefly belong to the Solanaceae, Asteraceae, Rutaceae, Lamiaceae, and Zingiberaceae. Herbs made up the highest proportion of medicinal plants, and leaves were the most frequently used plant part. The species used for medicinal plant species are found to be under threat due to grazing, over exploitation, habitat degradation, illegal trade, and improper harvesting. To conserve the medicinal plant variety in the study area, a proper conservation planning is required. It can be accomplished by enlisting the help of the local community to build a medicinal plant garden. The study also showed that traditional knowledge was more confined to elderly people, which indicates the chances of extinction of such knowledge. Thus, it is necessary to acquire and preserve the traditional system of medicine through proper documentation and identification of plant species.

Declarations

List of abbreviations: H: herb, S: shrub, T: tree, Cl: climber, W: wild, C: cultivated

Ethics approval and consent to participate: All the participants provided prior informed consent before the interviews.

Consent for publication: No personal data are published

Availability of data and materials: All data collected in the study has been presented and visualized in the manuscript.

Conflicts of interest: The authors declare to have no conflict of interest. **Funding:** Not applicable

Authors' contributions: KD, NNM, and SS designed the study. KD, NNM, NS and SS collected the data. NNM and SC performed the data analysis. KD, NNM, SC and YU drafted and finalized the manuscript.

Acknowledgments

We are grateful to the respondents who shared their knowledge to complete our study. We are grateful to Mr. Jayaram Khaiju for assisting us with the design of the study map using QGIS

Literature cited

Acharya E, Pokhrel B. 2006. Ethno-medicinal plants used by Bantar of Bhaudaha, Morang, Nepal. Our Nature 4(1):96-103.

Acharya R, Acharya KP. 2009. Ethnobotanical study of medicinal plants used by Tharu community of Parroha VDC, Rupandehi District, Nepal. Scientific World 7:80-84. doi: 10.3126/sw.v7i7.3832.

Adhikari M, Thapa R, Kunwar RM, Devkota HP, Poudel P. 2019. Ethnomedicinal uses of plant resources in the Machhapuchchhre Rural Municipality of Kaski District, Nepal. Medicines 6(2):69. doi: 10.3390/medicines6020069

Ansari AA, Gill SS, Abbas ZK, Naeem M. 2017. Plant Biodiversity: Monitoring, Assessment and Conservation. CABI, p.3. doi: 10.1079/9781780646947.0000.

Balami NP. 2004. Ethnomedicinal uses of plants among the Newar community of Pharping village of Kathmandu district, Nepal. Tribhuvan University Journal 24(1):13-19.

Baral SR, Kurmi PP. 2006. A Compendium of Medicinal Plants in Nepal. Mrs Rachana Sharma, Kathmandu, Nepal.

Bennett BC, Prance GT. 2000. Introduced plants in the indigenous pharmacopoeia of Northern South America. Economic Botany 54(1):90-102. doi: 10.1007/BF02866603.

Bhaila A, Shakya S, Kunwar B, Baral B, Chaudhary S, Munankarmi NN. 2022. Ethnomedicinal exploration of plants utilized by the people of Suryabinayak Municipality in Bhaktapur district, Nepal. Vegetos 1-12. doi: 10.1007/s42535-021-00339-2.

Bhatt MD, Kunwar RM. 2020. Distribution pattern and ethnomedicinal uses of plants in Kanchanpur district, Far-Western Nepal. Ethnobotany Research and Applications 20:1-21. doi: 10.32859/era.20.14.1-21

Bhattarai KR. 2017. Ethnomedicinal Practices of the Lepcha Community in Ilam, East Nepal. Journal of Plant Resources 15(1):31-44.

Bhattarai KR. Ethnobotanical study of plants used by Thami community in Ilam District, eastern Nepal. 2018. Our Nature 16(1):55-67. doi: 10.3126/on.v16i1.22123.

Bhattarai S, Chaudhary RP, Quave CL, Taylor RSL. 2010. The use of medicinal plants in the trans-himalayan arid zone of Mustang district, Nepal. Journal of Ethnobiology and Ethnomedicine 6(1):1-11. https//doi.org/10.1186/1746-4269-6-14.

Bhattarai S, Chaudhary RP, Taylor RS. 2006. Ethnomedicinal plants used by the people of Manang district, central Nepal. . Journal of Ethnobiology and Ethnomedicine 2(1):1-8.

Budha-Magar S, Bhandari P, Ghimire SK. 2020. Ethno-medicinal survey of plants used by Magar (Kham) community, Rolpa district, Western Nepal. Ethnobotany Research and Applications 19:1-29. doi: 10.32859/era.19.18.1-29

Bussmann RW, Sharon D. 2006. Traditional medicinal plant use in Northern Peru: tracking two thousands of healing cultures. Journal of Ethnobiology and Ethnomedicine 2(1):1-18. doi: 10.1186/1746-4269-2-47.

CBS. 2011. National Population and Housing Census: National Report. National Bureau of Statistics, Government of Nepal, Kathmandu, Nepal.

CBS. 2021. National Population and Housing Census: National Report. National Bureau of Statistics, Government of Nepal, Kathmandu, Nepal.

Chaudhary S, Magar GT, Sah SN, Parajuli S. 2020. Ethnic plants of Tharu community of Eastern Nepal. International Journal of Applied Sciences and Biotechnology 8(2):223-230. doi: 10.3126/ijasbt.v8i2.28325.

Cock IE, Van Vuuren SF. 2020. The traditional use of southern African medicinal plants in the treatment of viral respiratory diseases: A review of the ethnobotany and scientific evaluations. Journal of Ethnopharmacology 15:262. doi: 10.1016/j.jep.2020.113194.

Cox PA. 2000. Will tribal knowledge survive the millennium? Science 287:44-45.

Dash SP, Dixit S, Sahoo S. 2017. Phytochemical and biochemical characterizations from leaf extracts from *Azadirachta indica*. an important medicinal plant. Biochemical & Analytical Biochemistry 6(323):2161-1009.

Department of Plant Resources (DPR). 2016. Medicinal Plants of Nepal. Ministry of Forests and Soil Conservation, Government of Nepal, Department of Meteorology and Hydrology, Babarmahal, Kathmandu, Nepal.

Dhami N. 2008. Ethnomedicinal uses of plants in Western Terai of Nepal: a case study of Dekhatbhuli Vdc of Kanchanpur District. In: Jha PK, Karmacharya SB, Chettri MK, Thapa CB, Shrestha BB. (eds). Medicinal plants in Nepal: an anthology of contemporary research. Ecological Society, Kathmandu, Nepal, pp. 165-177.

Figueiredo GM, Leitao-Filho HF, Begossi A. 1997. Ethnobotany of Atlantic Forest coastal communities: II. Diversity of plant uses at Sepetiba bay (SE Brazil). Human Ecology 25:353-360.

Gachhadar P. 2006. Indigenous Knowledge and Practices on Medicinal Plants among Tharu Community in Eastern Nepal.

Gakuubi MM, Wanzala W. 2012. A survey of plants and plant products traditionally used in livestock health management in Buuri district, Meru County, Kenya. Journal of Ethnobiology and Ethnomedicine 8(1):1-20.

Gautam S, Timilsina S. 2022. Ethnomedicinal Uses of Plant Resources in Puranchaur Village, Kaski, Nepal. Ethnobotany Research and Applications 23:1-32. doi: 10.32859/era.23.17.1-32

Government of Nepal (GoN). 2019. Environment Statistics of Nepal 2019. Central Bureau of Statistics, Kathmandu, Nepal.

Groombridge B, Jenkins MD. 2002. World Atlas of Biodiversity. World Conservation Monitoring Centre, University of California Press, Berkeley.

Gubhaju MR, Gaha Y. 2019. Ethnomedicinal uses of plants in Mityal, Palpa, Nepal. Journal of Plant Resources 17(1):155-162.

Hasan MK, Gatto P, Jha PK. 2013. Traditional Use of Wild Medicinal Plants and their Management Practices in Nepal-A study in Makwanpur District. International Journal of Medicinal and Aromatic Plants 3(1):102-112.

Heinrich M, Moerman ES, Leonti M. 2009. Ethnopharmacological field studies: A critical assessment of their conceptual basis and Methods. Journal of Ethnopharmacology 124:1-17. doi: 10.1016/j.jep.2009.03.043.

Hussain A. 2020. The genus Artemisia (Asteraceae): A review on its ethnomedicinal prominence and taxonomy with emphasis on foliar anatomy, morphology, and molecular phylogeny. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 57(1):1-28.

International Society of Ethnobiology. 2006. International Society of Ethnobiology Code of Ethics (with 2008 additions) http://ethnobiology.net/code-of-ethics/.

Joshi AR, Joshi K. 2000. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. Journal of Ethnopharmacology 73(1-2):175-183. doi: 10.1016/S0378-8741(00)00301-9

Joshi KK, Joshi SD. 2006. Medicinal and Aromatic Plants Used in Nepal, Tibet and Trans-Himalayan Region. AuthorHouse, Bloomington.

Kadir MF, Bin Sayeed MS, Mia MM. 2012. Ethnopharmacological survey of medicinal plants used by indigenous and tribal people in Rangamati, Bangladesh. Journal of Ethnopharmacology 144(3):627-637. doi: 10.1016/j.jep.2012.10.003.

Khakurel D, Uprety Y, Łuczaj Ł, Rajbhandary S. 2021. Foods from the wild: Local knowledge, use pattern and distribution in Western Nepal. PLoS ONE 16(10). e0258905.

Koirala RR, Khaniya BN. 2009. Present status of traditional medicine and medicinal and aromatic plants related resources and organizations in Nepal. Nepal Health Research Council, Kathmandu, Nepal.

Kumari R, Tiwary BK, Prasad A, Ganguly S. 2012. Study on Immuno-modulatory effect of herbal extract of *Asparagus racemosus* Wild in broiler chicks. Global Journal of Research on Medicinal Plants and Indigenous Medicine 1(1):1-6.

Kunwar RM, Bussmann RW. 2006. *Ficus* (Fig) species in Nepal: A review of diversity and indigenous uses. Lyonia 11:85-97.

Kunwar RM, Bussmann RW. 2008. Ethnobotany in the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 4(1):1-8. https//doi.org/10.1186/1746-4269-4-24.

Kunwar RM, Fadiman M, Cameron M, Bussmann RW, Thapa-Magar KB, Rimal B, Sapkota P. 2018. Cross-cultural comparison of plant use knowledge in Baitadi and Darchula districts, Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 14(1):1-17.

Lawrence G. 1951. Taxonomy of vascular plants. Macmillan, New York.

Madikizela B, Ndhlala AR, Finnie JF, Van Staden J. 2012. Ethnopharmacological study of plants from Pondoland used against diarrhoea. Journal of Ethnopharmacology 141(1):61-71.

Magar RA, Mallik AR, Chaudhary S, Parajuli S. 2022. Ethno-medicinal plants used by the people of Dharan, Eastern Nepal. Indian Journal of Traditional Knowledge 21(1):72-80.

Mahato RB, Chaudhary RP. 2005. Ethnomedicinal study and antibacterial activities of selected plants of Palpa district, Nepal. Scientific World 3(3):26-31.

Mahwasane ST, Middleton L, Boaduo N. 2013. An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo province, South Africa. South African Journal of Botany 88:69-75.

Malla B, Gauchan DP, Chhetri RB. 2015. An ethnobotanical study of medicinal plants used by the ethnic people in Parbat district of western Nepal. Journal of Ethnopharmacology 165:103-117. doi: 10.1016/j.jep.2014.12.057.

Mallik AR, Chaudhary S, Shrestha S. 2020. Useful valuable plants of Maithili community in Eastern Nepal: An ethnobotanical study. Bangladesh Journal of Plant Taxonomy 27(2):439-446. doi: 10.3329/bjpt.v27i2.50678.

Manadhar NP. 1989. A survey of medicinal plants of Jajarkot district, Nepal. Journal of Ethnopharmacology 48(1):1-6. doi: 10.1016/0378-874(95)01269-J.

Manandhar NP. 2002. Plants and People of Nepal. Timber Press IRC, Portland, Oregon.

Miya MS, Timilsina S, Neupane A. 2021. Ethnomedicinal uses of plants by major ethnic tribes in Terai districts of Nepal. International Journal of Applied Biology 5(2):130-174.

Murad W, Azizullah A, Adnan M, Tariq A, Khan K U, Waheed S, Ahmad A. 2013. Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. Journal of Ethnobiology and Ethnomedicine 9(1):77. doi: 10.1186/1746-4269-9-77

Musarella CM, Paglianiti I, Cano-Ortiz A, Spampinato G. 2019. Indagine etnobotanica nel territorio del Poro e delle Preserre calabresi (Vibo Valentia, S-Italia). Atti della Società Toscana di Scienze Naturali Memorie 126:13-28.

Mussarat S, AbdEl-Salam NM, Tariq A, Wazir SM, Ullah R, Adnan M. 2014. Use of ethnomedicinal plants by the people living around Indus River. Evidence Based Complementary and Alternative Medicine 2014.

Nadeem M, Shinwari ZK, Qaiser M. 2013. Screening of folk remedies by genus *Artemisia* based on ethnomedicinal surveys and traditional knowledge of native communities of Pakistan. Pakistan Journal of Botany 45(S1):111-117.

Ndukwu BC, Ben-Nwadibia NB. 2005. Ethnomedicinal aspects of plants used as spices and condiments in the Niger delta area of Nigeria. Ethnobotanical Leaflets 2005(1):10.

Njoroge GN, Bussmann RW, Gemmill B, Newton LE, Ngumi VW. 2004. Utilization of weed species as source of traditional medicines in central Kenya. Lyonia 7:272-287.

Ojha Khatri S, Chaudhary S, Shrestha N, Munankarmi NN. 2021. Ethnomedicinal study and phytochemical screening of selected plants in Jhule, Dolakha District, Nepal. Vegetos 34(4):834-846. doi: 10.1007/s42535-021-00266-2.

Pattanayak P, Behera P, Das D, Panda SK. 2010. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy Review 4(7):95-105. doi: 10.4103/0973-7847.65323

Paudyal SP, Rai A, Das BD, Paudel N. 2021. Ethnomedicinal knowledge on Rai community of Ramprasadrai rural municipality, Bhojpur district, eastern Nepal. European Journal of Biological Research 11(3):367-380.

Platel K, Srinivasan K. 2004. Digestive stimulant action of spices: a myth or reality? Indian Journal of Medical Research 119(5):167.

Poudel B, Bhandari J, Poudel A, Gautam D. 2021. Ethnomedicinal use of Common Garden Species in Arghakhanchi district, Western Nepal. Asian Journal of Pharmacognosy 4(1):31-65.

Poudyal K, Jha PK, Zobel DB. 2012. Role of wood water properties and leaf dynamics in phenology and response to drought in evergreen Himalayan tree species. Ecoprint 19:71-84. doi: 10.3126/eco.v19i0.9857.

Pradhan SP, Chaudhary RP, Sigdel S, Pandey BP. 2020. Ethnobotanical knowledge of Khandadevi and Gokulganga rural municipality of Ramechhap district of Nepal. Ethnobotany Research and Applications 20:1-32. doi: 10.32859/era.20.07.1-32.

Quinlan MB, Quinlan RJ. 2007. Modernization and medicinal plant knowledge in a Caribbean horticultural village. Medical Anthropology Quarterly 21(2):169-192. doi: 10.1525/maq.2007.21.2.169.

Ragupathy S, Steven NG, Maruthakkutti M, Velusamy B, Ul-Huda MM. 2008. Consensus of the 'Malasars' traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India. Journal of Ethnobiology and Ethnomedicine 4(1):1-14.

Rai R, Singh NB. 2015. Medico-ethnobiology in Rai community: a case study from Baikunthe Village development committee, Bhojpur, eastern Nepal. Journal of Institute of Science and Technology 20(1):127-132.

Rajbanshi N, Thapa LB. 2019. Traditional knowledge and practices on utilizing medicinal plants by endangered Kisan ethnic group of Nepal. Ethnobotany Research and Applications 18:1-9. doi: 10.32859/era.18.23.1-9.

Rokaya MB, Munzergova Z, Timsina B. 2010. Ethnobotanical study of medicinal plants from the Humla District of Western Nepal. Journal of Ethnopharmacology 130(3):485-504. doi: 10.1016/j.jep.2010.05.036.

Shah PP, Mello PMD. 2004. A review of medicinal uses and pharmacological effects of *Mentha piperita*. Natural Product Radiance 3(4)..

Shah S, Lamichhane D. 2017. Documentation of Indigenous Knowledge on plants used by Tamang Community of Kavrepalanchok District, Central Nepal. Journal of Plant Resources 15(1):45-51.

Sharma UR, Malla KJ, Uprety RK. 2004. Conservation and management efforts of medicinal and aromatic plants in Nepal. Banko Janakari 14(2):3-11. doi: 10.3126/banko.v14i2.17044.

Shewamene Z, Dune T, Smith CA. 2020. Use of traditional and complementary medicine for maternal health and wellbeing by African migrant women in Australia: A mixed method study. BMC Complementary Medicine and Therapies 20(1):1-12. doi: 10.1186/s12906-020-2852-6.

Shresth PM, Dhillion SS. 2003. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. Journal of Ethnopharmacology 86(1):81-96. doi: 10.1016/S0378-8741(03)00051-5.

Shrestha K. 1998. Dictionary of Nepalese plant names. 1st ed, Mandala Book Point, Kathmandu, Nepal.

Shrestha N, Prasai D, Shrestha KK, Shrestha S, Zhang XC. 2014. Ethnomedicinal practices in the highlands of central Nepal: A case study of Syaphru and Langtang village in Rasuwa district. Journal of Ethnopharmacology 155(2):1204-1213. doi: 10.1016/j.jep.2014.07.002

Shrestha N, Shrestha S, Koju L, Shrestha KK, Wang Z. 2016. Medicinal plant diversity and traditional healing practices in eastern Nepal. Journal of Ethnopharmacology 192:292-301. doi: 10.1016/j.jep.2016.07.067

Singh AG, Kumar A, Tewari DD, Bharati KA. 2018. New ethnomedicinal claims from Magar community of Palpa district, Nepal. Indian Journal of Traditional Knowledge 17(3):499-511.

Singh AG, Kumar A, Tewari DD. 2012. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. Journal of Ethnobiology and Ethnomedicine 8(1):1-15. doi: 10.1186/1746-4269-8-19

Singh AG, Panthi MP, Tewari DD. 2011. Ethnomedicinal plants used by the Tharu and Magar communities of Rupandehi district, Western Nepal. Current Botany 2(2):30-33.

Singh AG. 2013. Medicinal plants as a source of antipyretic agent in Terai region of Western Nepal. International Journal of Applied Sciences and Biotechnology 1(3):118-126. doi: 10.3126/ijasbt.vli3.8383.

Singh B, Singh S, Kishor A, Singh B. 2021. Traditional usage of medicinal plants in humans and animals health care and their chemical constituents from hills and valleys of Jammu province, western Himalaya. Indian Journal of Natural Products and Resources 12:84-100.

Singh D, Chaudhuri PK. 2018. A review on phytochemical and phytochemical properties of holy basil (*Ocimum sanctum* L). Industrial Crops and Products 118:367-382.

Singh S. 2017. Ethnobotanical study of wild plants of Parsa district, Nepal. Ecoprint 24:1-12.

Srivastava M, Shanker K. 2022. *Duranta erecta* Linn: A critical review on phytochemistry, traditional uses, pharmacology, and toxicity from phytopharmaceutical perspective. Journal of Ethnopharmacology 293:115274.

Stepp JR, Moerman DE. 2001. The importance of weeds in ethnopharmacology. Journal of Ethnopharmacology 75:19-23. doi: 10.1016/S0378-8741(00)00385-8

Tamang R, Thakur C, Koirala D, Chapagain N. 2017. Ethno-medicinal plants used byCchepang community in Nepal. Journal of Plant Resources 15(1):31-30.

Thapa CB. 2020. Ethnomedicinal practices by Tharu ethnic community in Rupandehi and Nawalparasi districts, Western Nepal. Journal of Institute of Science and Technology 25(2):93-106. doi: 10.3126/jist.v25i2.33745

Thomas E, Vanderbroek K, Sanca S, Van Damme P. 2009. Cultural significance of medicinal plant families and species among Quechua farmers Apillapampa, Boivia. Journal of Ethnopharmacology 122:60-70. doi: 10.1016/j.jep.2008.11.021

Thorsen RS, Pouliot M. 2016. Traditional medicine for the rich and knowledgeable: challenging assumptions about treatment-seeking behavior in rural and peri-urban Nepal. Health Policy Plan 31(3):314-324.

Timalsina SH, Singh NB. 2014. Ethnobiology and Indigenous knowledge about medicinal animals and plants in the Balami Ethnic group in Nepal. Journal of Institute of Science and Technology 19(2):79-85. doi: 10.3126/jist.vl9i2.13857.

Tongco MD. 2007. Purposive Sampling as a Tool for Informant Selection. Ethnobotany Research and Applications 5:47-158. doi: 10.17348/era.5.0.147-158.

Trotter R, Logan M. 1986. Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Etkin NL, editor. Plants in Indigenous Medicine and Diet: Biobehavioural Approaches, Redgrave Publishers, Bedford Hills, Pp. 91-112.

Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. 2014. Ethnomedicinal plant use value in the Lakki Marwat District of Pakistan. Journal of Ethnopharmacology 158:412-422. doi: 10.1016/j.jep.2014.09.048

Umair M, Altaf AM, Abbasi AM. 2017. An ethnobotanical survey of indigenous medicinal plants in Hafizabad District, Punjab Pakistan. PLoSONE 12(6):1-22. doi: 10.1371/journal.pone.0177912.

Uprety Y, Asselin H, Boon EK, Yadav S, Shrestha KK. 2010. Indigenous use and bio-efficiency of medicinal plants in the Rasuwa district, central Nepal. Journal of Ethnobiology and Ethnomedicine 6(1):1-10. doi: 10.1186/1746-4269-6-3.

Voeks RA, Leony A. 2004. Forgetting the forest: assessing medicinal plant erosion in eastern Brazil. Economic Botany 58S:294-S306, https://doi.org