

Ethnobotanical documentation of Harike Wildlife Sanctuary (Ramsar Site), Punjab, India: A case study

Sameer Gautam and B.S. Adhikari

Correspondence

Sameer Gautam* and B.S. Adhikari

Department of Habitat Ecology, Wildlife Institute of India, Dehradun, Uttarakhand India 248001

*Corresponding Author: sameergautam2009@gmail.com, sameer@wii.gov.in

Ethnobotany Research and Applications 25:25 (2023) - http://dx.doi.org/10.32859/era.25.25.1-24 Manuscript received: 27/09/2022 - Revised manuscript received: 10/02/2023 - Published: 21/02/2023

Research

Abstract

Background: Harike Wildlife Sanctuary (HWS) is a natural bank of medicinal plants and native flora; therefore regular monitoring is required to maintain such diversity. The objective of the present study is to document the medicinal plants used by local people settled around HWS besides to develop a systematic record of traditionally used medicinal plants.

Methods: The data was collected with the help of a semi-structured questionnaire following the snowball sampling method. People with some knowledge of medicinal plants were targeted for gathering information. To confirm the plant availability and identification, various field surveys were conducted along with informants across the habitat types within Harike Wildlife Sanctuary. Besides the harvest time of different wild plants mentioned by informants and the database is prepared for useful medicinal plants.

Results: A total of 85 species from 79 genera and 51 families were mentioned by informants for the treatment of 40 types of health ailments. Leaves (25% species) are the most used plant part and decoction (19 species) is the most used method for the preparation of the drug, while the most frequent administration of the drug is oral (85% species). The ethnobotanical indices like Use Value, Relative Importance and Fidelity Level (FL) of each species have been derived from the primary dataset.

Conclusion: Even though the study area also has access to contemporary healthcare services, the study found that numerous species are utilized to treat a wide range of medical conditions. By creating an effective plan, the current study may help to preserve medicinal and aromatic plants.

Keywords: Harike-wetland, Ethnobotany, Fidelity Level, Medicinal plants, Use Value, Punjab

Background

Traditional health management practices with medicinal plants have been supporting human civilizations globally and are being used to extract useful phytochemicals to produce modern medicine (Schippmann et al. 2002). Medicinal plants are usually accessible in plenty, particularly in the tropics. The effectiveness of any healthcare system endures due to suitable medicines. The marginal communities of society are unable to afford the cost of modern medicines hence medicinal plants are essential for healthcare (Rao 1991). Around 80% of people in Asia and Africa use traditional medicine (Oyebode et al. 2016). The Ayurveda, Unani and Siddha healthcare systems evolved with medicinal plants in the course of a sequence of several centuries. Seventy-five percent of the needs

of the third world are met by an estimated 6,000 species utilised in traditional and herbal medicine, while 3,000 plants have been formally recognized for their therapeutic benefits (Laldingliani et al. 2022). About 80% of the population of developing counties is actively engaged in using medicinal plants to treat health ailments (Hamilton 2004). The continuous rapid destruction of natural habitats is leading to the shrinking of the sources leading to the loss of biodiversity as well as the population of medicinal plants. Therefore, the studies of ethnobotanical are important for developing conservation strategies (Panigrahi et al. 2021). The use of traditional knowledge of plant materials for disease treatment and prevention has gotten a lot of attention from the plant-based research community, which has led to an increase in drug discovery based on phytochemicals (Newman and Crag 2007; Anupama et al. 2014). There are many bioactive compounds usually acquired from plants. Few medicinal plants like Tribulus terrestris and Urena lobata has been identified as a repository of diosgenin and quercetin, respectively, Acacia catechu contains catechin and a climber Basella alba produces carotenoids (Khare 2008). . Harike village is located alongside Harike village is located along Harike Wetland from centuries which is also a confluence zone for two major Himalayan rivers. In addition, Harike Wetland, a section of HWS, is associated with six habitat types, making this place rich in flora that may be beneficial for medicinal purposes. The Harike village area is significant to Punjab's history and culture, therefore it's possible that people here generated their own methods for treating illnesses with the help of nearby medicinal plants. The objective of the present study is to document the medicinal plants used by local people settled around HWS besides developing a systematic record of traditionally used medicinal plants, methods for using different parts of medicinal plants for treatment of various ailments. This study also examines species richness of medicinal plants in different months in a year and variety of medicinal plant species found in various habitat types besides documenting the time period of different medicinal plants present in HWS.

Materials and Methods

Study area

The study is one of the largest man-made wetland of north India, established in 1952 at the confluence of Beas and Sutlej rivers and designated as a Ramsar site in the year 1990, i.e. Harike Wildlife Sanctuary (HWS). It is located between 31°05'15" to 31°14'15" N Lat. and 74° 55'30" to 75° 07'30" E Long. in the state of Punjab. The sanctuary is spreading over an area of approximately 86 sq. km (Fig 1), sharing its boundaries with Ferozpur, Tarn Taran and Kapurthala districts of the state of Punjab. Harike wetland is also a foundation of the extensive Indira Gandhi Canal with two channels, Rajsthan (650 km) and Ferozpur (51.3 km), which provide water supply to Punjab, Haryana and Rajasthan states. The sanctuary is surrounded by agricultural fields and villages, the major population is engaged in mixed farming. Harike and Marrar village is the largest and smallest village around the sanctuary respectively. Developing fine communication between informants is necessary therefore gathering information always starts with informal talks. After developing a familiarity with the informant, numerous questions had been asked. The diversity of habitats in the Sanctuary supports many medicinal plants with a high population including *Withania somnifera, Terminalia bellirica, Boerhavia diffusa, Bacopa monnieri* and *Centella asiatica*. The Sanctuary is interspersed with agricultural fields and villages.

Ethnobotanical data collection

Ethno-botanical data was collected through semi-structured interviews and observations were recorded during the field surveys held between September 2019 and March 2021. A total of 110 informants were interviewed and the composition of informants include medicinal plant collectors, traditional drug makers, farmers, daily wage laborers, and government servants. A Semi-structured questionnaire was used for data collection following snowball sampling (Goodman 1961, Arafa *et.* al 2021, Bhagawan & Kusumawati 2020). The field observations with some informants have been made for the confirmation of plant species mentioned for the treatment of ailments. A total of 72 field surveys have been carried out following the line transit method (Buckland *et. al* 2007) across the habitat types in HWS to record the status and distribution of medicinal plants mentioned by informants. In each field visit, one-kilometer line transit in each habitat type has been covered to record data, each line transit is repeated 3 times in each season (summer, monsoon, post-monsoon, and winter). Direct and indirect evidence has also been recorded for the collection of medicinal plants from the sanctuary. The wild plants mentioned by the informant have been identified by following Nair 1978 and Sharma 1990 with some online resources like www.theplantlist.org, http://www.flowersofindia.net, and www.efloras.org were used. Plants species were photographed from the field and a voucher specimen of pictures has been submitted to the herbarium of the Wildlife Institute of India.

Figure 1. Location of villages along Harike Wildlife Sanctuary

Data analysis

Use Value

To find out the significant plant species used by people, the Use Value (UV) index is calculated according to Rossato *et al.* (1999) and Silva & Albuquerque (2004).

UV: ΣU_i/N_i

U_i = Number of uses mentioned by all informants.

 N_i = Number of the informant.

For example: if informant A has mentioned 2 uses and informant B has mentioned 6 uses, therefore, the Use Value will be (2+6)/2 = 4.

Relative Importance Index

The Relative Importance Index is calculated by following Bennett & Prance (2000).

NUC = number of use categories of a given species divided by the total number of most versatile species in use categories.

NT = is given by the number of kinds of uses attributed to a given species divided by the total number of types of uses attributed to the most important taxon.

Fidelity level

This is adapted from Friedman *et al.* (1986) to determine the particular medicinal plant used for certain ailments. A high percentage shows that the given species is used by people for the treatment of a particular ailment.

Fidelity level (FL) =
$$I_p / I_u \times 100$$

 I_p = number of informants that cited the principal use of the species.

 I_{u} = the total number of informants that cited the species for any purpose.

The Distribution of medicinal plants has been recorded from wild sources after direct field visits conducted on monthly basis from September 2019 to March 2021. A timeline chart for the availability of medicinal plants in the HWS has also been mentioned in the study.

Results and Discussion

Demographical details

A total of 110 informants from six villages (22 from Makhu, 28 from Harike, 8 from Marrar, 15 from Kiriyan, 10 from Kambo-Dhaiwala and 27 from Chamba Kalan) belonged to different age groups and gender (87 men and 23 women) were interviewed for ethnobotanical use of plants, including literacy level and occupation (Table 1). The literacy level of informants was in the order: of Illiterate (42.7%) > below matric (40.9%) > above matric (16.4%). The informants from the age group above 50 years were found to be more aware of the use and identification of medicinal plants. During the investigation, 3 individuals were found engaged in practicing drug preparation and sale, while 5 individuals were involved in the collection of medicinal plants. The knowledge of medicinal plants has been observed at a young age (< 40 years), but they were unable to identify the wild medicinal plants, besides many elder informants also accepted that there is a depletion in the population of medicinal plants and a loss of biodiversity due to habitat destruction and conversion of habitats into agricultural fields.

Variable	Category	Number of individuals
Gender	Male	87
	Female	23
Age	<30 years	6
	30-40 years	20
	40-50 years	22
	>50 years	62
Educational level	Illiterate	47
	< matriculation	45
	>matriculation	18

Table 1. Demographic information

Taxonomic details

A total of 85 species belonging to 79 genera and 51 families have been mentioned by the informants to treat 40 ailments (Table 2). The maximum number of species was recorded from Fabaceae family (4 species), followed by Apiaceae, Apocynaceae, Brassicaceae, Euphorbiaceae, Lamiaceae, Myrtaceae, Papaveraceae, Rutaceae, Solanaceae, Zingiberaceae (3 species each) and Amaranthaceae, Amaryllidaceae, Combretaceae, Cucurbitaceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Phyllanthaceae, Poaceae (2 species each), while 30 families were represented by single species. Herbs (51.8%) were recorded as the most used habit of medicinal plants mentioned by informants followed by trees (27.1%), shrubs (11.8%), climbers (7.1%) and grasses (2.4%). Muthu et. al (2006) carried out an ethnobotanical survey during October 2003 to April 2004 in Kancheepuram district of Tamil Nadu, India. They recorded 85 species of plants spread in 76 genera belonging to 41 families to treat various illnesses with dominated families like Euphorbiaceae (7 species) and Verbenaceae (5 species) but in the case of HWS it's Fabaceae (4 species) and Euphorbiaceae (3 species). Muthu et. al (2006) recorded Herbs (39 species), trees (21 species), shrubs (14 species) and climbers (11 species). Another study conducted by Parvaiz, (2014) in Mangowal, District Gujrat, Punjab, Pakistan. He revealed that native people use about 40 plant species from 22 families to treat a range of illnesses and problems, including asthma, ulcers, gonorrhea, piles, stomach pain, and skin issues. Hag et. al. (2021) documented 105 ethnobotanically significant plants belonging to 39 families from area of Ladakh in the Indian Trans-Himalayas zone. They also recorded Fabaceae and Lamiaceae as dominating family. There are 49 species common to the study conducted by Sidhu et al. (2011) with major species like Allium cepa, Acacia nilotica, Allium sativum, Aegle marmelos, Brassica campestris, Bryophyllum pinnatum, Argemone mexicana, Azadirachta indica,

Citrus reticulate and *Euphorbia hirta*. The study conducted in the Kapurthala district of Punjab by Kaur *et al.* (2017) shows that 29 species are common with major species like *Abutilon indicum, Achyranthes aspera, Aegle marmelos, Asparagus racemosus, Cinnamomum zeylanicum, Cassia fistula,* and *Ficus benghalensis*. However, Sidhu *et al.* (2012) reported 50 species common in the Jalandhar district of Punjab including *Achyranthes aspera, Argemone mexicana, Bacopa monnieri, Bryophyllum pinnatum, Calotropis procera, Brassica campestris, Camellia sinensis, Carica papaya, Cannabis sativa, Cassia fistula, Curcuma longa, Emblica officinalis, Ficus palmate, Fumaria indica* and *Piper nigrum.*

Habit	Species	Genus	Family
Climber	6	5	4
Grasses	2	2	1
Herbs	44	41	26
Shrubs	10	10	3
Trees	23	21	17

Table 2. Number of species, genera and families according to habit

Species used for various ailments

The ailments mentioned by the informants have been classified under 15 major ailments' categories along with the medicinal plant species (Fig 2) used are in following order: Gastro-intestinal with 48 species [ailments: constipation (15 species), diarrhea (12 species), indigestion (7 species), piles and stomachache (5 species each), gastritis (3 species), ulcer (1 species)] > Circulatory with 19 species [ailments: diabetes (13 species), anemia (3 species), blood pressure (2 species), blood infection (1 species)] and General with 17 species [ailments: fever (8 species), cough & cold (5 species), headache (3 species), bee sting (1 species)] > Dental with 11 species [ailments: bad breath (1 species), periodontitis (5 species) and toothache (5 species)], Skeleton and Muscle with 10 species [ailments: arthritis (2 species), body pain (5 species), weakness (3 species)], Respiratory with 9 species [ailments: asthma (5 species), lung infection (4 species)] and Dermatological with 9 species [ailments: skin disease (5 species), cut and Wound (4 species)] > Vital organs with 7 species [ailments: Cardiovascular disease (1 species), Kidney stone (2 species), Liver disorder (4 species)] and Vector-Borne with 7 species [ailments: malaria (3 species), dengue (4 species)] and Body heat [ailment: Heatstroke] with 7 species > Mental with 6 species [ailments: memory loss (1 species), mental disorder (3 species), insomnia (2 species)], Genital with 6 species [ailments: sexual disorder (4 species), urinary tract infections (1 species), azoospermia (1 species)] and Hair with 6 species [ailment: hair loss] > Hepatic with 2 species [ailment: jaundice] > Ophthalmic with 1 species [ailment: eye irritation]. Panghal et. al (2010) reported 8 species for treatment of male fertility problems and cough, 7 species for female sex problems and fever, 6 species for eye problems, and skin diseases, 5 species for treatment of fistula, wound healing, and jaundice, 4 species for treatment of piles, mental diseases, abdominal problems and tooth ache. A total of 101 types of medicinal uses have been reported by Gras et. al (2019), in which anticatarrhal (59 species) and stomachic (58 species) were mentioned. A detailed description of each medicinal plant recorded in the present study is mentioned in Annexure II.

Figure 2. Number of Species recorded under various ailment categories. .

Plant parts used

The plant parts used (Fig 3) for medicinal purposes to treat various ailments are in the following order: Leaves (26 species) > Fruits (22 species) > Whole plant (14 species) > Seeds (11 species) > Roots (9 species) > Stem \approx Rhizome (5 species each) > Latex (4 species) > Flower \approx Bark (3 species) > Oil (2 species). Khan *et.* al (2022) reported leaves (29 species) are the main plant part used in medicinal practices followed by roots (22), whole plants (9), seeds (8), 6 species for bark, flowers, and fruits. 5 species significant for rhizomes, 3 species for shoots and twigs. Similarly Mir *et.* al (2021) found roots were most utilized amongst the parts of plants, with 25% species of usage, followed by whole plant (22%), rhizomes (15%), leaves (13%), flowers (10%), fruits, seeds and bark (5%). Bhat *et.* al (2021) mentioned whole parts of the plants (26.17%) and the leaves (24.30%) are used frequently for treatment of different ailments in the Kashmir regions.

The species like Achyranthes aspera, Azadirachta indica, Withania somnifera, Moringa oleifera and Carica papaya contribute for leaves; Aegle marmelos, Cordia myxa, Kigelia africana, Mangifera indica, Moringa oleifera, Musa paradisiaca, Phyllanthus emblica, Terminalia bellirica, Ziziphus nummularia, and Vachellia nilotica for fruits; Bacopa monnieri, Centella asiatica, Coriandrum sativum, Sisymbrium irio, Phyllanthus niruri, Euphorbia hirta, Cuscuta reflexa, and Fumaria indica as whole plant; Abrus precatorius, Achyranthes aspera, Asparagus officinalis, Azadirachta indica, Boerhavia diffusa, Beta vulgaris, Ficus palmate, and Solanum virginianum for roots; Brassica campestris, Cleome viscosa. Piper nigrum, Sisymbrium irio. Trachyspermum ammi, Vachellia nilotica, and Trigonella foenum-graecum for seeds; Curcuma longa, Zingiber officinale, Allium sativum, and Allium cepa for rhizome; Azadirachta indica, Mimusops elengi, Achyranthes aspera, Nerium oleander and Pongamia pinnata for stems; Ficus palmata, Ficus benghalensis, Calotropis procera, and Argemone mexicana for latex; Azadirachta indica, Cinnamomum verum, and Terminalia arjuna for bark; Catharanthus roseus, Hibiscus rosa-sinensis, and Syzygium aromaticum for flowers and Brassica campestris, and Ricinus communis for oil.

Source for collection of medicinal plants

The medicinal plants were collected by the local inhabitants from various sources, such as wilderness areas, agricultural lands, wilderness areas/agricultural lands and market (Fig 4) The study area is primarily dominated by agricultural fields, which supports many cultivated species, among them 23 species used for medicinal purposes as cited by the informants, *Curcuma longa, Allium sativum, Zingiber officinale, Bryophyllum pinnatum, Ocimum tenuiflorum, Brassica campestris, Ocimum basilicum, Raphanus sativus, Trigonella foenum-graecum, Beta vulgaris, Murraya koenigii, and Allium cepa was the common species. However, species like <i>Asparagus officinalis, Mangifera indica, Phyllanthus emblica, Syzygium cumini, Psidium guajava, Moringa oleifera, Melia azedarach, Papaver rhoeas, Mangifera indica* and *Nerium oleander* were collected from the wilderness areas. The maximum species (45 species) were collected from the wilderness areas according to informants and the prominent species were *Tinospora cordifolia, Datura metel, Cannabis sativa, Tribulus terrestris, Phyla nodiflora, Pedalium murex, Cordia myxa, Withania somnifera, Achyranthes aspera, Ricinus communis, Bacopa monnieri, Calotropis procera and Lawsonia inermis. The species like <i>Piper longun, Piper nigrum, Trachyspermum ammi, Syzygium aromaticum, Camellia sinensis, Amomum subulatum*, and *Cinnamomum verum* were procured from the market only.

Figure 3. Plant parts used

Figure 4. Sources of medicinal plants

Preparation of Drug

Various modes of consumption of medicinal plants for the treatment of different ailments mentioned by informants are shown in Fig 5. The treatment of different ailments with the change in combination is in the following order:

Decoction (19 species) > Raw form (18 species) > Fresh juice (17 species) > Powder (10 species) > Blend (9 species) > Fresh fruits (6 species) > Paste (6 species) > Smoke \approx Fry (1 species each) The use of powder (40.19%) forms is most preferred method preparation of a drugs was documented in the areas of the Kashmir Himalaya by Bhat *et.* al (2021) followed juice (22.43%), decoction (14.95%), paste (13.08%), and chewed (9.35%). Treasure *et.* al (2020) reported decoction (38.54%) as frequent mode of drug preparation followed by was crushing (38.05%), maceration (11.72%), cook (4.88%), and 3.91% was infusion. Mir *et.* al (2021) also mentioned decoction (25%) as the most common method of medicine preparation followed by powder (18%), paste (17%), raw (8%), and juice (7%) in the high-altitude of Kashmir, Northern Himalaya.

Figure 5. Mode of consuming medicinal plants

The important species used for decoction: *Tinospora cordifolia, Justicia adhatoda, Fumaria indica, Cleome viscosa, Cinnamomum verum, Chenopodium ambrosioides, Amomum subulatum, Piper nigrum, Curcuma longa* and *Zingiber officinale*; as raw forms: *Abutilon indicum, Allium sativum, Azadirachta indica, Euphorbia hirta, Euphorbia prostrate, Withania somnifera* and *Zingiber officinale*, as fresh juice: *Aegle marmelos, Punica granatum, Phylanthus niruri, Citrus aurantium, Lagenaria siceraria, Raphanus sativus, Allium cepa* and *Carica papaya*, as powder: *Abrus precatorius, Curcuma longa, Terminalia bellirica, Tribulus terrestris, Vachellia nilotica, Withania somnifera* and *Tribulus terrestris*, as blend or juice: *Aegle marmelos, Carica papaya, Brassica campestris, Beta vulgaris, Zingiber officinale, Ricinus communis, Hibiscus rosa-sinensis, Mangifera indica* and *Ficus palmata*, as fresh fruits: *Cordia myxa, Phyllanthus emblica, Ziziphus nummularia* and *Syzygium cumini*, as paste: *Lawsonia inermis, Mimusops elengi, Oxalis corniculata, Papaver rhoeas* and *Phyla nodiflora*, while *Cannabis sativa* as smoke and *Sisymbrium irio* as fry administered to cure the various ailments.

Administration of Drug

The drugs administered orally were 84.7% and the major species were *Withania somnifera, Phyllanthus emblica, Piper longum, Terminalia arjuna, Tinospora cordifolia, Vachellia nilotica, Phyllanthus emblica, Raphanus sativus* and *Justicia adhatoda.* The drugs administered topical were 11.8% and the major species were *Ageratum conyzoides, Argemone mexicana, Calotropis procera, Cuscuta reflexa, Eclipta prostrata, Ficus palmata, Hibiscus rosa-sinensis, Lawsonia inermis, Mimusops elengi* and *Nerium oleander.* However, the drugs administered orally/topical were 3.5% and the species were *Allium cepa, Azadirachta indica* and *Mangifera indica.* Sukumaran *et.* al (2021) reported most frequent method of drug administration is oral (53%) from the Pechiparai hills of Kanyakumari Wildlife Sanctuary, Western Ghats, India. similarly Tefera and Kim, (2019) reported Oral (74%) as most frequent ways of administration from southern Ethiopia. Bibi *et.* al (2022) also found oral (56.1%) route is frequent mode of drug administration while 31.2% of medicinal plants were used for both oral and topical applications in the Tanawal area located in Western Himalayas, Pakistan.

Use Value

The UV of medicinal plants ranged from 1.8 to 0.3 in the study area. The higher UV indicates more utilization of a species. Species with high UV are *Tinospora cordifolia* and *Curcuma longa* (1.8 each), *Piper longum* and *Allium sativum* (1.2 each), *Zingiber officinale* (1.0), *Euphorbia hirta, Azadirachta indica* and *Justicia adhatoda* (0.9 each) and *Withania somnifera* (0.8). However, species with low UV are *Fumaria indica* (0.09), *Pedalium murex* (0.09), *Tribulus terrestris* (0.08), *Cannabis sativa* (0.06), *Phyllanthus niruri* (0.06) and *Datura metel* (0.03). The UV of documented species is given in Annexure II.

Relative Importance (RI)

The RI (Annexure II) has been driven by the number of ailment categories for a particular species and the number of uses for concerned species, therefore the species which were recorded under various uses with multiple ailment categories exhibit higher value. The higher RI of medicinal plants suggests the level of awareness and use for the treatment of various ailments. In the present study, the higher RI were recorded for *Allium sativum* with RI value 2 (7 uses under 5 ailment categories) followed by *Azadirachta indica* with RI value 1.86 (6 uses under 5 ailment categories), *Curcuma longa* with RI value 1.51 (5 uses under 4 ailment categories) and *Withania somnifera, Punica granatum, Oxalis corniculata* and *Cleome viscosa* with RI value 1.37 (each with 4 uses under 4 ailment categories). The least RI value (0.34) was recorded for *Ricinus communis, Ficus benghalensis, Amomum subulatum, Hibiscus rosa-sinensis, Lawsonia inermis, Argemone mexicana, Catharanthus roseus, Ficus palmata and Sisymbrium irio.*

Fidelity Level (FL)

FL is useful to know the most preferred species used by the informants for treating certain ailments and is given in Table 3. The FL specifies that certain species are used for the treatment of a particular ailment and is expressed in the percentage, given in Table 3. The FL values for different ailments like fever, blood infection and constipation were 70%, 80% and 40%, respectively shown by *Fumaria indica*. Similarly, FL values of *Withania somnifera* were 91.8% for malaria, 94.1% for sexual disorder and 65.9% for Stomachache. The species with 100% FL values for the treatment of certain ailments include *Catharanthus roseus* (Diabetes), *Camellia sinensis* (Diarrhea) *Cleome viscosa* (Fever), *Mimusops elengi* (Periodontitis), *Argemone mexicana* (Skin disease), *Amomum subulatum* (Indigestion), *Datura metel* (Insomnia) and *Phyllanthus niruri* (Jaundice).

Spacias	Fidelity
Species	level
Anemia	
<i>Beta vulgaris</i> L.	76 2
Phoenix sylvestris (L.) Roxb.	90 0
<i>Punica granatum</i> L.	92 3
Arthritis	
Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	87 5
Calotropis procera (Aiton) Dryand	88 2
Asthma	
Allium cepa L.	90 0
Justicia adhatoda L.	67 3
Withania somnifera (L.) Dunal	80 0
<i>Syzygium cumini</i> var. <i>cumini</i> L.	28 6
Sisymbrium irio L	100 0
Azoospermia	
Ficus benghalensis L.	100 0
Bad breath	
Ocimum basilicum L	46 3
Bee sting	
Oxalis corniculata L	32 0
Blood infection	
Fumaria indica (Hausskn.) Pugsley	80 0
Blood pressure	
Zingiber officinale Roscoe	45 7
Allium sativum L.	27 6
Body pain	
Ziziphus nummularia (Burm f.) Wight & Arn	71 4
Brassica rapa var. rapa L.	83 9
Calotropis procera (Aiton) Dryand	58 8
Phoenix sylvestris (L.) Roxb	80 0
<i>Curcuma longa</i> L.	73 9
Cardiovascular disease	
Terminalia arjuna (Roxb. ex DC.) Wight & Arn	100 0

Table 3. Fidelity Level of each species under various ailments

Cold and cough	
<i>Solanum virginianum</i> L.	57 1
Achyranthes aspera L.	61 5
Zingiber officinale Roscoe	83 0
<i>Brassica rapa</i> var. <i>rapa</i> L.	87 1
Trachyspermum ammi (L.) Sprague	87 5
Piper nigrum L.	88 9
Justicia adhatoda L.	90 9
Piper longum L.	92 7
Allium sativum L.	96 6
Syzygium aromaticum (L.) Merr. & L.M. Perry	97 6
<i>Curcuma longa</i> L.	97 8
Ocimum tenuiflorum L.	98 4
Cinnamomum verum J Presl	100 0
Cleome viscosa L	76 9
Constipation	
Ziziphus nummularia (Burm f.) Wight & Arn .	71 4
<i>Fumaria indica</i> (Hausskn.) Pugsley	40 0
Aloe vera (L.) Burm f.	43 5
Psidium guajava L.	83 3
Beta vulgaris L.	85 7
Terminalia bellirica (Gaertn.) Roxb.	76 5
Murrava koeniaii (L.) Spreng.	73 1
Mangifera indica L	71 4
<i>Phyllanthus emblica</i> L.	89 7
Carica papava L	76.9
Kigelia africana	94.4
Cleome viscosa L	76.9
Cordia myxa L.	100 0
Raphanus sativus L.	77 8
Ricinus communis L.	100 0
Cut and wound	
Azadirachta indica A. Juss.	58 0
Eclipta prostrata (L.) L.	73 9
Brassica rapa var. rapa L.	64 5
Oxalis corniculata L	80 0
Brvophyllum pinnatum (Lam.) Oken	41 7
Ageratum convzoides L.	100 0
Dengue	
Nvctanthes arbor-tristis L.	81 5
<i>Tinospora cordifolia</i> (Willd.) Miers	82 9
Carica papava L	92 3
Punica granatum L.	88 5
Diabetes	
Azadirachta indica A. Juss.	53 6
Moringa oleifera Lam	87.5
Terminalia bellirica (Gaertn.) Roxb	88.2
Murrava koenigii (L.) Spreng	46.2
Justicia adhatoda L	78.2
Svzvaium cumini var. cumini l	95.2
Allium sativum	34 5
Catharanthus roseus (L) G Don	100.0
Lagenaria siceraria (Molina) Standl	100 0
Melia azedarach	100 0
Momordica charantia	100.0
	100.0

<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn.	66 7
<i>Trigonella foenum-graecum</i> L	100 0
Diarrhea	
Ziziphus nummularia (Burm f.) Wight & Arn.	35 7
Tribulus terrestris L.	55 6
Aloe vera (L.) Burm f.	76 1
Aegle marmelos (L.) Correa	810
<i>Psidium quajava</i> L.	83 3
Trachyspermum ammi (L.) Sprague	70 8
Euphorbia prostrata Aiton	89 7
Oxalis corniculata L	80 0
<i>Camellia sinensis</i> (L.) Kuntze	100 0
Cynodon dactylon (L.) Pers.	100 0
Euphorbia hirta L.	95 2
Musa x paradisiaca L.	100 0
Eye irritation	
Allium cepa L.	80 0
Fever	
Azadirachta indica A. Juss.	79 7
<i>Fumaria indica</i> (Hausskn.) Pugsley	70.0
Aegle marmelos (L) Correa	71 4
Nyctanthes arbor-tristis	88.9
Tinospora cordifolia (Willd) Miers	92.1
Curcuma longa	82.6
Cleome viscosa	100.0
Terminalia ariuna (Boxh ex DC) Wight & Arn	55.6
Gastritis	55 0
Zingiber officinale Boscoe	38.3
Allium sativum	43.7
Mentha piperita	85.0
Hair loss	
Beta vulgaris	61.9
Eclipta prostrata (L) L	87.0
Phyllanthus emblica	57.7
Cuscuta reflexa Boxb	100.0
Hibiscus rosa-sinensis	100.0
Lawsonia inermis	100 0
Headache	200 0
	60.6
Punica granatum	61 5
<i>Centella asiatica</i> (L) Urb	97.6
Heatstroke	57.0
	69.7
Chrysonogon zizanioides (L) Roberty	54.6
Coriandrum sativum	76.2
Bacopa monnieri (I) Wettst	83.3
Manoifera indica	89.3
Oxalis corniculata	92.0
Centella asiatica (L.) Urb	78.1
Indiaestion	10 1
Alog yers (L) Burm f	69.6
Zingihar officinala Poscoa	28.3
Ocimum hasilicum	87 0
Moringa oleiferal am	67 5
Tarminalia ballirica (Gaartn) Boyh	58.0
	0 00

<i>Murraya koenigii</i> (L.) Spreng	88 5
<i>Phyllanthus emblica</i> L.	68 0
<i>Allium sativum</i> L.	43 7
Amomum subulatum Roxb.	100 0
<i>Mentha piperita</i> L.	85 0
Insomnia	
<i>Cannabis sativa</i> L.	100 0
<i>Datura metel</i> L.	100 0
Jaundice	
<i>Phyllanthus niruri</i> L	100 0
<i>Raphanus sativus</i> L.	100 0
Kidney stone	
<i>Boerhavia diffusa</i> L.	55 0
Bryophyllum pinnatum (Lam.) Oken	95 2
Liver disorder	
<i>Solanum virginianum</i> L.	71 4
Achyranthes aspera L.	35 4
Moringa oleifera Lam	81 3
Murraya koenigii (L.) Spreng	84 6
Syzygium cumini var. cumini L.	81 0
Lung infection	
<i>Tinospora cordifolia</i> (Willd.) Miers	27 6
Piper lonaum L.	52 9
Ocimum tenuiflorum L.	39 3
Cleome viscosa L	84 6
Malaria	
Tinospora cordifolia (Willd) Miers	44 7
Punica granatum	46.2
Withania somnifera (L.) Dunal	91.8
Memory loss	
Bacona monnieri (L.) Wettst	58.3
Mental disorders	
Cannabis sativa L.	57 1
Datura metel	66 7
Papaver rhoeas	100.0
Periodontitis	
Achvranthes aspera	30.8
Azadirachta indica A Juss	37.7
Psidium quaiava l	55.6
Pongamia pinnata (L.) Pierre	73.9
Vachellia nilotica (L.) P.I.H. Hurter & Mabb	81 3
Nerium oleander	53.3
Svzvojum aromaticum (L) Merr. & LM Perry	78.1
Cordia mixal	66 7
Minusons elengi	100.0
Pilos	100.0
Fueborhia prostrata Aiton	70.2
Kinalia africana	
Chananadium ambrasiaidas	100.0
Euchopoulum ambroslolues L.	100.0
Euphorbid IIII d L. Dhula padiflara (L.) Croope	100.0
	100.0
Jexual alsoraer	77.0
Abutilan indicum (L) Sweet	// 0
Apparagus officing/ist	40.0
Asparagus officinalis L.	0 18

<i>Boerhavia diffusa</i> L.	90 0
<i>Withania somnifera</i> (L.) Dunal	94 1
Allium sativum L.	54 0
Abrus precatorius L.	100 0
Pedalium murex L.	100 0
Skin disease	
Aloe vera (L.) Burm f	80 4
Brassica rapa var. rapa L.	58 1
<i>Curcuma longa</i> L.	62 0
Argemone mexicana L.	100 0
Ficus palmata Forssk	100 0
Stomachache	
Citrus aurantium L.	48 5
Chrysopogon zizanioides (L.) Roberty	72 7
Azadirachta indica A. Juss.	69 6
Ocimum basilicum L	68 5
Euphorbia prostrata Aiton	86 2
<i>Withania somnifera</i> (L.) Dunal	65 9
<i>Kigelia africanal</i> L.	94 4
<i>Centella asiatica</i> (L.) Urb	78 1
Chenopodium ambrosioides L.	62 5
Euphorbia hirta L.	63 5
Phyla nodiflora (L.) Greene	70 0
Toothache	
Achyranthes aspera L.	76 9
Pongamia pinnata (L.) Pierre	87 0
Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	62 5
Nerium oleander L.	90 0
Syzygium aromaticum (L.) Merr. & L.M. Perry	43 9
Ulcer	
Azadirachta indica A. Juss.	55 1
Urinary tract infections	
<i>Coriandrum sativum</i> L.	61 9
Weakness	
Abutilon indicum (L.) Sweet	80 0
Asparagus officinalis L.	52 4
<i>Boerhavia diffusa</i> L.	80 0

Collection of medicinal plants

HWS is a mosaic of 6 major habitat types and each habitat type supports population of wild meditational plants viz. Plantation (16 species of trees, 2 species of shrubs,18 species of herbs, 1 species of grass, and 4 species of climbers), Agricultural fields (7 species of trees, 1 species of shrub, 12 species of herbs, 1 species of grass, and 1 species climber), Swampy (9 species of trees, 9 species of herbs, 2 species of grass, and 2 species climbers), Wetland (5 species of trees, 6 species of herbs, and 1 species of grass), Sandy (6 species of trees, 10 species of herbs, and 2 species of grass), and Ravine (5 species of trees, 2 species of shrubs, 13 species of herbs, 1 species of grass, and 1 species of climber) which support a variety of medicinal plants are shown in Fig 6. The harvesting time of different medicinal plants has been recorded to estimate the annual availability of wild medicinal plants for locals. A total of 45 medicinal plant species are collected from the wild and the mean number of species available for harvesting is 25.4 ± 8.4 species in a year at any point in time.

Nine species found throughout the year for medicinal use are (tree: *Azadirachta indica, Ficus benghalensis, Ficus palmata, Mimusops elengi, Pongamia pinnata, Terminalia arjuna, Vachellia nilotica*, shrub: *Calotropis procera* and herb: *Withania somnifera*). It has been observed that there is seasonal variability in the availability of medicinal plants for collection as shown in (Fig 7). There are 13 medicinal plant species available for harvest in the winter season (January-February) including species like *Abrus precatorius, Ageratum conyzoides, Sisymbrium irio* and *Ziziphus nummularia.* A total of 27 species including *Tribulus terrestris, Cleome viscosa, Argemone mexicana,*

Justicia adhatoda, and *Boerhavia diffusa* are available for harvest in summer season (March-June), wherein 37 species comprising *Euphorbia hirta, Bacopa monnieri, Centella asiatica, Cordia myxa, Datura metel, Nyctanthes arbor-tristis* and *Tinospora cordifolia* can be found in monsoon season (July-September). However, 27 species including *Chrysopogon zizanioides, Kigelia africana, Pedalium murex, Terminalia bellirica* and *Ricinus communis* are available for harvest in the post-monsoon season (October-December). Some medicinal plants are seasonal and hence not available throughout the year for use. The timeline chart of medicinal plants available in the field is given in Annexure I.

Figure 6. Species richness of wild medicinal plants across the habitat types

Figure 7. Availability of wild medicinal plant species as per month

Discussion

The current study has identified some medicinal plants with significant efficacy in treating specific health issues. Informants acknowledged that a variety of important wild medicinal plants had been distributed throughout the HWS, but these plants are now restricted to a few locations. Ethnobotanical indices such as the Use value, Relative Importance Index, and Fidelity level of wild medicinal plants also expanded on the effectiveness of medicinal plants for different ailments. The high-Fidelity level of any medicinal plant concerning a particular ailment indicates that people use that specific plant at large. Das *et al*, 2018 and Suwardi *et al*. 2020 have also shown how important it is to keep an inventory record of traditional ethnobotanical research for the conservation and sustainable consumption of wild medicinal plants.

Conclusion

Even though the study area also has access to contemporary healthcare services, the study found that numerous species are employed to treat a wide range of medical conditions. The species of wild medicinal plants that are

common in various settings have been identified through the current investigation. This study includes primary information on traditionally utilized wild medicinal plants and their distribution throughout the various habitat types of HWS in addition to information on conservation. The gene poll of medicinal plants enables the acquisition of germplasm for ex-situ or in-situ conservation on certain habitat types. The ideal period for germplasm extraction might be supported by the timeline chart of the medicinal plant. The documentation of plant uses in traditional medicine aids in the creation of accurate information about the customary healthcare culture.

Declarations

Abbreviations: HWS (Harike wildlife sanctuary), UV (use value), RI (Relative importance), FL (fidelity level),

Ethics statement: Guidelines have been followed during data collection as mentioned in the International Society of Ethnobiology (2008) (http://ethnobiology.net/code-of-ethics). Informants were told about this research work in the local language and verbal consent was taken from all the informants.

Availability of data and materials: All the data are mentioned in this paper.

Funding: This research has not received any external funding.

Declaration of competing interest: The authors declare that there is no conflict of interest.

Authors' contributions: All of the fieldwork, data analysis, and writing work was completed by S G. All work has been supervised and directed by BSA. The final manuscript was read and approved by both authors.

Acknowledgement

We are Thankful to the Punjab forest department, Firozpur for allowing us the permits to conduct this study. Special appreciation to the Management and staff of Harike wildlife sanctuary for setting logistics and allowing access to the park. We are also thankful to the informants for their hospitality and kind support in sharing their wealth of knowledge. The staff of Harike wildlife sanctuary, especially Mr, Kamaljeet Singh (Range officer) for guidance and Lakha Singh, Raj Singh and Jaspal Singh are highly appreciated for joining the fieldwork.

Literature Cited

Anupama N, Madhumitha G, Rajesh KS. 2014. Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. BioMed Research International.

Arafa A, Mohammed Z, Mahmoud O, Elshazley M, Ewis A. 2021. Depressed, anxious, and stressed: What have healthcare workers on the frontlines in Egypt and Saudi Arabia experienced during the COVID-19 pandemic? Journal of Affective Disorders 278;65-371.

Bennett BC, Prance GT. 2000 Introduced Plants in the Indigenous Pharmacopoeia of Northern South America. Economic Botany 54:90-102.

Bhagawan WS, Kusumawati D. 2020. Ethnobotanical medicinal plant study of Tengger tribe in Ranu Pani Village, Indonesia. In Proceedings of the 3rd International Conference on Education & Social Science Research (ICESRE).

Bhat MN, Singh B, Surmal O, Singh B, Shivgotra V, Musarella CM. 2021. Ethnobotany of the Himalayas: Safeguarding medical practices and traditional uses of Kashmir regions. Biology 10(9):851.

Bibi F, Abbas Z, Haru N, Perveen B, Bussmann RW. 2022. Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan. Plos One 17(2):e0263604.

Buckland ST, Borchers DL, Johnston A, Henrys PA, Marques TA. 2007. Line transect methods for plant surveys. Biometrics 63(4):989-998.

Das A. 2018. Ethnobotanical uses of wild fruits of Santal Paraganas (Jharkhand). Intl J Minor Fruits Med Aromatic Plant, 4(2):31-38.

Friedman J, Yaniv Z, Dafni A, Palewitch D. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. Journal of Ethnopharmacology 16:275-287.

Goodman LA. 1961. Snowball sampling. The Annals of Mathematical Statistics 148-170.

Gra, A, Serrasolses G, Vallès J, GarnatjeT. 2019. Traditional knowledge in semi-rural close to industrial areas: ethnobotanical studies in western Gironès (Catalonia, Iberian Peninsula). Journal of Ethnobiology and Ethnomedicine 15:1-37.

Hamilton AC. 2004. Medicinal plants, conservation and livelihoods. Biodiversity & Conservation 13(8):1477-1517.

Haq SM, Yaqoob U, Calixto ES, Rahman IU, Hashem A, Abd_Allah EF, .Alakel MA, Alaqarwi AA, Addalla M, Hassan M, Bussmann, RW, Abbasi AM, Ur Rahman S, Ijaz F. (2021). Plant resources utilization among different ethnic groups of Ladakh in Trans-Himalayan Region. Biology 10(9):827.

Kaur J, Kaur R, Nagpal AK. 2017. Documentation of Traditional Knowledge on Medicinal Plants used by Local Population of Kapurthala, Punjab (India). Journal of Chemical and Pharmaceutical Research 9:351-5.

Khan S, Masoodi TH, Islam MA, Wani AA, Gattoo AA. 2022. Ethnomedicinal study of wild plants used by fringe communities in Temperate Forests of Himalayan Kashmir, India. Phytomedicine Plus 2(2):100251.

Khare CP. 2008. Indian medicinal plants: an illustrated dictionary. Springer Science & Business Media.

Laldingliani TBC, Thangjam NM, Zomuanaw, R, Bawitlung, L, Pal A, Kumar A. 2022. Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India. Journal of Ethnobiology and Ethnomedicine,18(1):1-29.

Mir AY, Yaqoob U, Hassan M, Bashir F, Zanit SB, Haq SM, Bussmann RW. 2021. Ethnopharmacology and phenology of high-altitude medicinal plants in Kashmir, Northern Himalaya. Ethnobotany Research and Applications 22:1-15.

Muthu C, Ayyanar M, Raja N, Ignacimuthu S. 2006. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. Journal of Ethnobiology and Ethnomedicine 2(1):1-10.

Nair NC. 1978. Flora of Punjab Plains. Botanical Survey of India, Howrah, 326 pp.

Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70(3):461-477.

Oyebode O, Kandala NB, Chilton PJ, Lilford RJ. 2016. Use of traditional medicine in middle-income countries: a WHO-SAGE study. Health Policy and Planning, 31(8):984-991.

Panghal,M, Arya V, Yadav S, Kumar S, Yadav JP. 201). Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. Journal of Ethnobiology and Ethnomedicine 6:1-11.

Panigrahi S, Rout S, Sahoo G. 2021. Ethnobotany: A strategy for conservation of plant. *Annals* of the Romanian Society for Cell Biology 25(6):1370-1377.

Parvaiz M. 2014. Ethnobotanical studies on plant resources of Mangowal, district Gujrat, Punjab, Pakistan. Avicenna Journal of Phytomedicine 4(5):364.

Rao PV. 1991. Traditional Medicine Modern Perspectives (Proceedings of the World Federation of Proprietary Medicine Manufactures 10 General the Assembly) Self Medication: Progress Built on Tradition. Seoul, Korea.

Rossato SC, Leitao-Filho HF, Begossi. A. 1999. Ethnobotany of Caiçaras of the Atlantic Forest Coast (Brazil). Economic Botany 53:387-395.

Schippmann U, Leaman DJ, Cunningham AB. 2002. Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. Biodiversity and the ecosystem approach in agriculture, forestry and fisheries. Rome: FAO.

Sharma M. 1990. Punjab Plants-Check List. Bishen Singh Mahendra Pal Singh Publications, Dehra Dun, India, 115pp.

Sheng-Ji P. 2001. Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharmaceutical Biology, 39(sup1):74-79.

Sidhu MC, Kaur K, Ahluwalia AS. 2011. The use of traditional plant remedies in Hoshiarpur district of Punjab, India. Journal of Phytology:3(9).

Sidhu MC, Kaur K, Ahluwalia AS. 2012. Ethno-medicinal studies of plants in Jalandhar District of Punjab, India. International Journal of Plant Research 6016:187-150.

Silva VA, Albuquerque UP. 2004. Técnicas para análise de dados etnobotânicos. Pp. 63-88 in Métodos e técnicas na pesquisa etnobotânica, org. Edited by UP. Albuquerque & RP. Lucena. Nupeea, Recif.

Sukumaran, S, Sujin, R. M, Geetha, V. S, & Jeeva, S. (2021). Ethnobotanical study of medicinal plants used by the Kani tribes of Pechiparai Hills, Western Ghats, India. Acta Ecologica Sinica 41(5):365-376.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi S, Mukhtar E. 2020. Wild edible fruits generate substantial income for local people of the Gunung Leuser National Park, Aceh Tamiang Region. Ethnobotany Research and Applications 20:1-13.

Tefera BN, Kim YD. 2019. Ethnobotanical study of medicinal plants in the Hawassa Zuria District, Sidama zone, Southern Ethiopia. Journal of Ethnobiology and Ethnomedicine 15:1-21.

Treasure IO, Adjene JO, Odigie MO. 202). Ethnobotanical survey of medicinal plants in Ughelli North Local Government Area of Delta State. Journal of Medicine: Study and Research 3(14):1-9.

Vasanthi, RH, Shri Shri Mal N, K Das D. 2012. Phytochemicals from plants to combat cardiovascular disease. Current Medicinal Chemistry 19(14):2242-2251.

Annexure I

The availability of wild medicinal plants in the study area is depicted in grey color (a timeline chart) The month of collection for medicinal plants from the field mentioned according to informants

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec
Abrus precatorius L.												
Abutilon indicum (L.) Sweet												
Achyranthes aspera L.												
Aegle marmelos (L.) Correa												
Ageratum conyzoides L												
Argemone mexicana L.												
Azadirachta indica A. Juss.												
Bacopa monnieri (L.) Wettst .												
<i>Boerhavia diffusa</i> L.												
Calotropis procera (Aiton) Dryand												
<i>Cannabis sativa</i> L.												
<i>Centella asiatica</i> (L.) Urb.												
<i>Chenopodium ambrosioides</i> L.												
Chrysopogon zizanioides (L.) Roberty												
<i>Cleome viscosa</i> L												
Cordia myxa L.												
<i>Cuscuta reflexa</i> Roxb.												
<i>Cynodon dactylon</i> (L.) Pers .												
Datura meteL.L.												
<i>Eclipta prostrata</i> (L.) L.												
<i>Euphorbia hirta</i> L.												
Euphorbia prostrata Aiton												
Ficus benghalensis L.												
<i>Ficus palmata</i> Forssk.												
<i>Fumaria indica</i> (Hausskn . Pugsley												
<i>Justicia adhatoda</i> L.												
<i>Kigelia africana</i> L.												
Lawsonia inermis L.												
<i>Melia azedarach</i> L.												
Mimusops elengi L.												
Nyctanthes arbor-tristis L.												
Oxalis corniculata L.												
Papaver rhoeas L.												
Pedalium murex L.												
Phoenix sylvestris (L.) Roxb.												
Phyla nodiflora (L.) Greene												
<i>Phyllanthus emblica</i> L.												
<i>Phyllanthus niruri</i> L.												
<i>Pongamia pinnata</i> (L.) Pierre												
Ricinus communis L.												

<i>Solanum virginianum</i> L.						
Sisymbrium irio L						
<i>Syzygium cumini</i> var. <i>cumini</i> L.						
<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn.						
<i>Terminalia bellirica</i> (Gaertn) Roxb.						
<i>Tinospora cordifolia</i> (Willd.) Miers.						
<i>Tribulus terrestris</i> L.						
Vachellia nilotica (L.) P.J.H. Hurter & Mabb.						
<i>Withania somnifera</i> (L.) Dunal						
Ziziphus nummularia (Burm. f) Wight & Arn.						

Annexure II Details of medicinal plantsmentioned by informants are given below

ADM: Mode of Administration of medicinal plants(O: oral, T: Topical); Parts used: (Lf: Leaves, Rt: Roots, Sm: Stem, Rz: Rhizome, Wp: Whole plants, Fl: Flowers, Lx: Latex, Sd: Seeds, Fr: Fruits, Oi: Oil, Br: Bark). ; Habit: (H: Herbs, T: Trees, S: Shrubs, C: Climbers, G: Grasses).

Family	Species	Loal name	Habit	Use	Parts used	Method	ADM	Use value	Relative Importance	Voucher No
Acanthaceae	<i>Justicia adhatoda</i> L.	Baykr, Vasaakaa	Н	Diabetes, asthma, cold and cough	Lf	Decoction of leaves is used for ailments	0	0 86	1 17	WII/HAR IKE/SG/1 07
Amaranthaceae	<i>Achyranthes aspera</i> L.	Puth kanda	Н	liver disorder, Toothache, periodontitis and Cough.	Rt, Lf, Sm	Decoction of leaves is used for a liver disorder, roots for toothache and stem used for cough	0	0 76	1 17	WII/HAR IKE/SG/1 27
Amaranthaceae	<i>Beta vulgaris</i> L.	Chakunder	н	Anemia, hair loss and constipation,	Rz, Lf	Raw form and Juice are used, and fresh leaves are cooked	0	0 27	1 03	
	<i>Allium cepa</i> L.	Pyaz, gannda	н	Eye irritation and Asthma	Rz	Fresh juice with honey is used for Asthma and some drops of fresh juice are used for eye irritation	О, Т	0 40	0 69	WII/HAR IKE/SG/1 32
Amaryllidaceae	<i>Allium sativum</i> L.	Lehsen	Н	Blood pressure, Diabetes, sexual disorder, cold, cough, indigestion and gastric	Rz	The raw form is used, and two or three cloves are taken with honey for erectile dysfunction.	0	1 15	2	WII/HAR IKE/SG/1 33
Anacardiaceae	<i>Mangifera indica</i> L	Amb	Т	Heatstroke and. constipation	Fr	Unripe fruit boiled with water for eating and paste of leaves is applied on the body for heatstroke	O, T	0 25	0 69	WII/HAR IKE/SG/0 48
Aniaceae	<i>Centella asiatica</i> (L.) Urb.	Brahmi- buti	н	Heatstroke, headache and stomachache	Wp	Fresh juice is used for headaches and heatstroke	0	0 47	1 03	WII/HAR IKE/SG/1 58
πριατέαε	<i>Coriandrum sativum</i> L.	Dhania	Н	Heatstroke, urinary tract infections	Wp	Fresh juice with drops of lemon juice is used for. urinary tract infections	0	0 38	0 69	WII/HAR IKE/SG/1 67

	<i>Trachyspermum ammi</i> (L.) Sprague	Ajwain	н	Diarrhea, cold and cough	Sd	Seeds are taken with water.	0	0 44	0 83	
	<i>Catharanthus roseus</i> (L.) G. Don.	Sadabahar	н	Diabetes	Lf, Fl	Fresh leaves and flowers are used	0	0 09	0 34	WII/HAR IKE/SG/1 57
Apocynaceae	<i>Nerium oleander</i> L.	LaaL.kanir e	S	Toothache and. periodontitis	Sm	Soft twigs are chewed for clean teeth	т	0 27	0 49	WII/HAR IKE/SG/1 12
	<i>Calotropis procera</i> (Aiton) Dryand	Akk, Akha	s	Body pain and Arthritis	Lf, Lx	leaves are heated with mustard oil and tied up joints	т	0 15	0 49	WII/HAR IKE/SG/0 87
Arecaceae	<i>Phoenix sylvestris</i> (L.) Roxb.	Desi Khajur	т	Body pain, Anemia	Fr	Fruit is used	0	0 18	0 69	WII/HAR IKE/SG/0 59
Asparagaceae	Asparagus officinalis L.	Shataavari	н	Weakness and sexual disorder	Rt	Powdered roots are used	0	0 19	0 69	WII/HAR IKE/SG/3 00
Asteraceae	Ageratum conyzoides L.	Knar	н	Cut and wound	Lf	Leaves juice is applied to cut to block the bleeding	Т	0 17	0 49	WII/HAR IKE/SG/1 30
Bignoniaceae	<i>Kigelia africana</i> L.	Balum Kheera	т	Piles, stomachache and constipation	Fr	A powdered form of dried fruit is used	0	0 16	0 83	WII/HAR IKE/SG/0 42
Boraginaceae	<i>Cordia myxa</i> L.	Lasodaa	Т	Constipation and. periodontitis	Fr	Fresh fruits are used for. periodontitis	0	0 22	0 69	WII/HAR IKE/SG/0 21
	<i>Raphanus sativus</i> L.	Muli	н	Constipation and Jaundice	Rt	Fresh juice and raw form is used	0	0 16	0 69	WII/HAR IKE/SG/2 53
Brassicaceae	<i>Brassica campestris</i> Hook f. & Thoms.	Saro	н	Body pain, Skin diseases, cut, cold and cough	Sd, Oi, Lf	Oil is used for various ailments	0	0 53	1 17	WII/HAR IKE/SG/1 51
	<i>Sisymbrium irio</i> L.	khubakala n	н	Asthma	Wp, Sd	The fresh plant is cooked for use.	0	0 08	0 34	WII/HAR IKE/SG/2 65
Cannabaceae	<i>Cannabis sativa</i> L.	Phang	н	Insomnia, mental disorders	Lf	Leaves are smoked and leave juice is used.	0	0 06	0 49	WII/HAR IKE/SG/1 53
Caricaceae	<i>Carica papaya</i> L.	Papita	Т	Constipation and Dengue	Lf,Fr	Fresh juice of leaves and ripe fruits are used	0	0 24	0 69	WII/HAR IKE/SG/0 15

Chenopodiaceae	<i>Chenopodium ambrosioides</i> L.	Chandan bathua	н	Piles and Stomachache	Lf	Decoction of leaves is used for Stomachache	0	0 15	0 69	WII/HAR IKE/SG/1 80
Cleomaceae	<i>Cleome viscosa</i> L	Bagra, Hulhul	Н	Fever, constipation, lung infection. and cough	Lf, Sd	The decoction is used.	0	0 12	1 37	WII/HAR IKE/SG/1 62
Combrotação	<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn.	Arjun	т	Cardiovascular disease, diabetes,. Fever	Br	Decoction of bark is used.	0	0 16	1 03	WII/HAR IKE/SG/0 79
Combretaceae	<i>Terminalia bellirica</i> (Gaertn.) Roxb.	Bahera	т	Diabetes, constipation, Indigestion	Fr	The powdered form of dried fruit is used	0	0 15	0 83	WII/HAR IKE/SG/0 78
Compositae	<i>Eclipta prostrata</i> (L.) L.	Bhringraz	т	Hair loss and cut	Wp	Boiled with olive oil to apply to hair	т	0 21	0 69	WII/HAR IKE/SG/1 82
Convolvulaceae	<i>Cuscuta reflexa</i> Roxb.	Amarvalli	н	Hair loss	Wp	Boiled in mustard oil applied to hair	т	0 11	0 94	WII/HAR IKE/SG/3 14
Crassulaceae	<i>Bryophyllum pinnatum</i> (Lam.) Oken	Patherchat ta	н	Kidney stone, cut and wound	Lf	Raw leaves are used for kidney stones	0	0 75	0 83	WII/HAR IKE/SG/1 52
Cucuuhitacaaa	<i>Momordica charantia</i> L.	Karela	С	Diabetes	Fr	Fresh juice is used.	0	0 06	0 34	WII/HAR IKE/SG/3 22
Cucurbilaceae	<i>Lagenaria siceraria</i> (Molina) Standl.	Loki	С	Diabetes	Fr	Fresh juice is used	0	0 19	0 34	WII/HAR IKE/SG/3 13
	<i>Euphorbia hirta</i> L.	Dudhi	н	Diarrhea, Piles and stomachache	Wp	The raw form is taken empty stomach for Piles	0	0 89	0 83	WII/HAR IKE/SG/1 87
Euphorbiaceae	<i>Euphorbia prostrata</i> Aiton	Choti dudhi	н	Piles, Diarrhea and Stomachache	Wp	The raw form is taken empty stomach for Piles	0	0 26	0 83	WII/HAR IKE/SG/1 88
	<i>Ricinus communis</i> L.	Arand	s	Constipation	Oi	Seed oil with water is used for Constipation	0	0 69	0 34	WII/HAR IKE/SG/1 16
	<i>Mentha piperita</i> L.	Putna	н	Indigestion and gastric,	Wp	Fresh juice mixed with water for drinks	0	0 18	0 49	
Lamiaceae	Ocimum basilicum L	Ram Tulsi	Н	Indigestion, Stomachache and. bad breath	Lf	Fresh leaves and decoction are used	0	0 49	0 83	WII/HAR IKE/SG/2 28

	Ocimum tenuiflorum L.	Tulsi	н	Cold and cough, lung infection	Lf	A decoction is used.	0	0 55	0 83	WII/HAR IKE/SG/2 29
Lauraceae	Cinnamomum verum J. Presl.	Dalchini	Т	Cold and cough	Bk	Decoction of bark is used for colds and coughs	0	08	0 69	
Fabaceae	Abrus precatorius L.	Ghunchi	С	Sexual disorder	Rt	Powder of roots is used	0	0 15	0 34	WII/HAR IKE/SG/2 98
	<i>Pongamia pinnata</i> (L.) Pierre	Karanj, Sukhchain	т	Toothache and. periodontitis	Sm	Soft twigs are chewed for cleaning teeth	0	0 12	0 49	WII/HAR IKE/SG/0 63
	<i>Trigonella foenum-graecum</i> L.	Methi	н	Diabetes	Sd	Seeds are soaked in water for ten hours; water is used for drinking after filtering seeds	0	0 26	0 34	WII/HAR IKE/SG/2 83
	<i>Vachellia nilotica</i> (L.) P.J.H. Hurter & Mabb.	Babool	т	Arthritis, periodontitis and toothache	Fr, Sd	The powdered form of dried fruit is used	0	0 15	0 83	WII/HAR IKE/SG/0 83
Lythraceae	<i>Punica granatum</i> L.	Annar	S	Anaemia, dengue, malaria and headache	Fr	Fresh juice and raw form are used	0	0 24	1 37	WII/HAR IKE/SG/1 15
	<i>Lawsonia inermis</i> L.	Mehdi	S	Hair loss	Lf	A paste of leaves is applied to the scalp	т	0 12	0 34	WII/HAR IKE/SG/0 43
	Abutilon indicum (L.) Sweet	Kangi	н	Weakness and sexual disorder	Lf	Raw leaves are used	0	0 18	0 69	WII/HAR IKE/SG/1 26
Matvaceae	<i>Hibiscus rosa-sinensis</i> L.	GudhaL.	s	Hair loss	Fl	Flowers are boiled in mustard oil and then applied to hair.	т	0 14	0 34	WII/HAR IKE/SG/1 01
Meliaceae	<i>Azadirachta indica</i> A. Juss.	Neem	т	Stomachache, Diabetes, Fever, periodontitis, wound and ulcer	Rt, Lf, Sm, Fr, Bk	Raw leaves, fruits, bark and root decoction are used.	O T	0 88	1 85	WII/HAR IKE/SG/0 10
	<i>Melia azedarach</i> L.	Bakain	т	Diabetes	Lf	Fresh leaves are chewed	0	0 10	0 34	WII/HAR IKE/SG/0 50
Menispermaceae	<i>Tinospora cordifolia</i> (Willd.) Miers	Giloya	С	Malaria, dengue, lung infection and fever	Bk	Decoction of bark is used for various ailments	0	1 80	1 17	WII/HAR IKE/SG/3 28

Moraceae	<i>Ficus benghalensis</i> L.	Bod	т	Azoospermia	Lx	Latex is used.	0	0 18	0 34	WII/HAR IKE/SG/0 31
	<i>Ficus palmata</i> Forssk.	Anjiri	т	Skin diseases	Rt, Lx	Mixtures of latex with milk are used	т	0 04	0 34	WII/HAR IKE/SG/0 34
Moringaceae	<i>Moringa oleifera</i> Lam.	Sojna	т	liver disorder, diabetes and. indigestion	Lf, Fr, Sd	Leaves are cooked, and powdered seed and decoction of the fruit are used	0	0 15	1 03	WII/HAR IKE/SG/0 53
Musaceae	<i>Musa x paradisiaca</i> L.	Kela	т	Diarrhea	Fr	Fruit is used with curd	0	0 39	0 34	WII/HAR IKE/SG/0 55
Myrtaceae	<i>Psidium guajava</i> L.	Amrood	Т	Diarrhea, constipation and. periodontitis	Fr, Lf	Fruits and leaves are used.	0	0 16	0 83	WII/HAR IKE/SG/0 67
	<i>Syzygium cumini</i> var. <i>cumini</i> L.	Jamun	т	Diabetes, asthma, liver disorde	Sd, Fr	Fresh fruits and powdered forms of dried seeds are used.	0	0 19	1 03	WII/HAR IKE/SG/0 74
	<i>Syzygium aromaticum</i> (L.) Merr. & L.M Perry	Long	н	Periodontitis, toothache and cough.	Fl	Decoction and raw form are used	ο	0 37	0 83	
Nyctaginaceae	<i>Boerhavia diffusa</i> L.	ltsit	н	Weakness, kidney stone and sexual. disorder	Rt, Lf	Powder from roots and fresh juice of leaves are used.	0	0 37	1 03	WII/HAR IKE/SG/1 48
Oleaceae	<i>Nyctanthes arbor-tristis</i> L.	Harsingar	т	Fever and dengue	Lf	A decoction is used.	0	0 25	0 69	WII/HAR IKE/SG/0 57
Oxalidaceae	<i>Oxalis corniculata</i> L.	Tinpatiyaa, Khatti Buti	Н	Diarrhea, wound, bee sting and heatstroke	Wp	Paste of the whole plant is used.	0	0 23	1 37	WII/HAR IKE/SG/2 31
Papaveraceae	Argemone mexicana L.	Kandiali	н	Skin disease	Lx	Fresh juice is applied to the skin	т	0 11	0 34	WII/HAR IKE/SG/1 42
	<i>Fumaria indica</i> (Hausskn.) Pugsley	Pittapaapa raa	н	Constipation, fever and blood infection	Wp	A decoction is used for fever.	0	09	1 03	WII/HAR IKE/SG/1 94
	<i>Papaver rhoeas</i> L	LaaL.Posta	н	Mental disorders	Sd	Paste of seeds is used	0	0 05	0 34	WII/HAR IKE/SG/2 32

Pedaliaceae	<i>Pedalium murex</i> L.	Brihatgoks hura, Bda Gokhru	н	Sexual disorder	Fr	A powdered form with milk is used.	0	0 09	0 034	WII/HAR IKE/SG/2 34
Phyllanthaceae	<i>Phyllanthus emblica</i> L.	Amla	т	Hair loss, indigestion and constipation	Fr	Fresh fruits and powdered forms of dried fruit are used	0	0 20	0 83	WII/HAR IKE/SG/0 60
	<i>Phyllanthus niruri</i> L	Bhui Aaamalaa	н	Jaundice	Wp	Fresh juice is used	0	0 06	0 34	WII/HAR IKE/SG/2 41
Piperaceae	<i>Piper longum</i> L.	Maga	С	Cold and cough, lung infection	Fr	Fruit Powder with honey is used for dry cough	0	1 16	0 83	
•	<i>Piper nigrum</i> L.	Kali-mirch	С	Cold and cough	Sd	A decoction is used	0	0 75	0 49	
Plantaginaceae	<i>Bacopa monnieri</i> (L.) Wettst	Choti- bhrami	н	Heatstroke and memory loss	Wp	Raw form and Juice are used.	0	0 25	0 69	WII/HAR IKE/SG/1 45
Poaceae	<i>Chrysopogon zizanioides</i> (L.) Roberty	Khas	G	Stomachache and heatstroke	Rt	Fresh juice is used for heatstroke.	0	0 10	0 89	WII/HAR IKE/SG/3 37
	<i>Cynodon dactylon</i> (L.) Pers.	Dup	G	Diarrhea	Wp	Decoction is used.	0	0 07	0 34	WII/HAR IKE/SG/3 39
Rhamnaceae	<i>Ziziphus nummularia</i> (Burm f.) Wight & Arn.	Jharberi, Choti beri	S	Body pain, constipation and. diarrhea	Fr	Fresh fruits are used.	0	0 13	0 83	WII/HAR IKE/SG/1 24
Rutaceae	Aegle marmelos (L.) Correa	Bael	т	Diarrhea and fever	Fr	Fresh juice of the fruit is used	0	0 15	0 69	WII/HAR IKE/SG/0 04
	<i>Citrus aurantium</i> L.	Nimbu	S	Heatstroke, headache and stomachache	Fr	Fresh juice is used for ailments	0	0 30	1 03	WII/HAR IKE/SG/0 92
	<i>Murraya koenigii</i> (L.) Spreng	Karipattaa	S	Liver disorder, diabetes, indigestion and constipation	Lf	Fresh leaves are cooked.	0	0 47	1 17	WII/HAR IKE/SG/1 10
Sapotaceae	<i>Mimusops elengi</i> L.	Mulshri	Т	Periodontitis	Sm	A paste of soft twigs is applied to the gums.	т	0 11	0 34	WII/HAR IKE/SG/0 52
Solanaceae	Datura metel L.	Kala- Datura	н	MentaLl disorders, Insomnia	Sd	Three to four seeds with water are taken	0	0 03	0 49	WII/HAR IKE/SG/1 76

	<i>Solanum virginianum</i> L.	Kateri	н	Cold and cough and liver disorder	Rt	A decoction is used.	0	0 06	0 83	WII/HAR IKE/SG/2 69
	<i>Withania somnifera</i> (L.) Dunal	Akksen	Н	Malarial, stomachache, asthma and sexual disorder	Lf, Rt	Raw leaves with turmeric and ginger are chewed to control high fever	0	0 77	1 37	WII/HAR IKE/SG/2 95
Theaceae	<i>Camellia sinensis</i> (L.) Kuntze	Chai	S	Diarrhea	Lf	Dry leaves mixed with sugar are taken with water.	0	0 29	0 34	
Verbenaceae	Phyla nodiflora (L.) Greene	Gorakhmu ndi	н	Piles and Stomachache	Wp	Paste form is used.	0	0 09	0 49	WII/HAR IKE/SG/2 40
Xanthorrhoeaceae	<i>Aloe vera</i> (L.) Burm f.	Kuwar	Н	Diarrhea, indigestion, skin disease and constipation	Lf	Leaves juice is used.	0	0 42	0 97	
Zingiberaceae	Amomum subulatum Roxb.	Bari ilaichi	Н	Indigestion	Fr	A decoction made from fruits with milk is taken.	0	0 16	0 34	
	<i>Curcuma longa</i> L.	Haldi	н	Body pain, fever, skin disease, cold and cough,.	Rz	Powdered and decoction form is used.	0	1 79	1 51	WII/HAR IKE/SG/1 72
	<i>Zingiber officinale</i> Roscoe	Adrak	н	Blood pressure, cold and cough, Indigestion and gastric	Rz	Raw form and decoction is used.	0	1 00	1 31	
Zygophyllaceae	Tribulus terrestris L.	Pakhda	Н	Diarrhea, a sexual disorder	Fr	A powdered form of dried fruit is used	0	0 13	0 83	WII/HAR IKE/SG/2 77