

The diversity and traditional knowledge of wild edible fruits in Bengkulu, Indonesia

Adi Bejo Suwardi, Syamsuardi, Erizal Mukhtar, Nurainas

Correspondence

Adi Bejo Suwardi¹, Syamsuardi^{2*}, Erizal Mukhtar² and Nurainas²

¹Doctoral Program, Department of Biology, Faculty of Mathematics and Sciences, Universitas Andalas. Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia.

²Department of Biology, Faculty of Mathematics and Sciences, Universitas Andalas. Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia.

*Corresponding Author: syamsuardi@sci.unand.ac.id

Ethnobotany Research and Applications 25:15 (2023) - http://dx.doi.org/10.32859/era.25.15.1-17 Manuscript received: 04/11/2022 – Revised manuscript received: 18/01/2023 - Published: 01/02/2023

Research

Abstract

Background: Wild edible fruit plant species (WEFs) contribute significantly to human well-being. These plants have a high nutritional value and are a source of novel alleles/genes that are important in developing new and improved crop cultivars to promote sustainable food security. However, most WEFs are less well-known and underutilized. This study aimed to investigate wild edible fruit species diversity and their potential in the Bengkulu region, Indonesia.

Methods: The ethnobotanical study was carried out in eight villages from four districts of Bengkulu province, Indonesia, i.e. Mukomuko, Lebong, Rejang Lebong, and Bengkulu Selatan. The ethnobotanical survey was carried out from July to September 2022 and included 383 randomly selected respondents. The ethnobotanical investigation uses semi-structured questionnaires to gather information on the traditional knowledge of WEFs. Plant specimens were collected and identified in herbarium ANDA, Universitas Andalas.

Results: A total of 73 wild edible fruit plant species belonging to 37 genera and 26 families were recorded in the study area. Most of the plant species were trees (87.7%), followed by shrubs (5.5%), climbers (4.1%), and herbs (2.7%). Forty-eight (79.5%) species were discovered in the forest, 7 (9.6%) in the farmlands, and 8 (11%) in both the forest and the farmlands. WEFs are mostly consumed as food. *Artocarpus integer, Mangifera odorata, Pometia pinnata, Flacourtia rukam, Durio oxleyanus, Baccaurea racemosa, Bellucia pentamera, Baccaurea macrocarpa, Baccaurea polyneura*, and *Mangifera foetida. Artocarpus integer* are the most preferred WEFs by their taste quality. Besides foods, WEFs have multi purposes including as traditional medicine, construction, agricultural tools, fuelwood, and fodder. Indigenous knowledge of WEFs was significantly associated with districts, age groups, and educational levels.

Conclusion: Bengkulu has a diverse range of WEFs, but only a small proportion has been used by local people, particularly as food. Promotion and domestication of WEFs should be a primary concern in Bengkulu in order to take advantage of their nutritional value and potential economic value. Moreover, integrating knowledge related to WEFs into the educational curriculum is critical for educating the next generation regarding the potential of WEFs in the future.

Keywords: Bengkulu, biodiversity, local knowledge, wild fruits, underutilized plants

Abstrak

Latar Belakang: Tumbuhan buah-buahan liar yang dapat dimakan berperan penting dalam meningkatkan kesejahteraan hidup manusia. Tumbuhan ini memiliki nilai gizi yang tinggi dan merupakan sumber alel/gen baru yang penting dalam mengembangkan kultivar tanaman baru dan lebih baik untuk mempromosikan ketahanan pangan berkelanjutan. Namun, sebagian besar tumbuhan buah-buahan liar ini kurang dikenal dan kurang dimanfaatkan. Penelitian ini bertujuan untuk mengetahui keanekaragaman jenis buah-buahan liar yang dapat dimakan dan potensinya di wilayah Bengkulu, Indonesia.

Metode: Studi etnobotani dilakukan pada delapan desa dari empat kabupaten di Provinsi Bengkulu, Indonesia, yaitu Mukomuko, Lebong, Rejang Lebong, dan Bengkulu Selatan. Survei etnobotani dilakukan dari Juli hingga September 2022 dengan melibatkan 383 responden yang dipilih secara acak. Penelitian etnobotani menggunakan kuesioner semi-terstruktur untuk mengumpulkan informasi tentang pengetahuan tradisional terhadap tumbuhan buah-buahan liar. Spesimen tumbuhan dikumpulkan dan diidentifikasi di herbarium ANDA, Universitas Andalas.

Hasil: Sebanyak 73 jenis tumbuhan buah-buahan liar yang termasuk dalam 37 marga dan 26 suku telah ditemukan di lokasi penelitian. Jenis tumbuhan terbanyak berupa pohon (87,7%), diikuti oleh perdu (5,5%), pemanjat (4,1%), dan herba (2,7%). Empat puluh delapan (79,5%) jenis ditemukan di hutan, 7 (9,6%) di lahan pertanian, dan 8 (11%) di hutan dan lahan pertanian. Tumbuhan buah-buahan liar sebagian besar dikonsumsi sebagai makanan. *Artocarpus integer, Mangifera odorata, Pometia pinnata, Flacourtia rukam, Durio oxleyanus, Baccaurea racemosa, Bellucia pentamera, Baccaurea macrocarpa, Baccaurea polyneura*, dan *Mangifera foetida* merupakan jenis yang paling disukai berdasarkan kualitas rasanya. Selain dimanfaatkan sebagai makanan, tumbuhan buah-buahan liar juga memiliki banyak kegunaan, antara lain sebagai obat tradisional, bahan bangunan, alat pertanian, kayu bakar, dan pakan ternak. Pengetahuan tradisional tentang tumbuhan buah-buahan liar secara sangat berhubungan dengan lokasi penelitian, kelompok umur, dan tingkat pendidikan responden.

Kesimpulan: Bengkulu memiliki jenis tumbuhan buah-buahan liar yang beragam, namun hanya sebagian kecil yang telah dimanfaatkan oleh masyarakat setempat, terutama sebagai bahan pangan. Promosi dan domestikasi jenis tumbuhan buah-buahan liar perlu menjadi prioritas utama di Bengkulu sebagai upaya memanfaatkan nilai gizi dan potensi nilai ekonominya. Selain itu, mengintegrasikan pengetahuan terkait jenis tumbuhan buah-buahan liar ke dalam kurikulum pendidikan sangat penting untuk mendidik generasi muda terkait potensi jenis tumbuhan buah-buahan liar buahan liar dimasa yang akan datang.

Kata kunci: Bengkulu, biodiversitas, pengetahuan lokal, tumbuhan buah-buahan liar, tumbuhan yang kurang dimanfaatkan

Background

Wild edible fruit plants (WEFs) are fruit-producing plants that have not been cultivated and are harvested from their natural habitats (Beluhan & Ranogajec 2011). WEFs represent the majority of wild food plants (Chua-Barcelo 2014), and many wild fruits are widely consumed (FAO 2014). These plants have been recommended as adequate sources of antioxidants, minerals, and vitamins (Kamatou et al. 2011; Mahapatra & Panda 2011; Bvenura & Sivakumar 2017; Suwardi et al. 2022a). In addition to being an important food source, WEFs are also widely used in medicine (Navia et al. 2021a), cosmetics (Gebauer et al. 2016), crafts (Hazarika & Singh 2018), fiber (Karun et al. 2014), fuel (Debela et al. 2012), and material rituals (Sutrisno et al. 2020). Each community group has distinct traditional knowledge of the use of WEFs that distinguishes it from other groups. For example, the local communities in the Philippines are used WEFs as food, medicine, forage, offertory, condiment, dye, and decoration (Chua-Barcelo 2014), while in Bhutan and Rwanda used WEFs as food, medicine, firewood, timber, charcoal, shade, and fodder (Bigirimana et al. 2016; Yangdon et al. 2022). Most WEFs are also known to have economic value and contribute significantly to the generation of income for rural people around the world, e.g. Indonesia (Suwardi et al. 2020; Syamsuardi et al. 2022), Malaysia (Ong et al. 2012), India (Gusain & Khanduri 2016), Cameroon and Nigeria (Leakey et al. 2005; Schreckenberg et al. 2006), and South Africa (Akinnifesi et al. 2006). This circumstance demonstrates that WEFs play an important role in the life of many indigenous peoples in the world (Hazarika & Singh 2018).

Indonesia is a biodiversity hotspot, home to over 20,000 flowering plant species (Kusmana & Hikmat 2015), and is considered one of the distribution centers of tropical fruits in the world (Uji 2007). However, most of these plants, particularly wild species, are underutilized and threatened by habitat destruction caused by various human activities

such as agricultural development, settlements, and overexploitation. Intensive commercialization and promotion of high-value fruit crops, including introduced species, has reduced consumer awareness of wild species, including WEFs. These activities have also impacted the deterioration of the traditional use of WEFs in Indonesia. The decrease in plant diversity is considered to be contributing to the extinction of indigenous knowledge (Khasbagan 2008). The increasing erosion of indigenous knowledge of WEFs, as well as the disruption of the coexistence of people and forests, will result in the loss of various WEFs' potential in the long term. Indigenous knowledge of wild food plants, including WEFs, is essential for maintaining cultural heritages, as well as for domestication, conservation, and addressing resource governance and policy. This study aimed, therefore, to investigate wild edible fruit species diversity and their potential in the Bengkulu region, Indonesia.

Materials and Methods

Study area

Bengkulu Province is one of Indonesia's provinces located in the western Bukit Barisan mountains. This area is geographically located at 2°16'S to 3°31'S and 101°01'E to 103°41'E, with elevations ranging from 0 to 1,900 m asl. Bengkulu Province has a tropical climate with two seasons: the rainy season, which lasts from December to March, and the dry season, which lasts from June to September. The average annual air temperature is 28.7°C, while the average annual humidity is 76.8%, and the average annual rainfall is 3,658.1 mm with 23.2 rainy days. Bengkulu Province covers an area of approximately 19,919.33 km² and has a population of 2.032 million people, including 1.039 million men and 993 thousand women. Bengkulu province is divided into 10 districts, 129 sub-districts, and 1,514 villages (BPS-Statistics of Bengkulu Province, Indonesia, i.e. Mukomuko, Lebong, Rejang Lebong, and Bengkulu Selatan (Fig. 1, Table 1).

Figure 1. Map of Bengkulu province, Indonesia, showing the study area

	Table 1.	Description	of the selected	study villages
--	----------	-------------	-----------------	----------------

District	Sub-district	Name of village	Area (km²)	No. of population	No. of respondents involved in the study
Mukomuko	Malin Deman	Lubuk Talang	68.75	1,327	56
		Gajah Makmur	19.24	1,143	48
Lebong	Pinang Belapis	Sebelat Ulu	2.00	334	14
		Ketenong Dua	5.00	579	24
Rejang Lebong	Selupu Rejang	Kayu Manis	21.93	1,097	46
, , , ,	1 9 0	Cawang Lama	9.18	2,863	121
Bengkulu Tengah	Taba	Rindu Hati	12.93	1,142	48
	Penanjung	Surau	12.72	598	25
Total			25.65	9,083	383

Ethnobotanical survey

The ethnobotanical survey was carried out from July to September 2022. The sample size was calculated using the Cochran sample size formula (Bartlett et al., 2001). A total of 383 respondents were chosen at random, with 54.3% of them being women, 27.7% being between the ages of 45 and 55, and the majority (33.2%) having completed Junior High School (Table 2).

Chavactoristics		Study area		
Characteristics	Mukomuko	Lebong	Rejang Lebong	Bengkulu Tengah
Gender				
Men	46	17	76	34
Women	58	22	91	39
Age				
15-25	17	5	23	14
26-35	16	8	41	18
36-45	30	12	53	16
46-55	33	9	43	13
56-65	8	5	7	12
Latest education				
No Education	12	6	18	7
Elementary School	38	8	42	16
Junior High School	37	13	51	26
Senior High School	15	11	37	18
Higher Education	2	1	19	6

Table 2. Socio-demographic characteristics of the respondents

The ethnobotanical investigation uses semi-structured questionnaires to gather information on the traditional knowledge of WEFs, such as their local names, utilization, plant parts used, mode of preparation and consumption, and transfer knowledge. The aims of the study were clearly explained to informants prior to conducting interviews, and their consent was obtained. During the survey, plant specimens were collected. The voucher specimens were identified at ANDA herbarium, Universitas Andalas, West Sumatra, Indonesia. Plants of the World Online (https://powo.science.kew.org/) was used to update the botanical name.

Data Analysis

The data were analyzed using descriptive statistics, relative frequency citation, and preference ranking. Ethnobotanical data were organized using Microsoft Excel spreadsheets.

The ethnomedicinal data was assessed using a relative frequency citation (RFC) index (Vitalini et al., 2013):

$$RFC = FC/N (0 < RFC < 1)$$

Where, FC is the frequency of citation; N is the total number of respondents participating in the study, without considering use categories into account.

Chi-square tests were used to compare indigenous knowledge and gender groups, and Kruskal-Wallis tests were used to compare indigenous knowledge, age, and education level. IBM-SPSS ver. 21 software was used for the statistical analysis.

Results

Diversity of wild edible fruit species

A total of 73 wild edible fruit plant species belonging to 37 genera and 26 families were recorded in the study area (Table 3). Most of the plant species were trees (87.7%), followed by shrubs (5.5%), climbers (4.1%), and herbs (2.7%). Forty-eight (79.5%) species were discovered in the forest, 7 (9.6%) in the farmlands, and 8 (11%) in both the forest and the farmlands. In terms of the number of species, Moraceae was the most dominant botanical family with 13 species, followed by Phylantaceae and Fagaceae (8 species each), Clusiaceae (4 species), and Anacardiaceae, Malvaceae, Melastomataceae, Meliaceae, and Myrtaceae represented by 3 species each. The remaining 17 families are represented by one to two species.

Family	Scientific name	Local name	Life	Habitat	Plant	Use (s)	District	
	(Vouchers No.)		form		part			
					used			
Anacardiaceae	<i>Mangifera caesia</i> Jack	Binjai	Т	F, Fm	Fr	Eaten raw	LB, BT	
	RH-014				Le	Fodder	_	
					St	Agricultural tools	_	
	Mangifera foetida Lour.	Bacang	Т	Fm	Fr	Eaten raw	MK, LB, RL, BT	
	KM-017				St	Agricultural tools	_	
	Mangifera odorata Griff.	Kuini, Lokop, Po'ak	Т	F, Fm	Fr	Eaten raw	MK, LB, RL, BT	
	RH-015				St	Agricultural tools	_	
Araliaceae	<i>Brassaiopsis glomerulata</i> (Blume) Regel	Randu	Т	F	Fr	Snack	RL	
	KM-003				Le	Vegetable	_	
Clusiaceae	Garcinia atroviridis Griff. ex T. Anderson	Kandis	Т	F, Fm	Fr	Spices, medicine	MK, LB, RL, BT	
	SU-020				St	Fodder	-	
	Garcinia cowa Roxb. ex Choisy	Kandis	Т	F	Fr	Spices	MK, LB, BT	
	RH-028							
	Garcinia parvifolia (Miq.) Miq.	Kandis Burung	Т	F	Fr	Spices	МК	
	LT-023							
	Garcinia xanthochymus Hook.f. ex	Gelugur	Т	F	Fr	Spices, medicine	MK, LB, BT	
	T.Anderson							
	SU-009							
Combretaceae	<i>Terminalia catappa</i> L.	Ketapang	Т	F	Fr	Snack	MK, LB, RL, BT	
	LT-029				St	Agricultural tools,		
						fuelwood		
	Terminalia foetidissima Griff.	Kedaniang	Т	F	Fr	Snack	LB	
	SU-021				St	Fuelwood	_	
Cucurbitaceae	Zehneria repanda (Blume) C.M.Simmons	Timun Tikus	С	F	Fr	Vegetable	RL	
	KM-024				Le	Medicine	_	
Elaeocarpaceae	Elaeocarpus floribundus Blume	Tapang	Т	F	Sd	Snack	LB, RL, BT	
	KM-013				St	Construction		
						materials and		
						agricultural tools		
Euphorbiaceae	Mallotus miquelianus (Scheff.) Boerl.	Siwabuk	Т	F	Sd	Snack	LB, RL	
	SU-027							
	Mallotus peltatus (Geiseler) Müll.Arg.	Balek angin	Т	F	Sd	Snack	MK, LB, RL, BT	

Table 3. Wild edible fruit plant species reported by the local people in Bengkulu

	LT-036				Le	Medicine	
Fabaceae	Archidendron bubalinum (Jack)	Kabau	Т	F, Fm	Fr	Vegetable	MK, LB
	I.C.Nielsen				Le	Fodder	_
	LT-034						
	<i>Parkia singularis</i> Miq.	Petai Meranti	Т	F	Fr	Vegetable	МК
	LT-022				Le	Fodder	
Fagaceae	Castanopsis argentea (Bl.) A.DC.	Be'ang	Т	F	Sd	Snack	MK, LB, RL
	SU-055				St	Construction	
						material,	
						agricultural tools,	
						and fuelwood	
	Castanopsis clemensii Soepadmo	Be'ang	Т	F	Sd	Snack	MK, LB
	SU-001				St	Construction	_
						materials and	
						agricultural tools	
	<i>Castanopsis malaccensis</i> Gamble	Be'ang	Т	F	Sd	Snack	MK, LB
	SU-001				St	Construction	
						materials and	
						agricultural tools	
	<i>Lithocarpus bancanus</i> (Scheff.) Rehder LT-028	Buah Pening, Peneng	Т	F	Sd	Snack	_ MK, LB _
					St	Construction	
						material,	
						agricultural tools,	
						and fuelwood	
	<i>Lithocarpus hystrix</i> (Korth.) Rehder	Be'ang Kecil	Т	F	Sd	Snack	LB, RL
	KM-002				St	Construction	
						materials and	
						agricultural tools	
	<i>Lithocarpus lucidus</i> (Roxb.) Rehder	Buah Pening	Т	F	Sd	Snack	MK, LB, RL
	SU-039				St	Construction	
						materials and	
						agricultural tools	
	Lithocarpus reinwardtii (Korth.) A.Camus	Buah Pening	Т	F	Sd	Snack	LB, BT
	SU-008				St	Construction	-
						material,	

						agricultural tools,	_
						and fuelwood	
	Lithocarpus sundaicus (Blume) Rehd.	Buah Pening	Т	F	Sd	Snack	MK, LB
	LT-031				St	Construction	_
						materials and	
						agricultural tools	
Hypoxidaceae	<i>Curculigo capitulata</i> (Lour.) Kuntze KM-028	Petari	Н	F, Fm	Fr	Eaten raw	MK, LB, RL, BT
Lauraceae	<i>Litsea angulata</i> Blume	Medang Kecik	Т	F	Fr	Eaten raw	LB
	SU-013				Le	Fodder	_
					St	Agricultural tools	_
	<i>Litsea elliptica</i> Blume	Medang Kerawas	Т	F	Fr	Eaten raw	LB, RL, BT
	KM-016				Le	Fodder	_
Malvaceae	Durio lowianus Scort. ex King	Ajun	Т	F	Fr	Eaten raw	LB
	SU-031				St	Construction	-
						materials	
	Durio oxleyanus Griff.	Ajun landok, Durian	Ţ	F	Fr	Eaten raw	MK, LB, RL, BT
	SU-038	daun			St	Construction	_
						materials	
	<i>Sterculia rubiginosa</i> Vent.	Glumpang	Т	F	Fr	Snack	LB, BT
	RH-013				St	Construction	
						material and	
						fuelwood	
Melastomataceae	<i>Bellucia pentamera</i> Naudin SU-044	Jambu hutan	Т	F, Fm	Fr	Eaten raw	MK, LB, RL, BT
	Miconia crenata (Vahl) Michelang.	Sikaduduk bulu	S	F	Fr	Eaten raw	MK, LB, RL, BT
	SU-045				Le	Medicine	_
	<i>Melastoma malabathricum</i> L.	Sikaduduk	S	Fm	Fr	Eaten raw	MK, LB, RL, BT
	LT-035				Le	Medicine	_
Meliaceae	<i>Aglaia crassinervia</i> Kurz ex Hiern	Unknown	Ţ	F	Fr	Eaten raw	LB, RL
	KM-009						
	<i>Aglaia silvestris</i> (M.Roem.) Merr.	Unknown	Т	F	Fr	Eaten raw	LB
	SU-016				Le	Medicine	_
					St	Construction	_
						material	
	Epicharis parasitica (Osbeck) Mabb.	Air-air	Т	Fm	Fr	Eaten raw	RL

	RH-019						
Moracea	Artocarpus elasticus Reinw. ex Blume	Bungkus	Т	F	Sd	Snack	MK, LB, RL, BT
	SU-002						
	Artocarpus integer (Thunb.) Merr.	Cempedak Hutan	Т	F, Fm	Fr	Eaten raw	MK, LB, RL, BT
	RH-024				Sd	Snack	_
					Le	Fodder	_
	Artocarpus lacucha BuchHam.	Ketapang	Т	F	Fr	Eaten raw	МК
	LT-029				Le	Fodder	_
	Artocarpus odoratissimus Blanco RH-026	Terap	Т	F	Sd	Snack	MK, LB, RL, BT
	Artocarpus rigidus Blume RH-005	Cempedak Hutan	Т	F	Sd	Snack	MK, LB, RL, BT
	Ficus fistulosa Reinw. ex Blume	Ao	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	RH-017				Ro	Medicine	_
	<i>Ficus glandulifera</i> (Wall. ex Miq.) King RH-037	Ao	Т	F	Fr	Eaten raw	lb, bt
	<i>Ficus hispida</i> L.f. KM-015	Buah Kodok, Lau	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	<i>Ficus racemosa</i> L. KM-018	Buah Plas	Т	F	Fr	Eaten raw, medicine	LB, RL, BT
					Le	Medicine	
	<i>Ficus ribes</i> Reinw. ex Blume SU-003	Kodok/Aro Tanah	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	<i>Ficus sagittata</i> Vahl RH-039	Ao	С	F	Fr	Eaten raw	lb, RL, BT
	<i>Ficus variegata</i> Blume KM-032	Ao	Т	F	Fr	Eaten raw	RL
	Ficus virens Aiton	Ao	Т	F	Fr	Eaten raw, salad	MK, LB, RL
	KM-036				Le	Vegetable	_
Myristicaceae	<i>Horsfieldia polyspherula</i> (Hook.f. ex King) J.Sinclair SU-010	Semalo Abang	Т	F	Fr	Spices	LB
	Myristica elliptica Wall. ex Hook.f. &	Pala Hutan	Т	F	Fr	Spices	MK, LB, BT
	Thomson LT-014				St	Agricultural tools	S
Myrtaceae	<i>Syzygium antisepticum</i> (Blume) Merr. & L.M.Perry	Jambu rimba	Т	F	Fr	Eaten raw	MK, LB

	LT-037						
	Syzygium polyanthum (Wight) Walp.	Salam	Т	Fm	Fr	Eaten raw	MK, LB, RL, BT
	KM-028				Le	Spices, medicine	_
	Syzygium pycnanthum Merr. & L.M.Perry	Jambu air	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	SU-048				Le	Fodder	_
Passifloraceae	<i>Passiflora foetida</i> L. RH-009	Rebis	С	Fm	Fr	Eaten raw	MK, LB, RL, BT
Pentaphylacaceae	<i>Eurya nitida</i> Korth. SU-034	Gi'ok	Т	F	Fr	Eaten raw	LB
Phyllanthaceae	<i>Baccaurea deflexa</i> Müll.Arg. KM-022	Kisip	Т	F	Fr	Eaten raw	RL
	Baccaurea lanceolata (Miq.) Müll.Arg.	Buah Lepsuak,	Т	F	Fr	Eaten raw,	MK, LB, RL, BT
	SU-005	Lempaung				medicine	
					Le	Medicine	_
	<i>Baccaurea macrocarpa</i> (Miq.) Müll.Arg. SU-006	Kayu Abuk, Tapuih	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	<i>Baccaurea parviflora</i> (Müll.Arg.) Müll.Arg. SU-017	Tapuih Tuhu	Т	F	Fr	Eaten raw	MK, LB
	<i>Baccaurea polyneura</i> Hook.f. RH-012	Jetik	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	<i>Baccaurea racemosa</i> (Reinw. ex Blume) Müll.Arg. RH-020	Tupak	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	<i>Baccaurea ramiflora</i> Lour. SU-040	Тароі	Т	F	Fr	Eaten raw	MK, LB
	Baccaurea sumatrana (Miq.) Müll.Arg.	Seripis, pasak	Т	F	Fr	Eaten raw	MK, LB, RL, BT
	SU-015				Le	Medicine	
Rosaceae	<i>Nauclea orientalis</i> (L.) L.	Monteng/Stewel	Т	F	Fr	Eaten raw	LB, RL
	KM-019				Le	Vegetable,	_
						medicine	
	<i>Rubus moluccanus</i> L. SU-032	Spinget blando	S	Fm	Fr	Eaten raw	MK, LB, RL, BT
Salicaceae	Flacourtia rukam Zoll. & Moritzi	Rukam manis	Т	F, Fm	Fr	Eaten raw	MK, LB, RL, BT
	KM-006						
					Le	Medicine	
	Flacourtia inermis Roxb.	Rukam masam	Т	F, Fm	Fr	Eaten raw	RL

	КМ. 020							
Sapindaceae	Mischocarpus pentapetalus (Roxb.) Radlk.	Unknown	Т	F	Fr	Eaten raw	LB	
	SU-023							
	Nephelium uncinatum Radlk. ex Leenh.	Rambutan hutan	Т	F	Fr	Eaten raw	MK, LB	
	LT-027							
	Pometia pinnata J.R.Forst. & G.Forst.	Kasai, Kasai Hutan,	Т	F	Fr	Eaten raw	MK, LB, RL, BT	
	LT-001	Ungkilanang						
Sapotaceae	Madhuca utilis (Ridl.) H.J.Lam	Balem gunung	Т	F	Fr	Eaten raw	LB	
	SU-033				Sd	Vegetable oil		
					St	Construction		
						materials		
Solanaceae	<i>Physalis angulata</i> L.	Ciplukan	Н	Fm	Fr	Eaten raw	MK, LB, RL, BT	
	RH-024				Le	Medicine		
Vitaceae	Leea indica (Burm. f.) Merr.	Malai	S	F	Fr	Eaten raw	LB	
	SU-035				Le	Vegetable,		
						medicine		

Legend:

Life form: T = Tree, S = Shrub, H = Herb, C = Climber; Habitat: F = Forest, Fm = Farmland;

Plant part used: Ro = Root, St = Stem, Le = Leaf, Fr = Fruit, Sd = Seed; District: MK = Mukomuko; LB = Lebong; RL = Rejang Lebong; BT = Bengkulu Tengah

Wild edible fruit for food purposes

Local people in the study area live near the forest and have long relied on various wild species for their livelihoods. Our findings show that 73 WEFs have been discovered in the Bengkulu region, with eleven (15%) species being the most frequently cited by local people in the study area (RFC > 0.08). The top five most cited WEFs are *Artocarpus integer, Mangifera odorata, Bellucia pentamera, Garcinia atroviridis,* and *Mangifera foetida* (Figure 2).

Figure 2. Relative frequency citation (RFC) of wild edible fruits in the study area

The local people in the study area primarily use WEFs for food. The most consumed plant parts were fruit (74.3%), followed by seeds (20.3%), and leaves (5.4%). Plants were consumed in two methods: raw and cooked. Fruits are eaten raw, seeds are usually roasted and eaten as snacks, and young leaves are usually cooked as vegetables. During the discussion, all respondents state that they harvested WEFs for self-consumption.

The top 10 most preferred WEFs by their taste quality were *Artocarpus integer*, *Mangifera odorata*, *Pometia pinnata*, *Flacourtia rukam*, *Durio oxleyanus*, *Baccaurea racemosa*, *Bellucia pentamera*, *Baccaurea macrocarpa*, *Baccaurea polyneura*, and *Mangifera foetida*. *Artocarpus integer* is the most popular WEFs, preferred by the majority of respondents across all studied villages (preference ranking; Table 4).

Table 4. Results of preference ranking of top ten wild edible fruit species by their taste quality (1 = least, 2 = less, 3 = good, 4 = very good, and 5 = excellent)

Charles	Resp	onden	ts (N=3	383)					Total	Dank
species	LT	GM	SU	KD	КМ	CL	RH	SR	Score	капк
Artocarpus integer	4.9	4.7	4.8	4.8	4.8	4.7	4.8	4.7	4.78	1 st
Mangifera odorata	4.6	4.7	4.8	4.7	4.7	4.8	4.7	4.8	4.73	2 nd
Pometia pinnata	4.8	4.6	4.7	4.7	4.8	4.6	4.6	4.7	4.69	3 rd
Flacourtia rukam	4.7	4.2	4.7	4.6	4.6	4.5	4.6	4.6	4.56	4 th
Durio oxleyanus	4.9	4.5	4.8	4.7	4.4	4.2	4.5	4.4	4.55	5 th
Baccaurea racemosa	4.4	4.6	4.7	4.7	4.6	4.3	4.4	4.6	4.54	6 th
Bellucia pentamera	4.2	4.8	4.3	4.7	4.5	4.6	4.8	4.3	4.53	7 th
Baccaurea macrocarpa	4.6	4.4	4.6	4.4	4.4	4.7	4.4	4.6	4.51	8 th
Baccaurea polyneura	4.8	4.2	4.7	4.6	4.4	4.1	4.6	4.5	4.48	9 th
Mangifera foetida	4.4	4.5	4.4	4.4	4.6	4.7	4.3	4.3	4.45	10^{th}

Legend: LT = Lubuk Talang; GM = Gajah Makmur; SU = Sebelat Ulu; KD = Ketenong Dua; KM = Kayu Manis; CL = Cawang Lama; RH = Rindu Hati; SR = Surau

Wild edible fruit plants used for medicinal purposes

A total of 15 (20.5%) WEFs were used by the local people in the Bengkulu region as traditional medicines. These species were used against 18 human ailments (Table 5).

Scientific nome	Plant part	Mode of	Route of	Disease treated
Scientific name	used	preparation	administration	Disease treated
Aglaia silvestris	Le	Squeezing	External application	Wounds, tonic
Baccaurea lanceolata	Le	Squeezing	External application	Headache
	Fr	Decoction	Oral	Tonsils, obesity
Baccaurea sumatrana	Le	Squeezing	External application	Headache
Ficus fistulosa	Ro	Decoction	Oral	Postpartum infection
Ficus racemosa	Le	Boiling	Oral	Diarrhea, dysentery
		Crushing	External application	Wound
	Fr	Decoction	Oral	Cough
Flacourtia rukam	Le	Decoction	Oral	Diarrhea, dysentery
		Chewing	Oral	Bleeding gums, toothache
Garcinia atroviridis	Fr	Eaten raw	Oral	Obesity
Garcinia xanthochymus	Fr	Eaten raw	Oral	Diarrhea,
				stomachache, obesity
Leea indica	Le	Crushing	External application	Wound
		Decoction	Oral	Diarrhea, dysentery
Mallotus peltatus	Le	Boiling	Oral	Stomachache
		Squeezing	External application	Skin diseases
Melastoma malabathricum	Le	Squeezing	External application	Wound
Miconia crenata	Le	Squeezing	External application	Wound
Nauclea orientalis	Le	Crushing	External application	Boils
Physalis angulata	Le	Decoction	Oral	Fever, malaria,
				postpartum infection
		Squeezing	External application	Rheumatism, skin
				diseases
Syzygium polyanthum	Le	Decoction	Oral	Diarrhea, stomachache

Table 5. List of wild edible fruits as traditional medicine

Plant parts used among local people to treat various illnesses were primarily leaves (70.6%), followed by fruits (23.5%) and roots (5.9%). The most commonly used ethnomedicine plant remedies were diarrhea (5 species), followed by wound (4 species each), obesity and stomachache (3 species each), headache, postpartum infection, dysentery, and skin diseases (2 species each), and tonic, tonsils, bleeding gums, toothache, boils, fever, malaria, rheumatism, and cough (1 plant species each).

Wild edible fruit plants used for other purposes

The finding revealed that the people of Bengkulu used WEFs for a variety of purposes. They use these plants for construction, agricultural tools, fuelwood, and fodder, in addition to wild food and medicinal plant uses. A multipleuse analysis revealed that agricultural tools were the most frequently reported (15), while fuelwood was the least reported (6) (Figure 3).

Indigenous knowledge transfer

Local people in the study area have long interacted with nature by relying on a diverse range of wild plant species, including WEFs, for livelihoods. Our findings revealed that people in the Lebong district identified more WEFs than people in other districts. The average number of WEFs identified by each age group of the respondents ranged from 32.48 ± 6.21 (15-25 years) to 45.03 ± 11.32 (56-65 years). Moreover, the average number of species identified by each educational level of the respondent ranged from 33.68 ± 8.49 (Senior High School) to 45.16 ± 10.98 (No education) (Table 6).

Figure 3. The other uses of the wild edible plant species

	Table 6.	Comparison	of subgroups o	f respondents o	on their indigenous	knowledge of WEFs
--	----------	------------	----------------	-----------------	---------------------	-------------------

Variable	Total respondents	The average number of WEFs identified	Statistical test	<i>p-</i> value
Mukomuko	104	35.23 ± 6.43		
Lebong	39	53.69 ± 6.49		
Rejang Lebong	167	33.03 ± 5.06		
Bengkulu Tengah	73	31.11 ± 5.17		
Gender			<i>χ2</i> = 51.412	0.072
Male	175	$\textbf{36.71} \pm \textbf{9.73}$		
Female	208	34.63 ± 7.56		
Age			W = 52.247	0.0001
15-25	60	$\textbf{32.48} \pm \textbf{6.21}$		
26-35	83	32.57 ± 7.32		
36-45	102	34.88 ± 8.07		
46-55	106	$\textbf{37.48} \pm \textbf{7.93}$		
56-65	32	45.03 ± 11.32		
Level Education			W= 39.618	0.0001
No Education	43	45.16 ± 10.98		
Elementary School	104	$\textbf{35.19} \pm \textbf{6.92}$		
Junior High School	127	34.20 ± 7.33		
Senior High School	81	33.68 ± 8.49		
Higher Education	28	33.93 ± 6.97		

Traditional knowledge of WEFs varied significantly across the four districts (p < 0.05). Local people in the Lebong district possessed significantly more indigenous knowledge than those in other districts. There was no statistically significant difference between men and women in indigenous knowledge (p > 0.05). However, there was a significant relationship between age and indigenous knowledge (p > 0.05), as well as education level and indigenous knowledge (p > 0.05). The findings of the study revealed a decrease in traditional knowledge across age groups, with older people having more knowledge about WEFs than younger people. During the discussion, 58.3% of respondents aged 15-25 claimed that they spent more time at school and, as a result, were rarely involved in WEFs harvesting. In contrast, our findings show that more than 40% of respondents aged 15-25 spend their weekends playing online games.

During the discussion, approximately 68% of respondents stated that they obtain traditional knowledge of the use of WEFs from relatives, 17.8% from friends/neighbors, 8.4% from self-learning by experience, and 5.7% from formal education. This demonstrates that relatives play a significant role in the transmission of traditional knowledge concerning wild plants.

Discussion

A total of 73 WEFs from 26 botanical families were recorded in Bengkulu province, which is comparable to the 67 WEFs reported from Riau, Indonesia (Syamsuardi *et al.* 2022) and 54 wild edible fruit species (27 families) reported from Central Aceh, Indonesia (Navia *et al.* 2020a). However, this is less when compared to 520 WEFs reported in Malaysia (Milow *et al.* 2014) and 129 species in Aceh, Indonesia (Suwardi *et al.* 2022b). WEFs were discovered in the study area primarily as foods. This is in line with previous studies from Riau, Indonesia (Syamsuardi *et al.* 2022), Aceh, Indonesia (Suwardi & Navia 2022), and the Philippines (Chua-Barcelo 2014). WEFs were mostly consumed both raw and cooked or further processed. For example, *Garcinia xanthocymus* and *Garcinia atroviridis* fruits were consumed raw as well as dried as spices. WEFs such as *Artocarpus integer, Mangifera odorata, Pometia pinnata, Flacourtia rukam, Durio oxleyanus, Baccaurea racemosa, Bellucia pentamera, Baccaurea macrocarpa, Baccaurea polyneura*, and *Mangifera foetida* were relatively common and familiar to the respondents and were extensively listed in all study villages.

The ethnobotanical study reveals that WEFs have multiple uses aside from food, with more citations for their use as a raw material for construction, which is comparable to the reported in other areas of Indonesia, such as in West Aceh, Indonesia (Suwardi & Navia 2022) and East Aceh (Navia *et al.* 2021b). Several species such as *Artocarpus integer* and *Parkia singularis* were reported for fodder purposes. The medicinal use of WEFs generally included traditional remedies to treat common illnesses such as diarrhea, wound, obesity, headache, postpartum infection, dysentery, skin diseases, stomachache, tonic, tonsils, bleeding gums, toothache, boils, fever, malaria, rheumatism, and cough. *Baccaurea lanceolata* and *Garcinia xanthochymus* were the most commonly used WEFs in traditional medicine, particularly for the treatment of metabolic disorders such as obesity.

This study showed that indigenous knowledge of WEFs differed significantly between the districts, with the respondents from Lebong having more knowledge compared to other districts. This demonstrates that their reliance on forest resources is very high, given that the area is located in the forest, and traditional knowledge on the use of forest resources has proven to be able to be transferred very well between generations. In line with several other studies (Chua-Barcelo 2014; Geng et al. 2016; Yangdon et al. 2022), the association between gender and indigenous knowledge was not statistically significant. Moreover, this finding contrasts with previous studies in another area (Navia et al. 2020a; Suwardi et al. 2020), in which women reported greater knowledge of wild edibles than men. Our findings, on the other hand, suggest that respondents' age and education level influence their traditional knowledge of WEFs. Respondents aged 15 to 25, the majority of whom are in Senior High School, have less traditional knowledge of WEFs usage. According to the observations and discussions, this decline in knowledge, particularly among respondents who are currently enrolled in school, is caused by the fact that they spend more time at school or in town nowadays. Moreover, we see that the majority of the younger generation (15-25 years) in the study area spends a lot of time on weekends accessing online games via the internet, therefore they are less involved in forest product harvesting. The findings confirm the reports of Navia et al. (2020b) and Sujarwo et al. (2014), who found that the use of information technology, particularly the internet, has a significant impact on knowledge of the use of wild plants. Furthermore, the declining knowledge of more senior respondents may be due to them having other jobs far outside of the study area, such as in town, and being less involved in natural forest harvesting. The small proportion of elders who used to pass on their traditional knowledge to the younger generation contributes to traditional knowledge loss (Okui et al. 2021).

The decreasing use of WEFs by local people has resulted in the extinction of wild food culture and is associated with the eroding of indigenous knowledge. It is critical, therefore, to prioritize the promotion of these underutilized species before wild food culture consumption becomes redundant. Efforts to domesticate various useful wild species, including WEFs, must, on the other hand, be initiated by growing these species mixed with crops in their farmland, home garden, or orchard through the implementation of agroforestry practices. Agroforestry practices have been proven to promote biodiversity conservation (Sistla *et al.* 2016), as well as boost the economic growth of communities surrounding forests, and provide sufficient opportunities for the younger generation to learn more about wild species, including WEFs. WEFs may also be promoted by incorporating WEF knowledge into local subjects in schools.

Conclusions and Recommendations

A total of 73 WEFs representing 26 botanical families were discovered in Bengkulu. These plants have been used by the local people for a variety of purposes, including food, medicine, construction materials, agricultural tools, fuelwood, and fodder. Despite the fact that the study discovered a high diversity of WEFs, local people in Bengkulu only used an average of 47 (64%) species. As a result, future research on potential WEFs, including nutritional value, is critical to promoting and conserving WEFs. The study also discovered that younger generations have less indigenous knowledge than older generations, recommending that WEFs knowledge be incorporated into educational curricula.

Declarations

Ethical approval and consent to participate: Permission was taken from the head of the district of Mukomuko, Lebong, Rejang Lebong, and Bengkulu Tengah before data collection. Oral agreements were obtained from local respondents and all field data were collected through their oral approval.

Consent for publication: Not applicable.

Availability of data and materials: Data will be available from the corresponding author in a special request. **Conflict of interests:** The authors declare no competing interests.

Funding: The study received funding from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia in 2022 through a Dissertation Research Grant/PDD (Grant No. 083/E5/PG.02.00/PT/2022).

Authors' contributions: ABS, S, EM, and N carried out fieldwork and data analysis. ABS and S configured the research project. ABS drafted the manuscript. All authors read, reviewed, and approved the final version of the manuscript.

Literature cited

Akinnifesi FK, Kwesiga F, Mhango J, Chilanga T, Mkonda A, Kadu CAC, Kadzere I, Mithofer D, Saka JDK, Sileshi G, Ramadhani T, Dhliwayo P. 2006. Towards the development of miombo fruit trees as commercial tree crops in southern Africa. Forests, Trees and Livelihoods 16:103-121.

Bartlett JE, Kotrlik JW, Higgins CC. 2001. Organizational research: Determining appropriate sample size in survey research. Information Technology and Learning Performance Journal 19(1):43.

Beluhan S, Ranogajec A. 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chemistry 124(3):1076-1082.

Bigirimana C, Omujal F, Isubikalu P, Bizuru E, Obaa B, Malinga M, Agea JG, Okullo JBL. 2016. Utilisation of indigenous fruit trees species within the Lake Victoria Basin, Rwanda. Agricultural Science: An International Journal 1(1):1-13.

Biswas SC, Majumdar M, Das S, Misra TK. 2018. Diversity of wild edible minor fruits used by the ethnic communities of Tripura, India. Indian Journal of Traditional Knowledge 17(2):282-28

BPS-Statistics of Bengkulu Province. 2022. Bengkulu province in figures 2021. Bengkulu, BPS-Statistics of Bengkulu Province.

Bvenura C, Sivakumar D. 2017. The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Research International 99:15-30.

Chua-Barcelo RT. 2014. Ethno-botanical survey of edible wild fruits in Benguet, Cordillera administrative region, the Philippines. Asian Pacific Journal oi Tropical Biomedicine 4(Suppl 1):S525-S538.

Debela HF, Njoka JT, Asfaw Z, Nyangito MM. 2012. Nutritional value of *Berchemia discolor*: A potential to food and nutrition security of households. J. Biol. Sci. 12: 263-271.

FAO. 2011. Food security and nutrition. Rome: FAOUN; [Online] Available from: http://www.fao.org/docrep/014/i2011e/i2011e00.pdf [Accessed on 15 December 2022]

FAO. 2017. The future of food and agriculture: trends and challenges. Futur. food Agric. trends challenges. [Online] Available from: https:// www. fao. org/3/ i6583e/i6583e. pdf. [Accessed on 15 December 2022]

Gebauer J, Adam YO, Sanchez AC, Darr D, Eltahir ME, Fadl KE, Hunsche M. 2016. Africa's wooden elephant: the baobab tree (*Adansonia digitata* L.) in Sudan and Kenya: A review. Genetic Resources and Crop Evolution 63:377-399.

Geng Y, Zhang Y, Ranjitkar S, Huai H, Wang Y. 2016. Traditional knowledge and its transmission of wild edibles used by the Naxi in Baidi village, Northwest Yunnan province. Journal of Ethnobiology and Ethnomedicine 12(10):4402.

Gusain YS, Khanduri VP. 2016. *Myrica esculenta*, wild edible fruit of Indian Himalaya: need a sustainable approach for indigenous utilization. Ecology Environment and Conservation 22: 67-270.

Hazarika TK, Singh TS. 2018. Wild edible fruits of Manipur, India: Associated traditional knowledge and implications to sustainable livelihood. Genet. Genetic Resources and Crop Evolution 65:319-332.

Kamatou GPP, Vermaak I, Viljoen AM. 2011. An updated review of Adansonia digitata: A commercially important African tree. South African Journal of Botany 77:908-919.

Karun NC, Vaast P, Kushalappa CG. 2014. Bioinventory and documentation of traditional ecological knowledge of wild edible fruits of Kodagu-Western Ghats, India. Journal of Forestry Reearch 25:717-721.

Khasbagan S. 2008. Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P R China. Journal of Ethnobiology and Ethnomedicine 4:11.

Khruomo N, Deb CR. 2018. Indigenous wild edible fruits: Sustainable resources for food, medicine and income generation, a study from Nagaland, India. Journal of Experimental Biology and Agricultural Sciences 6(2):405-413

Kusmana C, Hikmat A. 2015. The biodiversity of flora in Indonesia. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 5(2):187-198. doi: 10.19081/jpsl.5.2.187.

Leakey RRB, Tchoundjeu Z, Schreckenberg K, Shackleton SE, Shackleton CM. 2005. Agroforestry Tree Products (AFTPs): Targeting poverty reduction and enhanced livelihoods. International Journal for Agricultural Sustainability 3:1-23.

Mahapatra AK, Panda PC. 2012. Wild edible fruit diversity and its significance in the livelihood of indigenous tribals: Evidence from eastern India. Food Security 4:219-234.

Mahapatra AJ, Mishra S, Basak UC, Panda PC. 2012. Nutrient analysis of some selected wild edible fruits of deciduous forests of India: an explorative study towards non conventional bio-nutrition. Advance Journal of Food Science and Technology 4(1):15-21

Milow P, Malek SB, Edo J, Ong HC. 2014. Malaysian species of plants with edible fruits or seeds and their valuation. International Journal of Fruit Science 14(1):1-27.

Navia ZI, Suwardi AB, Harmawan T, Syamsuardi, Mukhtar E. 2020a. The diversity and contribution of indigenous edible fruit plants to the rural community in the Gayo Highlands, Indonesia. Journal of Agriccuklture and Rural Devekopent in the Tropics and Subtropics 121(1):89-98.

Navia ZI, Audira D, Afifah N, Turnip K, Nuraini, Suwardi AB. 2020b. Ethnobotanical investigation of spice and condiment plants used by the Taming tribe in Aceh, Indonesia. Biodiversitas 21 (10):4467-4473.

Navia ZI, Suwardi AB, Baihaqi. 2021a. Ethnobotanical study of medicinal plants used by local communities in Sekerak Sub-district, Aceh Tamiang, Indonesia. Biodiversitas 22(10):4273-4281.

Navia ZI, Suwardi AB, Nuraini. 2021b. The importance of tropical edible fruit plants for tribal communities in East Aceh region, Indonesia. IOP Conferebce Series on Earth and Environmental Science 637(1):012003.

Okui K, Sawada Y, Yoshida T. 2021. "Wisdom of the elders" or "loss of experience" as a mechanism to explain the decline in traditional ecological knowledge: A case study on Awaji Island, Japan. Human Ecology 49:353-362.

Ong HC, Norliah A, Sorayya M. 2012. Traditional knowledge and usage of edible plants among the Temuan villagers in Kampung Tering, Kuala Pilah, Negeri Sembilan, Malaysia. Indian Journal of Traditional Knowledge 11(1):161-165.

Schreckenberg K, Awono A, Degrande A, Mbosso C, Ndoye O, Tchoundjeu Z. 2006. Domesticating indigenous fruit trees as a contribution to poverty reduction. Forests, Trees and Livelihoods 16:35-52.

Sistla SA, Roddy AB, Williams NE, Kramer DB, Stevens K, Allison SD. 2016. Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS ONE 11(9):e0162529.

Sujarwo W, Arinasa IBT, Salomone F, Caneva G, Fattorini S. 2014. Cultural Erosion of Balinese Indigenous knowledge of food and nutraceutical plants. Economic Botany 68(4):426-437.

Sutrisno IH, Bachtiar A, Navia ZI, Nuraini, Suwardi AB. 2020. Documentation of ritual plants used among the Aceh tribe in Peureulak, East Aceh District, Indonesia. Biodiversitas 21(22):4990-4998.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2020. Wild edible fruits generate substantial income for local people of the Gunung Leuser National Park, Aceh Tamiang region. Ethnobotany Research and Applications 20:1-13.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2022a. Importance and local conservation of wild edible fruit plants in the East Aceh Region, Indonesia. International Journal of Conservation Science 13(1):221-232.

Suwardi AB, Navia ZI, Harmawan T, Seprianto, Syamsuardi, Mukhtar E. 2022b. Diversity of wild edible fruit plant species and their threatened status in the Aceh Province, Indonesia. Biodiversitas 23 (3):1310-1318.

Suwardi AB, Navia ZI. 2022. Sustainable use and management of wild edible fruit plants: a case study in the Ulu Masen protected forest, West Aceh, Indonesia. Journal of Sustainable Forestry1-12.

Syamsuardi, Mukhtar E, Nurainas, Suwardi AB. 2022. Diversity and use of wild edible fruits in the Bukit Rimbang – Bukit Baling Wildlife Reserve, Kampar, Riau, Indonesia. Biodiversitas 23(10):5035-5042.

Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61:839-852.

Uji, T. 2007. Species diversity of indigenous fruits in Indonesia and its potential. Biodiversitas 8(2):157-167.

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)-An alpine ethnobotanical study. Journal of Ethnopharmacology 142(2):517-529.

Yangdon P, Araki T, Rahayu YYS, Norbu K. 2022. Ethnobotanical study of wild edible fruits in eastern Bhutan. Journal of Ethnobiology and Ethnomedicine 18:27.