

# Quantitative ethnobotanical study of medicinal plants used by the indigenous communities of Shawal Valley, District North Waziristan, Pakistan

Sabith Rehman, Zafar Iqbal, Rahmatullah Qureshi and Ghulam Mujtaba Shah

#### Correspondence

#### Sabith Rehman<sup>1</sup>, Zafar Iqbal<sup>1\*</sup>, Rahmatullah Qureshi<sup>2\*</sup> and Ghulam Mujtaba Shah<sup>1</sup>

<sup>1</sup>Department of Botany Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan <sup>2</sup>Department of Botany, PMAS-Arid Agriculture University Murree Road Rawalpindi, Pakistan

\*Corresponding Author: <u>zafar.hu@yahoo.com</u>, <u>rahmatullahq@yahoo.com</u>

**Ethnobotany Research and Applications 25:48 (2023)** - http://dx.doi.org/10.32859/era.248.5.1-24 Manuscript received: 20/01/2023 – Revised manuscript received: 12/04/2023 - Published: 13/04/2023

# Research

# Abstract

*Background:* The inhabitants of distant regions typically depend on traditional information of therapeutic plants to treat various disorders. The current survey was conducted to record and explore the indigenous utilization of the therapeutic plants among people dwelling in Shawal Valley, North Waziristan, Pakistan.

*Methods:* The data was collected through semi-structured interviews and data was analyzed by using different quantitative indices viz. use value (UV), use reports (UR), relative frequency of citation (RFC), fidelity level (FL), and family importance value (FIV). Plant specimens were submitted to the Department of Botany Herbarium, Hazara University Mansehra for future records.

*Results*: A total of108 medicinal plants belonging to 54 families were reported which were used to cure various 119 disorders. The informants documented the highest number of plants used for digestive disorders (16 spp.), followed by diarrhea (11 spp.) and cough (10 spp.). The maximum RFC value was recorded for *Bergenia ciliate* (0.36), followed by *Berberis lycium* and *Ephedra gerardiana* (0.35) each. The highest UV was recorded for *Bergenia ciliate* (0.89), followed by *Ephedra gerardiana* (0.87), and *Punica granatum* (0.85). The maximum fidelity levels values were recorded for *Bergenia ciliate* and *Ephedra gerardiana* (100%) each.

*Conclusions:* The present study revealed that Shawal valley has an important diversity of therapeutic plants, and the use of therapeutic plant remedies is still familiar in the study area. A total of 108 therapeutic plants, related to 54 families were recorded for the treatment of 119 disorders. Thus, the study provides baseline information for further pharmacological and phytochemical screening in order to study their bioactive compounds.

Keywords: Folk Knowledge, Quantitative study, Shawal valley, North Waziristan.

# Background

Plant resources make available every necessary life maintenance resource like shelter, food, fodder, forage, and medicine (Hameed *et al.* 2012). Older inhabitants or herbalists are associated with therapeutic plants and use various herbs for preparing medication which is promoted in the community (Ishtiaq *et al.* 2021; Ahmad *et al.* 2011). Indigenous communities of distant areas of the globe are mainly reliant on wild flora for accomplishing their daily life necessities. Indigenous plants play a vital role in the basic health care system of the dweller of the study area. They provide medication and major raw materials to develop old and new drugs of herbal and allopathic forms (Ishtiaq *et al.* 2021).Herbal plants play a key role in supplying food and nutritive provision to the inhabitants of rural areas of the globe.

For primary healthcare, about 80% of the traditional communities depend upon medicinal plants (Sarma *et al.* 2012; Khan *et al.* 2021; Rehman *et al.* 2023). The plant contains active chemicals which are used for medicinal purposes in herbal medication (Bussmann *et al.* 2006). In rural areas, inhabitants use therapeutic plants in the form of herbal medication for the treatment of various diseases due to their effectiveness and easy availability (Hassan *et al.* 2017). Pastoral inhabitants used medicinal plants to treat diseases by using different plant parts either directly or mixed with other appropriate supplements (Nadeem *et al.* 2013; Giday *et al.* 2016)

There are more than 6,000 flowering plants used in herbal medicines in Pakistan (Bano *et al.* 2014) and used to cure various human ailments (Ozkan *et al.* 2016; Jima & Megersa 2018). In the majority of cases, certain medicinal plants are considered to be specific for a specific ailment, but some medicinal plants have numerous uses (Hamayun *et al.* 2005). The traditional communities are mostly depending on plants and plant-based medicine for their daily life needs (Murad *et al.* 2013; Kamal *et al.* 2016). In the majority of cases, herb collectors are illiterate or untrained (Sodhi *et al.* 2004). Several medicinal plants have earlier become extinct in Pakistan due to overutilization (Rehman *et al.* 2022b). Knowledge about the therapeutic plant is still transferred verbally and orally from one generation to another generation (Jan *et al.* 2011; Sabran *et al.* 2016). Ethnomedicinal study has been done in nearby areas of Shawal valley, North Waziristan, in previous literature (Aziz et al. 2016; Hussain *et al.* 2018; Hussain *et al.* 2022; Ullah *et al.* 2023) but this region was still unexplored. Therefore, study was designed with the objective to explore therapeutic plants and related traditional knowledge of the Shawal valley of District, North Waziristan, Pakistan.

# **Materials and Methods**

## Study area

Shawal valley is about 20 km broad from West to East and 35 km long from South to North side, bounded by mountain ranges 2000 to 3000 m high. The Shawal coniferous forest is located between 31° 0' 55.0002"/ and 3° 20' 39.9984"N latitudes and 69° 0' 15.0006"/ to70° 0' 15.0006" E longitudes. The total area of scrub and coniferous forests is 127400 acres and classified as dry temperate forests (Champion *et al.* 1965). The study area is located in the South to West part of the District North Waziristan, Pakistan. It is bounded North to East by Miran shah, West by Razmak, in the South by the Bernal valley of Afghanistan, and in the East by the Koh-e-Sofid range along Afghanistan Border (Fig. 1). The Shawal valley completely falls under the Sino-Japanese region (Ali & Qaiser 1986). The average rainfall is approximately 75 mm and the minimum temperature is 10 0C. The snowfall is about 0.5 to 1.5 m which starts from February to April. Shawal Valley is inhabited by Utmanzai Wazir, which is further divided into 3 main tribes i.e. Baka Khel, Kabul Khel, and Jani Khel.

## Ethnobotanical fieldwork

An ethnobotanical study was conducted to collect the traditional information about the utilization of therapeutic plant species to cure the diseases by the indigenous people of Shawal valley, District North Waziristan, from April 2018 to October 2020. By using a semi-structured questionnaire (Martin 1995; Khan *et al.* 2021), we collected traditional information from 130 randomly selected informants of different age groups (above 75 (38.46%), followed by 65-75 (28.46%), and 55-65 (16.15%) years old. Preference was given to aged respondents and traditional herbalist. The majority of the informants were male (103) as compared to female (27). It was also observed during the study that males has enough knowledge about the use and preparation of therapeutic plants. The respondents comprise 58 herbalist, 39 shepherds, and 33 local healers. Informants were asked about their knowledge of the utilization of medicinal plant species for the cure of different ailments in the study area. Moreover, we reported information such as plant parts, route of administration, preparation method, and dosages used for the ailments.

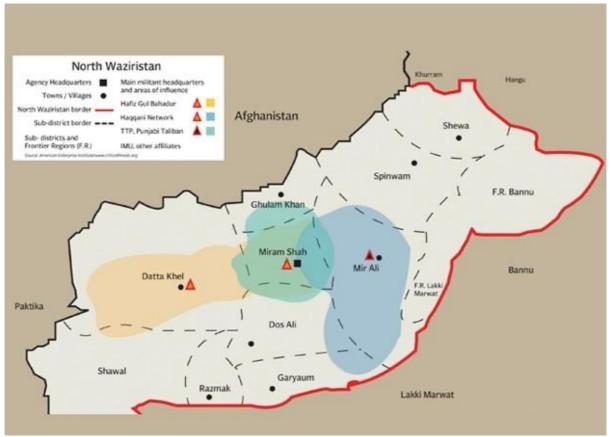



Figure 1. Map of the study area.

#### **Plant collection and Identification**

Plant specimens were collected from the research area on the bases of their local names. The collected specimens were properly pressed, dried, poisoned, and pasted on herbarium sheets. The plant specimens were identified by a taxonomist (Prof. DR. Rahmatullah Qureshi) and confirmed through published available literature (Khan *et al.* 2021) and kept at the Herbarium, Botany Department Hazara University Mansehra, Pakistan.

#### **Statistical Analysis**

The data collected were analyzed by using different quantitative ethnobotanical indices like Use Report (UR), Use Value (UV), Relative Citation of Frequency (RFC), Fidelity Level (FL), and Family Importance Value (FIV).

#### Use Value

The relative importance of each plant species was calculated by using the following equation (Vitalini et al. 2013).

$$\mathbf{UV} = \sum_{1}^{n} Ui / N \quad (1)$$

Where "Ui" is the total number of used reports of each therapeutic plant, and 'N' is the number of informants. Please define Ui?

#### **Relative Frequency of Citation**

Relative Citation of Frequency (RFC) was calculated by using the given equation (Butt et al. 2015).

$$RFC = FC/N (0 < RFC < 1) (2)$$

Where "FC" is the number of informants who cited the use of plant, and "N" is the total number of informants who participated in the survey.

#### Fidelity Level

The Fidelity Level is the percentage of informants who mentioned the uses of particular plants to cure a particular ailment in the study area. The FL value is computed as:

$$FL(\%) = NP / N \times 100$$
 (3)

Where " $N_p$ " is the specific number of informants for a specific disease, and 'N' is the total number of participants cited the plants for any ailments (Friedman *et al.* 1986)

#### Family Importance Value

Family Importance Value (FIV) was used to compute the relative importance of plant families. It was computed by taking the percentage of respondents citing the plant family.

$$FIV = FC/N \times 100$$
 (4)

FC= Number of informants mention the plant family, while "N" is the sum number of respondents participating in the survey (Friedman *et al.* 1986; Rehman *et al.* 2022a)

## Results

#### Demographic Characteristics of Respondents this should be clearly stated in the methods section!

In the present study, 130 participants were interviewed, of which 103 (79.23%) males and 27 (20.77%) were females. The prevalence of male respondents in the research area was higher as compared to women. Our result agreed with (Amjad *et al.* 2020; Malik *et al.* 2018) where male were major respondents. There was definite cultural boundary due to which women respondents could not talk with men interviewers outside of their families. Most of them were over 75 (38.46), followed by 65-75 (28.46%), and 55-65 (16.15%) years old. Most of the respondents were illiterate (51.54%), while only 2.31% had a university education. Our result agreed with (Gedif and Hahn, 2003; Giday *et al.* 2009). Informants were 58 herbalists, 39 Shepherds, and 33 local healers (Table 1). All the informants spoke the Pushto language.

| Variation              | Category         | Numbers | Percentage |
|------------------------|------------------|---------|------------|
| Gender                 | Male             | 103     | 79.23      |
|                        | Female           | 27      | 20.77      |
| Age                    | 35-45            | 7       | 5.38       |
|                        | 45-55            | 15      | 11.54      |
|                        | 55-65            | 21      | 16.15      |
|                        | 65-75            | 37      | 28.46      |
|                        | Over 75          | 50      | 38.46      |
| Occupation             | Herbalists       | 58      | 44.62      |
|                        | Shepherds        | 39      | 30.00      |
|                        | Local healers    | 33      | 25.38      |
| Educational background | Illiterate       | 67      | 51.54      |
|                        | Primary          | 27      | 20.77      |
|                        | Middle           | 16      | 12.31      |
|                        | Secondary        | 10      | 7.69       |
|                        | Higher secondary | 7       | 5.38       |
|                        | University       | 3       | 2.31       |

Table 1. Demographic characteristics of the informants.

#### Therapeutic plants and growth form

The present survey reported 108 plant species related to 54 families, which were used for therapeutic purposes. The plant species documented with their scientific name, family name, local name, growth form, part used, mode of preparation, mode of administration, therapeutic uses, FC, RFC, UV, and FL are presented in (Table 2). The leading family was Lamiaceae with (17 spp.), followed by Asteraceae with (9 spp.), Amaranthaceae with (5 spp.), Apiaceae, and Rosaceae with (4 spp.) each.

Herbs were the dominant growth form (69.44%), followed by shrubs (13.89%), trees (11.11%), ferns (3.70%), and climbers (1.85%) as shown in (Figure 2). The frequent utilization of herbs may be due to their ease of access and effectiveness in the cure of different ailments.

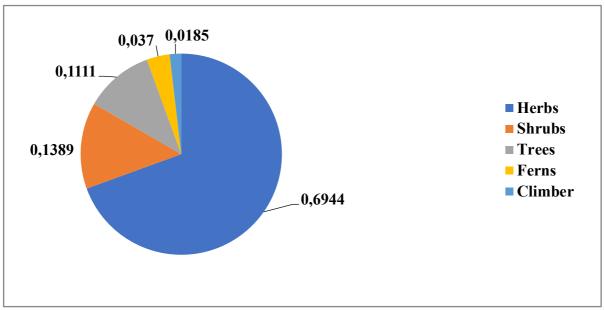



Figure 2. Growth forms of therapeutic plants at Shawal valley North Waziristan, Pakistan.

#### Plant parts used and Mode of preparation

The dominant plant part used in remedies preparations were leaves (24.22%), followed by aerial parts (15.63%), whole plants (12.50%), fruits and shoots (9.38%) each as shown in (Figure 3).

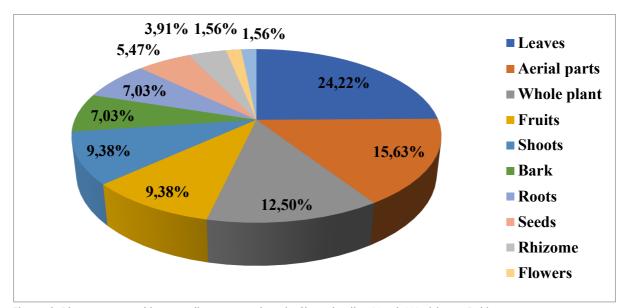



Figure 3. Plant parts used in remedies preparations in Shawal valley North Waziristan, Pakistan. Decoction was the leading method of remedies preparation (39.17%), followed by powder (25.00%), raw (7.50%), juice (5.83%), herbal tea, infusion, and paste, each with 5.00% Ffigure 4).

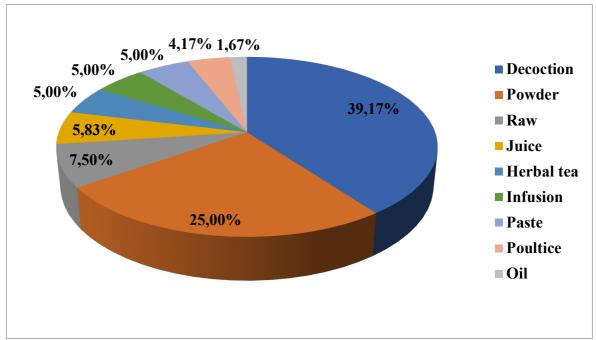



Figure 4.Mode of preparation of remedies in Shawal Valley North Waziristan, Pakistan.

## Mode of Administration

The leading mode of administration was oral (81.03%), followed by topical (17.24%), and smoke (0.87%) (Figure 5).

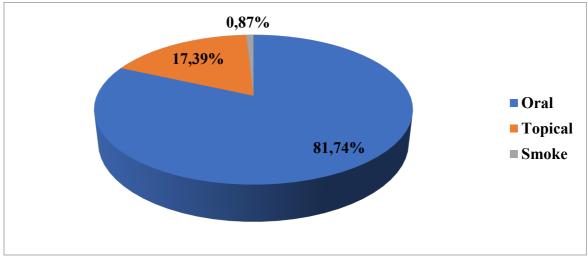
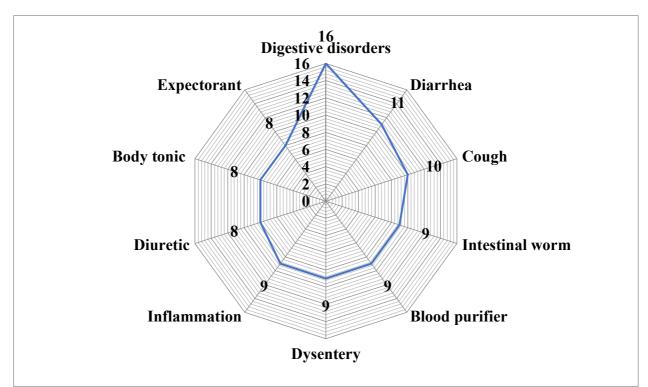
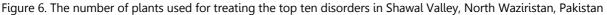





Figure 5. Mode of Administration of Shawal Valley, North Waziristan, Pakistan.

## Medicinal flora used to cure different diseases

The indigenous people have great indigenous information for basic healthcare needs. During the current study, 119 different diseases were reported, which were treated by using 108 therapeutic plants. The most prevalent diseases in the study area were digestive disorders (16 species, 4.78%), followed by diarrhea (11 species, 3.28 %), cough (10 species, 2.99%), intestinal worm, blood purifier, dysentery, and inflammation (9 species, 2.69%) each, diuretic, body tonic, and expectorant (8 species, 2.39%) each, and so on (Figure 6).





#### Quantitative data analysis Relative Frequency of Citation

The RFC value of the recorded medicinal plants ranged from 0.14 to 0.36. The maximum RFC value was documented for *Bergenia ciliate* (0.36), followed by *Berberis lycium* and *Ephedra gerardiana* (0.35) each, *Pistacia integerrima* (0.34), *Peganum harmala* and *Tussilago farfara* (0.32) each, *Punica granatum* (0.31), and *Achyranthes aspera* (0.30), while the lowest RFC value was recorded for *Chrozophora obliqua* (0.14) (Table 2).

# Use Value

The UV of the recorded medicinal plants varied from 0.33 to 0.89. The maximum UV was recorded for *Bergenia ciliate* (0.89), followed by *Ephedra gerardiana* (0.87), *Punica granatum* (0.85), *Berberis lycium* (0.84), *Peganum harmala* (0.83), *Plumbago zeylanica* (0.81), *Pistacia integerrima* (0.80), *Achyranthes aspera* (0.77), *Rhazya strictia* (0.76), while lowest was for *Chrozophora oblique* (0.33) (Table 2).

## Fidelity Level

In the current study, the FL ranged from 38.89 to 100%. The medicinal plant most frequently utilized in the survey with 100% fidelity levels were *Bergenia ciliate, Ephedra gerardiana,* which were used to cure liver diseases and hemoptysis respectively. The FL recorded for *Berberis lycium* (liver diseases), *Peganum harmala* (Antiseptic), *Plumbago zeylanica* (spleen enlargement), *Pistacia integerrima* (diabetes) *Tussilago farfara* (haemoptysis), *Punica granatum* (stomachache), and *Achyranthes aspera* (Kidney stone) were 97.78%, 95.24%, 94.59%, 93.18%, 92.86%, 90.00% and 87.18% respectively (Table 2).

## Family Importance Value (FIV)

In the current study, the most significant plant family on the basis of FC was Lamiaceae with (FIV= 97.69%) value, followed by Asteraceae (84.62%), Amaranthaceae (75.38%), Apiaceae (88.46%), Rosaceae (76.15%) and Fagaceae (51.54%), while the lowest FIV value was reported for Euphorbiaceae with (13.85%) (Table 3).

Table 2. Medicinal plants with scientific name, vernacular, family name, growth form, part used, UV, URs, FC, RFCs, and FL.

| Botanical name/ Voucher<br>Number                          | Family name       | Local name     | Growth<br>forms | Part used      | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                       | FC | RFC  | UV   | UR | Fl%   |
|------------------------------------------------------------|-------------------|----------------|-----------------|----------------|--------------------------|---------------------------------|----------------------------------------------------------------------|----|------|------|----|-------|
| <i>Abies pindrow</i> Royle<br>HU- 1331                     | Pinaceae          | Lmanza         | Tree            | Bark           | Decoction                | Oral                            | Cough, asthma, catarrh                                               | 28 | 0.22 | 0.54 | 15 | 53.57 |
| <i>Achyranthes aspera</i> L.<br>HU-1332                    | Amaranthaceae     | Ghoskai        | Herbs           | Whole<br>plant | Decoction                | Oral                            | Kidney stone,<br>stomachache, toothache                              | 39 | 0.30 | 0.77 | 30 | 87.18 |
| <i>Adiantum capillus-veneris</i> L.<br>HU-1333             | Adiantaceae       | Ferns          | Ferns           | Fronds         | Infusion                 | Oral                            | Diuretic, demulcent, sore<br>throat                                  | 33 | 0.25 | 0.52 | 17 | 51.52 |
| <i>Adiantum venustum</i> D.Don<br>HU-1334                  | Adiantaceae       | Babozai        | Ferns           | Fronds         | Infusion                 | Oral                            | Diuretic, emetic,<br>expectorant                                     | 32 | 0.25 | 0.50 | 16 | 53.13 |
| <i>Adonis aestivalis</i> L.<br>HU-1335                     | Ranunculaceae     | Gulakai        | Herbs           | Aerial part    | Infusion                 | Oral                            | Diuretic, antispasmodic,<br>sleeping draught, heart<br>stimulant     | 34 | 0.26 | 0.53 | 18 | 52.94 |
| <i>Aerva javanica</i> (Burm.f.) Juss. Ex<br>Schult HU-1335 | Amaranthaceae     | Sperai         | Herbs           | Aerial part    | Paste                    | Topical                         | Rheumatism, headache                                                 | 19 | 0.15 | 0.53 | 10 | 57.89 |
| <i>Aesculus indica</i> (Wall.ex Camb.)<br>HU-1336          | Hippocastannaceae | Jawaz          | Tree            | Seed           | Oil                      | Topical                         | Skin diseases,<br>headaches, rheumatism,<br>intestinal worms         | 28 | 0.22 | 0.57 | 16 | 57.14 |
| <i>Ajuga brecteosa</i> Wall.<br>HU-1337                    | Lamiaceae         | Varikai boti   | Herbs           | Whole<br>plant | Decoction                | Oral                            | Malaria, diabetes,<br>diarrhea, cooling agent,<br>blood purification | 22 | 0.17 | 0.59 | 13 | 54.55 |
| <i>Alnus nitida</i> (Spach) Endl.<br>HU-1338               | Betulaceae        | Spedorkai      | Tree            | Bark           | Decoction                | Oral, topical                   | Hepatoprotective,<br>inflammation, body<br>pains                     | 26 | 0.20 | 0.58 | 15 | 53.85 |
| <i>Amaranthus reteofleox</i> L<br>HU-1339                  | Amaranthaceae     | Shadab         | Herbs           | Root           | Decoction                | Oral                            | Gonorrhea, kidney<br>disorders, demulcent                            | 22 | 0.17 | 0.64 | 14 | 59.09 |
| <i>Amaranthus spinosus</i> L.<br>HU-1340                   | Amaranthaceae     | Ghota<br>surme | Herbs           | Shoot, root    | Decoction                | Oral                            | regulate menstrual flow,<br>increase milk amount                     | 20 | 0.15 | 0.65 | 13 | 55.00 |

| Botanical name/ Voucher<br>Number                      | Family name   | Local name        | Growth<br>forms | Part used          | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                                                                         | FC | RFC  | UV   | UR | Fl%        |
|--------------------------------------------------------|---------------|-------------------|-----------------|--------------------|--------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|----|------|------|----|------------|
| <i>Amaranthus viridis</i> L.<br>HU-1341                | Amaranthaceae | Rhanzaka          | Herbs           | Aerial part        | Juice                    | Oral                            | Constipation, repel<br>intestinal worm                                                                                 | 21 | 0.16 | 0.57 | 12 | 57.14      |
| <i>Androsace rotundifolia</i><br>Hardwicke.<br>HU-1341 | Primulaceae   | Ser gul           | Herbs           | Leaves,<br>rhizome | Powder                   | Oral                            | Laxative, regulate<br>menstrual flow                                                                                   | 19 | 0.15 | 0.63 | 12 | 63.16      |
| <i>Arisaema flavum</i> (Forsk.) Schott.<br>HU-1342     | Araceae       | Sorganda          | Herbs           | Seed,<br>rhizome   | Powder,<br>paste         | Oral, topical                   | Narcotic, aphrodisiac,<br>crack bone, swellings                                                                        | 21 | 0.16 | 0.62 | 13 | 57.14      |
| <i>Arisaema jacquemontii</i> Blume.<br>HU-1343         | Araceae       | Mangor boti       | Herbs           | Rhizome            | Powder                   | Oral                            | Snakebite, expel<br>intestinal worms                                                                                   | 26 | 0.20 | 0.54 | 14 | 53.85      |
| <i>Artemisia absinthium</i> Linn<br>HU-1344            | Asteraceae    | Therkha           | Herbs           | Aerial part        | Powder                   | Oral                            | Gastrointestinal<br>disoders, diuretic,<br>carminative, jaundice                                                       | 37 | 0.28 | 0.62 | 23 | 56.76      |
| <i>Artemisia maritima</i> L.<br>HU-1345                | Asteraceae    | Mugvorta          | Herbs           | Aerial part        | Decoction                | Oral                            | Blood purifier, skin<br>diseases, tonic, worm<br>repellent                                                             | 38 | 0.29 | 0.66 | 25 | 60.53      |
| <i>Berberis lycium</i> Royle.<br>HU-1346               | Berberidaceae | Kuwaray           | Shrub           | Bark,<br>Leaves    | Decoction                | Oral                            | Blood purifier,<br>astringent, wound<br>healing,hepatitis,jaundic<br>e                                                 | 45 | 0.35 | 0.84 | 38 | 97.78      |
| <i>Bergenia ciliata</i> (Haw.)Sternb.<br>HU-1347       | Saxifragaceae | Zakhm-e-<br>hayat | Herbs           | Rhizome,<br>leaves | Decoction,<br>juice      | Oral                            | Kidney disorders, liver<br>diseases, heart diseases,<br>digestive disorders,<br>pulmonary infection,<br>hypermenorrhea | 47 | 0.36 | 0.89 | 42 | 100.0<br>0 |
| <i>Boerhavia diffusa</i> L.<br>HU-1348                 | Nyctaginaceae | Pret boti         | Herbs           | Aerial part        | Decoction                | Oral                            | Gastrointestinal pain,<br>hepatoprotective,<br>gonorrhea, intestinal<br>worm repellent                                 | 29 | 0.22 | 0.48 | 14 | 65.52      |

| Botanical name/ Voucher<br>Number                                     | Family name    | Local name        | Growth<br>forms | Part used   | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                  | FC | RFC  | UV   | UR | Fl%   |
|-----------------------------------------------------------------------|----------------|-------------------|-----------------|-------------|--------------------------|---------------------------------|-----------------------------------------------------------------|----|------|------|----|-------|
| <i>Boerhavia procumbens</i> Banks ex<br>Roxb.<br>HU-1348              | Nyctaginaceae  | Wasao             | Herbs           | Aerial part | Decoction                | Oral                            | Blood purifier, hepatitis,<br>jaundice                          | 28 | 0.22 | 0.46 | 13 | 60.71 |
| <i>Buddleja crispa</i> Benth.<br>HU-1349                              | Buddlejaceae   | Velanai<br>ghinde | Shrub           | Aerial part | Decoction                | Oral                            | Antispasmodic, regulate<br>blood pressure                       | 27 | 0.21 | 0.67 | 18 | 66.67 |
| <i>Bupleurum falcatum</i> L.<br>HU- 1350                              | Apiaceae       | Pest boti         | Herbs           | Aerial part | Decoction                | Oral                            | Malaria, fever, diarrhea,<br>regulated menstrual<br>flow        | 27 | 0.21 | 0.56 | 15 | 59.26 |
| <i>Cannabis sativa</i> L.<br>HU-1351                                  | Cannabinaceae  | Bhanga            | Herbs           | Leaves      | Powder                   | Smoking                         | Narcotic, sedative,<br>appetizer, chronic pain                  | 31 | 0.24 | 0.55 | 17 | 67.74 |
| <i>Capparis decidua</i> (Forssk.) Edgew.<br>HU-1351                   | Capparidaceae  | Kabar             | Tree            | Bark, fruit | Decoction,<br>raw        | Oral                            | Constipation, malaria,<br>bad breath, expectorant,<br>toothache | 28 | 0.22 | 0.61 | 17 | 64.29 |
| <i>Caralluma tuberculata</i> N.E. Brown,<br>Gardn.<br>HU-1352         | Asclepiadaceae | Pamankai          | Herbs           | Aerial part | Raw                      | Oral                            | Malaria, diabetes                                               | 37 | 0.28 | 0.70 | 26 | 83.78 |
| <i>Cedrus deodara</i> (Roxb.ex D. Don)<br>G. Don. HU-1354             | Pinaceae       | Diyar             | Tree            | Stem        | Oil                      | Topical                         | Skin diseases, leprosy,<br>antiseptic                           | 31 | 0.24 | 0.61 | 19 | 67.74 |
| <i>Chenopodium album</i> L.<br>HU-1355                                | Chenoppdiaceae | Surmay            | Herbs           | Leaves      | Juice                    | Oral                            | Kidney pain                                                     | 26 | 0.20 | 0.54 | 14 | 53.85 |
| <i>Chenopodium ambrosioides</i> L.<br>HU-1356                         | Chenoppdiaceae | Skha boti         | Herbs           | Aerial part | Decoction                | Oral                            | Intestinal worm<br>repellent                                    | 23 | 0.18 | 0.57 | 13 | 52.17 |
| <i>Chrozophora obliqua</i> (Vahl) Adr.<br>Juss. ex Spreng.<br>HU-1357 | Euphorbiaceae  | Beian boti        | Herbs           | Aerial part | Decoction                | Oral                            | Fever, whooping cough,<br>dysentery                             | 18 | 0.14 | 0.33 | 6  | 38.89 |
| <i>Citrullus colocynthis</i> (L.) Schrad<br>HU-1358                   | Cucurbitaceae  | Maraghenia        | Climber         | Fruit       | Sweet dish               | Oral                            | Constipation, tonic                                             | 27 | 0.21 | 0.56 | 15 | 55.56 |

| Botanical name/ Voucher<br>Number                              | Family name   | Local name      | Growth<br>forms | Part used       | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                               | FC | RFC  | UV   | UR | Fl%        |
|----------------------------------------------------------------|---------------|-----------------|-----------------|-----------------|--------------------------|---------------------------------|--------------------------------------------------------------|----|------|------|----|------------|
| <i>Clematis orientalis</i> L.<br>HU-1358                       | Ranunculaceae | Karbeske        | Climber         | Aerial part     | Infusion                 | Oral                            | Throat infection,<br>refrigerant, antiseptic,<br>dog bite    | 29 | 0.22 | 0.59 | 17 | 55.17      |
| <i>Commelina paludosa</i> Blume.<br>HU-1359                    | Commelinaceae | Ebe boti        | Herbs           | Leaves,<br>root | Decoction                | Oral                            | Pain killer, laxative,<br>inflamation, depressent            | 27 | 0.21 | 0.59 | 16 | 62.96      |
| <i>Cotoneaster nummularia</i> Fisch. &<br>C.A. Mey.<br>HU-1359 | Rosaceae      | Sherawa         | Shrub           | Fruit           | Decoction                | Oral                            | Expectorant, appetizer,<br>cooling agent                     | 24 | 0.18 | 0.54 | 13 | 50.00      |
| <i>Daphne mucronata</i> Royle.<br>HU-1360                      | Thymilaceae   | Sre dane        | Shrub           | Leaves          | Poultice                 | Topical                         | Joints pain, swelling,                                       | 22 | 0.17 | 0.64 | 14 | 54.55      |
| <i>Daphne oleoides</i> Schreb.<br>HU-1360                      | Thymilaceae   | Laighonai       | Shrub           | Leaves          | Decoction                | Oral, topical                   | Gonorrhea,<br>anthelmintic,carbuncle                         | 23 | 0.18 | 0.57 | 13 | 60.87      |
| <i>Dodonea viscosa</i> (L.) Jacq.<br>HU-1361                   | Sapindaceae   | Ghoraskai       | Shrub           | Leaves          | Poultice                 | Topical                         | Fractured leg                                                | 25 | 0.19 | 0.56 | 14 | 56.00      |
| <i>Ephedra gerardiana</i> L.<br>HU-1362                        | Ephedraceae   | Muwa            | Shrub           | Shoot           | Decoction                | Oral                            | Respiratory disorders,<br>antiseptic, cough,<br>hemoptysis   | 46 | 0.35 | 0.87 | 40 | 100.0<br>0 |
| <i>Equisetum arvense</i> L.<br>HU-1363                         | Equisetaceae  | Bandkay         | Ferns           | Shoot           | Decoction                | Oral                            | Acidity, diuretic, Kidney<br>stone, tonic                    | 31 | 0.24 | 0.58 | 18 | 64.52      |
| <i>Erigeron alpines</i> L.<br>HU-1364                          | Asteraceae    | Gulgerai        | Herbs           | Whole<br>plant  | Powder                   | Oral                            | Fever, internal injuries,<br>cough, cooling effect           | 21 | 0.16 | 0.52 | 11 | 61.90      |
| <i>Fragaria nubicola</i> (Hook.f.) Lindl.<br>HU-1365           | Rosaceae      | Jungali<br>meva | Herbs           | Fruit           | Juice, raw               | Oral                            | Regulate menstrual flow,<br>laxative, crack on the<br>tongue | 23 | 0.18 | 0.52 | 12 | 52.17      |
| <i>Fritillaria imperialis</i> L.<br>HU-1366                    | Liliaceae     | Gigar gul       | Herbs           | Bulb            | Powder                   | Oral                            | Expectorants, and<br>diuretics, enhance milk<br>flow         | 26 | 0.20 | 0.54 | 14 | 53.85      |

| Botanical name/ Voucher<br>Number                           | Family name   | Local name      | Growth<br>forms | Part used        | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                                        | FC | RFC  | UV   | UR | Fl%   |
|-------------------------------------------------------------|---------------|-----------------|-----------------|------------------|--------------------------|---------------------------------|---------------------------------------------------------------------------------------|----|------|------|----|-------|
| <i>Galinsoga parviflora</i> Cav.<br>HU-1367                 | Asteraceae    | Pastekai        | Herbs           | Shoot            | Juice                    | Topical                         | Wound healing,<br>coagulate the blood                                                 | 24 | 0.18 | 0.54 | 13 | 58.33 |
| <i>Galium aparine</i> L.<br>HU-1368                         | Rubiaceae     | Babar boti      | Herbs           | Shoot            | Herbal tea               | Oral                            | Blood purifier, diuretic ,<br>Jaundice                                                | 26 | 0.20 | 0.54 | 14 | 57.69 |
| <i>Gentiana kurreo</i> Royle.<br>HU-1369                    | Gentianaceae  | Sheen gul       | Herbs           | Root             | Decoction                | Oral                            | Carminative, blood purifier, indigestion                                              | 21 | 0.16 | 0.52 | 11 | 76.19 |
| <i>Geranium willianum</i> D. Don ex<br>Sweet.<br>HU-1370    | Geraniaceae   | Rattanjot       | Herbs           | Whole<br>plant   | Powder                   | Oral                            | Spleen disorder, kidney<br>disorder, stomach ulcer,<br>back pain, throat<br>infection | 33 | 0.25 | 0.55 | 18 | 51.52 |
| <i>Heliotropium europaeum</i> L.<br>HU-1371                 | Boraginaceae  | Kharpoonra<br>y | Herbs           | Leaves           | Paste                    | Topical                         | Scorpion sting,wasp<br>sting, warts                                                   | 19 | 0.15 | 0.42 | 8  | 47.37 |
| <i>Heliotropium strigosum</i> Wild<br>HU-1372               | Boraginaceae  | Kharpoonra<br>y | Herbs           | Aerial part      | Decoction                | Oral                            | Gastrointestinal tract<br>disorders, skin diseases                                    | 21 | 0.16 | 0.43 | 9  | 47.62 |
| <i>Heteropapus biennis</i> (Ledeb.)<br>Tamamsch.<br>HU-1373 | Asteraceae    | Ster gul        | Herbs           | Aerial part      | Decoction                | Oral                            | Typhoid fever, bronchitis                                                             | 22 | 0.17 | 0.59 | 13 | 54.55 |
| <i>Impatiens glandulifera</i> Royle.<br>HU-1374             | Balsaminaceae | Khr gul         | Herbs           | Flower,<br>shoot | Infusion,<br>decoction   | Oral                            | Tonic, cooling agent,<br>expectorant, diuretic                                        | 23 | 0.18 | 0.48 | 11 | 56.52 |
| <i>Incarvillea emodi</i> (Royle ex Lindl.)<br>HU-1375       | Bignoniaceae  | Khurry          | Herbs           | Whole<br>plant   | Decoction                | Oral                            | Hepatitis, diarrhea,<br>dysentery                                                     | 26 | 0.20 | 0.46 | 12 | 53.85 |
| <i>Indigofera heterantha</i> Brandis.<br>HU-1376            | Papilionaceae | Segulai         | Shrub           | Leaves,<br>bark  | Powder,<br>decotion      | Oral                            | Expectorant, diuretic,<br>dysentery, diarrhea,<br>abdominal pain                      | 31 | 0.24 | 0.55 | 17 | 54.84 |
| <i>Isodon rugosus</i> (Wall. ex Benth.)<br>HU-1377          | Lamiaceae     | Khezbee<br>boti | Shrub           | Shoot            | Decoction                | Drope                           | Toothache, earache                                                                    | 22 | 0.17 | 0.55 | 12 | 59.09 |

| Botanical name/ Voucher<br>Number                         | Family name  | Local name        | Growth<br>forms | Part used        | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                   | FC | RFC  | UV   | UR | Fl%   |
|-----------------------------------------------------------|--------------|-------------------|-----------------|------------------|--------------------------|---------------------------------|--------------------------------------------------|----|------|------|----|-------|
| <i>Juglans regia</i> L.<br>HU-1378                        | Juglandaceae | Mattak            | Tree            | Bark, fruit      | Raw                      | Oral                            | Cleaning teeth, heart<br>tonic, thermogenic      | 27 | 0.21 | 0.59 | 16 | 62.96 |
| <i>Lycopus europaeus</i> L.<br>HU-1379                    | Lamiaceae    | Eblan             | Herbs           | Shoot            | Decoction                | Oral                            | Tuberculosis, lungs<br>disorders                 | 34 | 0.26 | 0.56 | 19 | 67.65 |
| <i>Malva neglecta</i> Wallr<br>HU-1380                    | Malvaceae    | Teekalay          | Herbs           | Leaves           | Decoction                | Oral                            | Antispasmodic                                    | 21 | 0.16 | 0.52 | 11 | 61.90 |
| <i>Malva parviflora</i> Linn.<br>HU-1381                  | Malvaceae    | Pachkay           | Herbs           | Leaves,<br>root  | Decoction,<br>powder     | Oral                            | Antispasmodic, sex tonic                         | 23 | 0.18 | 0.48 | 11 | 60.87 |
| <i>Malva sylvestris</i> Linn.<br>HU-1382                  | Malvaceae    | Malva             | Herbs           | Seed             | Powder                   | Oral                            | Inflammation, urinary bladder disorders          | 22 | 0.17 | 0.50 | 11 | 50.00 |
| <i>Marrubium vulgare</i> L.<br>HU-1383                    | Lamiaceae    | Makoh             | Herbs           | Whole<br>plant   | Decoction                | Oral                            | Cough, lung troubles                             | 23 | 0.18 | 0.57 | 13 | 56.52 |
| <i>Maytenus royleanus</i> (Wall. ex<br>Lawson)<br>HU-1384 | Celastraceae | Sagharzai         | Shrub           | Leaves           | Powder                   | Oral                            | Joint pain, leg pain                             | 24 | 0.18 | 0.58 | 14 | 66.67 |
| <i>Mentha arvensis</i> L.<br>HU-1384                      | Lamiaceae    | Pudina            | Herbs           | Leaves           | Powder                   | Oral                            | Indigestion, flatulence                          | 36 | 0.28 | 0.53 | 19 | 58.33 |
| <i>Mentha longifolia</i> (L.) L.<br>HU-1385               | Lamiaceae    | Jungali<br>velany | Herbs           | Whole<br>plant   | Powder                   | Oral                            | Kidney stone, diarrhea,<br>dysentery             | 35 | 0.27 | 0.54 | 19 | 62.86 |
| <i>Mentha spicata</i> L.<br>HU-1386                       | Lamiaceae    | Sarkuri<br>velany | Herbs           | Leaves           | Powder                   | Oral                            | Carminative, gastric<br>problems                 | 34 | 0.26 | 0.56 | 19 | 67.65 |
| <i>Mentha viridis</i> (L.) L.<br>HU-1387                  | Lamiaceae    | Pudina            | Herbs           | Whole<br>plant   | Decoction                | Oral                            | Cough, gastrointestinal disorders, carminative   | 34 | 0.26 | 0.56 | 19 | 67.65 |
| <i>Myrsine Africana</i> L.<br>HU-1388                     | Myrsinaceae  | Manargooya        | Shrub           | Fruit,<br>leaves | Powder,<br>decoction     | Oral                            | Intestinal worm repelent,<br>hepatitis, jaundice | 26 | 0.20 | 0.50 | 13 | 53.85 |
| <i>Nepeta hindostana</i> (Roth) Haines<br>HU-1389         | Lamiaceae    | Badrag boti       | Herbs           | Whole<br>plant   | Decoction                | Oral                            | Cardiac tonic, angina<br>pectoris, tachycardia   | 27 | 0.21 | 0.59 | 16 | 62.96 |

| Botanical name/ Voucher<br>Number                                           | Family name    | Local name  | Growth<br>forms | Part used         | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                             | FC | RFC  | UV   | UR | Fl%   |
|-----------------------------------------------------------------------------|----------------|-------------|-----------------|-------------------|--------------------------|---------------------------------|----------------------------------------------------------------------------|----|------|------|----|-------|
| <i>Nepeta podostachys</i> Benth.<br>HU-1390                                 | Lamiaceae      | Nry pakhe   | Herbs           | Aerial part       | Decoction                | Oral                            | Cardiac disorders,<br>tachycardia                                          | 23 | 0.18 | 0.65 | 15 | 60.87 |
| <i>Olea ferruginea</i> Royle.<br>HU-1391                                    | Oleaceae       | Shawan      | Tree            | Fruit             | Raw                      | Oral                            | Anti-diabetic, refrigerant                                                 | 32 | 0.25 | 0.56 | 18 | 75.00 |
| <i>Onosma bracteatum</i> Wall.<br>HU-1392                                   | Boraginaceae   | Gaozaban    | Herbs           | Leaves            | Decoction                | Oral                            | Jaundice,<br>constipation,urinary<br>problems, tonic                       | 27 | 0.21 | 0.59 | 16 | 66.67 |
| <i>Papaver dubium</i> Linn.<br>HU.1393                                      | Papeveraceae   | Gul-e-daudi | Herbs           | Capsule           | Herbal tea               | Oral                            | Cough, analgesic,<br>sedative                                              | 29 | 0.22 | 0.59 | 17 | 72.41 |
| <i>Peganum harmala</i> L.<br>HU-1394                                        | Zygophyllaceae | Sponda      | Herbs           | Aerial part       | Smoke,<br>poultice       | Topical                         | Antiseptic, antilice, crack<br>bone, mastitis                              | 42 | 0.32 | 0.83 | 35 | 95.24 |
| <i>Phlomis bracteosa</i> Royle ex Benth.<br>HU-1395                         | Lamiaceae      | Gote pkhe   | Herbs           | Leaves,<br>flower | Powder                   | Oral                            | Cough,<br>cold,carminative,stimula<br>nt, laxative, toothache              | 25 | 0.19 | 0.60 | 15 | 76.00 |
| <i>Pimpinella diversifolia</i> DC.<br>HU.1396                               | Apiaceae       | Tarpakhi    | Herbs           | Aerial part       | Powder                   | Oral                            | Indigestion, gas trouble,<br>leucorrhoea,<br>gastrointestinal<br>disorders | 30 | 0.23 | 0.57 | 17 | 56.67 |
| <i>Pinus gerardiana</i> Wall. ex Lamb.<br>HU-1397                           | Pinaceae       | Zanghozai   | Tree            | Seed              | Raw                      | Oral                            | Tonic, energizer                                                           | 29 | 0.22 | 0.62 | 18 | 65.52 |
| <i>Pistacia integerrima</i> (J.L. Stewart<br>ex Brandis) Rech.f.<br>HU-1398 | Anacardiaceae  | Shne        | Tree            | Fruit             | Raw                      | Oral                            | Flatulence, intestinal<br>worms , diabetes                                 | 44 | 0.34 | 0.80 | 35 | 93.18 |
| <i>Plantago lanceolata</i> L.<br>HU-1399                                    | Plantaginaceae | Khatakai    | Herbs           | Leaves            | Paste                    | Topical, oral                   | Inflammation, sores, constipation,                                         | 33 | 0.25 | 0.55 | 18 | 69.70 |
| <i>Plumbago zeylanica</i> L.<br>HU-1400                                     | Plumbaginaceae | Sheetar     | Herbs           | Root              | Powder                   | Oral                            | Carminative, appetizer,<br>diarrhea, piles, spleen<br>enlargement          | 37 | 0.28 | 0.81 | 30 | 94.59 |

| Botanical name/ Voucher<br>Number                         | Family name | Local name       | Growth<br>forms | Part used        | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                         | FC | RFC  | UV   | UR | Fl%   |
|-----------------------------------------------------------|-------------|------------------|-----------------|------------------|--------------------------|---------------------------------|--------------------------------------------------------|----|------|------|----|-------|
| <i>Potentilla erecta</i> (L.) Raeusch.<br>HU-1401         | Rosaceae    | Zergulai         | Herbs           | Whole<br>plant   | Powder                   | Oral                            | Dysentery, stomachache,<br>diarrhea,<br>hypermenorrhea | 23 | 0.18 | 0.57 | 13 | 52.17 |
| <i>Pteris vittata</i> L.<br>HU-1402                       | Pteridaceae | Khajer<br>ghonde | Ferns           | Leaves           | Paste                    | Topical                         | Fire burns, wounds<br>healing                          | 22 | 0.17 | 0.55 | 12 | 50.00 |
| <i>Punica granatum</i> L.<br>HU-1403                      | Puniacaceae | Walanghai        | Shrub           | Fruit            | Raw                      | Oral                            | Refrigerant, diarrhea,<br>dysentery, stomachache       | 40 | 0.31 | 0.85 | 34 | 90.00 |
| <i>Quercus baloot</i> Griff.<br>HU-1403                   | Fagaceae    | Spera serhay     | Tree            | Fruit            | Raw                      | Oral                            | Astringent, diuretic                                   | 29 | 0.22 | 0.52 | 15 | 65.52 |
| <i>Quercus dilatata</i> Royle.<br>HU-1404                 | Fagaceae    | Seray            | Tree            | Bark             | Decoction                | Oral                            | Anthelmentic,<br>gastrointestinal<br>disorders,        | 30 | 0.23 | 0.53 | 16 | 70.00 |
| <i>Quercus incana</i> Roxb.<br>HU-1405                    | Fagaceae    | Seray            | Tree            | Fruit            | Powder                   | Oral                            | Diarrhoea, dysentery,                                  | 28 | 0.22 | 0.50 | 14 | 71.43 |
| <i>Rubus fruiticosus</i> L<br>HU-1406                     | Rosaceae    | Gul              | Shrub           | Bark,<br>leaves  | Decoction                | Oral                            | Diuretic, astringent,<br>diarrhea, dysentery           | 32 | 0.25 | 0.47 | 15 | 65.63 |
| <i>Rhazya strictia</i> L<br>HU-1407                       | Apocynaceae | Mardor boti      | Shrub           | Leaves           | Decoction                | Topical                         | Acne, pimples, foot burn                               | 38 | 0.29 | 0.76 | 29 | 89.47 |
| <i>Sageretia thea</i> (Osbeck) M.C.<br>Johnst.<br>HU-1408 | Rhamnaceae  | Varekai boti     | Shrub           | Leaves,<br>bark  | Powder                   | Oral                            | Skin disorders, anti-<br>cancer                        | 33 | 0.25 | 0.67 | 22 | 69.70 |
| <i>Salvia glutinosa</i> L.<br>HU-1409                     | Lamiaceae   | Ghr<br>khatekay  | Herbs           | Root             | Decoction                | Oral                            | Abdominal pain, sore throat, sweating                  | 24 | 0.18 | 0.54 | 13 | 58.33 |
| <i>Salvia moocroftiana</i> Wall.<br>HU-1410               | Lamiaceae   | Ghate<br>pakhe   | Herbs           | Leaves,<br>Shoot | Powder,<br>poultice      | Topical, oral                   | Boils, itchy skin, dressing of wounds, colds, cough    | 23 | 0.18 | 0.52 | 12 | 65.22 |
| <i>Salvia nubicola</i> Wall. ex Sweet.<br>HU-1411         | Lamiaceae   | Khezbee<br>boti  | Herbs           | Shoot            | Juice                    | Oral                            | Cold fever, liver<br>disorders, dysentery              | 24 | 0.18 | 0.58 | 14 | 54.17 |

| Botanical name/ Voucher<br>Number                 | Family name     | Local name  | Growth<br>forms | Part used       | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                                            | FC | RFC  | UV   | UR | Fl%   |
|---------------------------------------------------|-----------------|-------------|-----------------|-----------------|--------------------------|---------------------------------|-------------------------------------------------------------------------------------------|----|------|------|----|-------|
| <i>Schinus terebinthifolius</i> Reddi<br>HU-1412  | Anacardiaceae   | Sre dane    | Shrub           | Leaves          | Decoction                | Oral                            | Respiratory disorders,<br>menstrual disorders,<br>urinary tract infections,<br>depression | 29 | 0.22 | 0.52 | 15 | 58.62 |
| <i>Scutellaria edelbergii</i> Rech. f.<br>HU-1413 | Lamiaceae       | Veraki boti | Herbs           | Leaves          | Powder                   | Oral                            | Blood purification,<br>analgesic, inflammation                                            | 26 | 0.20 | 0.54 | 14 | 61.54 |
| <i>Senecio chrysanthemoides</i> DC.<br>HU-1414    | Asteraceae      | Zergulai    | Shrub           | Rhizome         | Powder                   | Oral                            | Respiratory disorders,<br>asthma                                                          | 23 | 0.18 | 0.52 | 12 | 60.87 |
| <i>Sophora mollis</i> (Royle) Baker.<br>HU-1415   | Papilionaceae   | Gher boti   | Herbs           | Leaves,<br>seed | Powder,<br>paste         | Oral,topical                    | Intestinal worm,<br>headache                                                              | 24 | 0.18 | 0.58 | 14 | 70.83 |
| <i>Stellaria media</i> (L.) Vill.<br>HU-1416      | Caryophyllaceae | Pest boti   | Herbs           | Whole<br>plant  | Poultice,<br>decoction   | Topical, oral                   | Crack bone, rheumatism,<br>insect bites, lactagogue,<br>demulcent                         | 20 | 0.15 | 0.60 | 12 | 55.00 |
| <i>Tagetus erecta</i> L.<br>HU-1417               | Asteraceae      | Zendagula   | Herbs           | Shoot           | Infusion                 | Oral,topical                    | Intestinal worms, kill<br>liver flukes, mosquitoes<br>replant,                            | 28 | 0.22 | 0.46 | 13 | 57.14 |
| <i>Thymus linearis</i> benth.<br>HU-1418          | Lamiaceae       | Mrvezai     | Herbs           | Whole<br>plant  | Herbal tea               | Oral                            | Inflammation, anelgesic,<br>antispasmodic, feve                                           | 30 | 0.23 | 0.57 | 17 | 56.67 |
| <i>Thymus serpyllum</i> L.<br>HU-1419             | Lamiaceae       | Marvezai    | Herbs           | Whole<br>plant  | Herbal tea               | Oral                            | Tonic, liver disorders,<br>stomachache,<br>carminative,<br>antispasmodic                  | 31 | 0.24 | 0.58 | 18 | 61.29 |
| <i>Torilis arvensis</i> (Huds.) Link.<br>HU-1420  | Apiaceae        | Khati boti  | Herbs           | Seed, root      | Powder                   | Oral                            | Anthelmintic,<br>expectorant, indigestion                                                 | 28 | 0.22 | 0.54 | 15 | 57.14 |
| <i>Torilis japonica</i> (Houtt.) DC.<br>HU-1421   | Apiaceae        | Pest boti   | Herbs           | Seed, root      | Powder,<br>decoction     | Oral                            | Anthelmintic, tonic,<br>expectorant,<br>hemorrhoids, anti-<br>cancer                      | 27 | 0.21 | 0.52 | 14 | 62.96 |

| Botanical name/ Voucher<br>Number                       | Family name      | Local name        | Growth<br>forms | Part used      | Method of<br>Preparation | Method of<br>administra<br>tion | Medicinal uses                                                      | FC | RFC  | UV   | UR | Fl%   |
|---------------------------------------------------------|------------------|-------------------|-----------------|----------------|--------------------------|---------------------------------|---------------------------------------------------------------------|----|------|------|----|-------|
| <i>Trigonella corniculata</i> (L.) L.<br>HU-1422        | Papilionaceae    | Tore dane         | Herbs           | Fruit          | Decoction                | Topical                         | Body swelling, bruises                                              | 31 | 0.24 | 0.55 | 17 | 74.19 |
| <i>Tussilago farfara</i> L.<br>HU-1423                  | Asteraceae       | Khataki gul       | Herbs           | Whole<br>plant | Herbal tea               | Oral                            | Respiratory disorders,<br>cough, asthma, sputum<br>with blood       | 42 | 0.32 | 0.79 | 33 | 92.86 |
| <i>Urtica dioica</i> L.<br>HU-1424                      | Urticaceae       | Seezankiye        | Herbs           | Shoot          | Herbal tea               | Oral                            | Anti-diabetic, liver<br>disorders, blood<br>purification            | 23 | 0.18 | 0.57 | 13 | 60.87 |
| <i>Verbascum thapsus</i> L.<br>HU-1425                  | Scrophulariaceae | Jungali<br>bhanga | Herbs           | Leaves         | Powder                   | Oral                            | Narcotic, Cough,<br>diarrhea, abdominal<br>pain                     | 27 | 0.21 | 0.56 | 15 | 55.56 |
| <i>Vernonia cinerea</i> (L.) Less<br>HU-1426            | Asteraceae       | Devi              | Herbs           | Leaves         | Powder                   | Oral                            | Anti-diabetic,<br>inflammation,c ough                               | 20 | 0.15 | 0.55 | 11 | 50.00 |
| <i>Veronia undulata</i> Wall.<br>HU-1427                | Plantaginaceae   | hen gulai         | Herbs           | Aerial part    | Decoction                | Oral                            | Stop bleeding, regulate<br>menstrual flow, Blood<br>purifier        | 29 | 0.22 | 0.52 | 15 | 44.83 |
| <i>Vincetoxicum hirundinaria</i><br>Medicus.<br>HU-1428 | Asclepiadaceae   | Gher<br>Parwetia  | Herbs           | Aerial part    | Juice                    | Topical                         | Boils, pimples                                                      | 22 | 0.17 | 0.55 | 12 | 63.64 |
| <i>Viola canescens</i> Wall.ex Roxb.<br>HU-1429         | Violaceae        | Benefshah         | Herbs           | Whole<br>plant | Decoction                | Oral                            | Demulcent, refrigerant,<br>antipyretic, diaphoretic,<br>anti-cancer | 37 | 0.28 | 0.70 | 26 | 83.78 |
| <i>Vola serpens</i> Wall. ex Roxb.<br>HU-1430           | Violaceae        | Verkayi boti      | Herbs           | Whole<br>plant | Decoction                | Oral                            | Hepatitis, jaundice                                                 | 24 | 0.18 | 0.58 | 14 | 62.50 |

Abbreviations: RFC= Relative Frequency of Citation, FC= Frequency of Citations, UV= Use Values, UR=Use Reports, FL= Fidelity Level.

| Family name     | No. of Species | FC(family) | FIV   |
|-----------------|----------------|------------|-------|
| Lamiaceae       | 17             | 127        | 97.69 |
| Asteraceae      | 9              | 110        | 84.62 |
| Amaranthaceae   | 5              | 98         | 75.38 |
| Apiaceae        | 4              | 115        | 88.46 |
| Rosaceae        | 4              | 99         | 76.15 |
| Fagaceae        | 3              | 67         | 51.54 |
| Malvaceae       | 3              | 66         | 50.77 |
| Papilionaceae   | 3              | 86         | 66.15 |
| Pinaceae        | 3              | 64         | 49.23 |
| Adiantaceae     | 2              | 65         | 50.00 |
| Anacardiaceae   | 2              | 73         | 56.15 |
| Araceae         | 2              | 47         | 36.15 |
| Asclepiadaceae  | 2              | 59         | 45.38 |
| Boraginaceae    | 3              | 67         | 51.54 |
| Chenoppdiaceae  | 2              | 49         | 37.69 |
| Nyctaginaceae   | 2              | 57         | 43.85 |
| Plantaginaceae  | 2              | 62         | 47.69 |
| Ranunculaceae   | 2              | 63         | 48.46 |
| Thymilaceae     | 2              | 45         | 34.62 |
| Violaceae       | 2              | 61         | 46.92 |
| Apocynaceae     | 1              | 38         | 29.23 |
| Balsaminaceae   | 1              | 23         | 17.69 |
| Berberidaceae   | 1              | 45         | 34.62 |
| Betulaceae      | 1              | 26         | 20.00 |
| Bignoniaceae    | 1              | 26         | 20.00 |
| Buddlejaceae    | 1              | 27         | 20.77 |
| Cannabinaceae   | 1              | 31         | 23.85 |
| Capparidaceae   | 1              | 28         | 21.54 |
| Caryophyllaceae | 1              | 20         | 15.38 |
| Celastraceae    | 1              | 24         | 18.46 |
| Commelinaceae   | 1              | 27         | 20.77 |
| Cucurbitaceae   | 1              | 27         | 20.77 |

Table 3. Family importance value (FIV) of the medicinal flora of Shawal Valley, North Waziristan, Pakistan.

| Family name       | No. of Species | FC(family) | FIV   |
|-------------------|----------------|------------|-------|
| Ephedraceae       | 1              | 46         | 35.38 |
| Equisetaceae      | 1              | 31         | 23.85 |
| Euphorbiaceae     | 1              | 18         | 13.85 |
| Gentianaceae      | 1              | 21         | 16.15 |
| Geraniaceae       | 1              | 33         | 25.38 |
| Hippocastannaceae | 1              | 28         | 21.54 |
| Juglandaceae      | 1              | 27         | 20.77 |
| Liliaceae         | 1              | 26         | 20.00 |
| Myrsinaceae       | 1              | 26         | 20.00 |
| Oleaceae          | 1              | 32         | 24.62 |
| Papeveraceae      | 1              | 29         | 22.31 |
| Plumbaginaceae    | 1              | 37         | 28.46 |
| Primulaceae       | 1              | 19         | 14.62 |
| Pteridaceae       | 1              | 22         | 16.92 |
| Puniacaceae       | 1              | 40         | 30.77 |
| Rhamnaceae        | 1              | 33         | 25.38 |
| Rubiaceae         | 1              | 26         | 20.00 |
| Sapindaceae       | 1              | 25         | 19.23 |
| Saxifragaceae     | 1              | 47         | 36.15 |
| Scrophulariaceae  | 1              | 27         | 20.77 |
| Urticaceae        | 1              | 23         | 17.69 |
| Zygophyllaceae    | 1              | 42         | 32.31 |

# Discussion

In the current study, we recorded 108 medicinal plants related to 54 plant families to cure 119 different diseases. Ethnomedicinal studies have been reported in previous literature from nearby tribal areas. Aziz *et al.* (2016) reported a total of 82 medicinal plants belonging to 42 families form Ladha, South Waziristan. Ullah *et al.* (2013) reported 50 medicinal plants belonging to 30 families from Wana District, South Waziristan. The highest number of plant species related to the family Lamiaceae, Asteraceae, Amaranthaceae, and Apiaceae. Similar results were reported by (Barkaoui *et al.* 2017; Miara *et al.* 2018; Taibi *et al.* 2020; Hussain *et al.* 2022). Herbs were the dominant growth forms used in herbal remedies preparations. Similar findings were reported by (Kadir *et al.* 2014; Faruque & Uddin 2014; Hussain *et al.* 2018; Rehman *et al.* 2022a). Because herbaceous plants contain bioactive compounds (Abbasi *et al.* 2013). Indigenous healers used all parts of plants in herbal remedies preparations, but leaves were used most frequently. Similar results were reported in previous literature (Kidane*et al.* 2018; Umair *et al.* 2019; Nguyen *et al.* 2020; Rehman *et al.* 2023). The utilization of leaves in remedies preparations was due to easier to collect and store (Skalli *et al.* 2019; Yebouk *et al.* 2020; Rehman *et al.* 2022b).

Traditional healers used various preparation methods, including decoction, powder, infusion, paste, and herbal tea, but the dominant mode of remedies preparation was decoction. Similar results were reported by (Merrouni & Elachouri (2020), Mechaala *et al.* (2021), and Zatout *et al.* (2021). We also found that the oral route of administration

was the most frequently used method in traditional medicine. Similar results were reported by Miara et al. (2018), Mrabti et al. (2019), Zatout et al. (2021), and Rehman et al. (2023). In the study area, digestive disorders are common, largely due to a shortage of pure water; especially in those living in hilly and remote areas. Our result agreed with Umair et al. (2017, 2019). The maximum relative frequency of citation value explains the knowledge that these medicinal plants are very well-known among the majority of traditional healers (Butt et al. 2015; Rehman et al. 2022b). The high UV of therapeutic plants in the study area is associated with their common distribution in the research area and the local people are well familiar with their therapeutic uses (Rehman et al. 2022c). In addition, it is not true that therapeutic plants with low use values are less significant, but it indicates that the indigenous information about these therapeutic plant species is at risk or that the availability of the certain therapeutic plant is less (Chaudhary et al. 2006; Mahmood et al. 2013). The UV shows the relative importance of the utilization of therapeutic plant species in a specific area (Hassan et al. 2019). The maximum RFC values record the traditional knowledge that these medicinal plants were well-known to maximum number of informants (Butt et al. 2015; Rehman et al. 2022b). The relative citation of frequency reveals the tribe's familiarity with the therapeutic properties of particular plants. It also indicates efficacy and ease of access with fewer side effects (Vitalini et al. 2013; Kayani et al. 2015). Fidelity level is used to determine the therapeutic plants that are most preferred by the local community for the treatment of particular ailments. It is a fact, that higher the fidelity level value, the higher will be the plant's utilization (Farnsworth 1988). The maximum FL value revealed the selection of respondents to cure the particular ailment (Karakose, 2022). Those plants used in the in the cure of a single ailment have FL levels of 100% when compared to those used in the administration of multiple disorders (Zakariya et al. 2021). Maximum FL value reveals the uniqueness and high utilization of a plant for a specific ailment (Sahil et al. 2014). The maximum FIV value was recorded for the family Lamiaceae. It was followed by Asteraceae (84.62%), Amaranthaceae (75.38%), Apiaceae (88.46%), Rosaceae (76.15%) and Fagaceae (51.54%) as shown in Table 3. Medicinally important plants of the family Lamiaceae, Asteraceae, Amaranthaceae, and Apiaceae are cited as significant in different pharmacological works (Shad et al. 2013; Kayani et al. 2014). The maximum FIV value explains that the plant species of a particular plant family are frequently used in curing different diseases as documented by the respondents. Drug detection in medicinal plants links multi-disciplinary access to joining phytochemical and pharmacological methods. Though, any therapeutic plant in the current study was not exposed to the complete pharmacological screenings.

# Conclusion

This is the first survey to explore the indigenous therapeutic plants of the Shawal valley North Waziristan. A sum of 108 plants related to 54 families was documented to treat 119 human ailments. The data provided by our traditional informants show that traditional knowledge of therapeutic plant utilization is still alive in the Shawal valley. Unluckily, the therapeutic plant of the Shawal area is under threat of extinction as inhabitants are unaware of the conservation policies for future uses. Deforestation, overexploitation, and uprooted of therapeutic herbs, threatened the flora. Based on the current studies results, medicinal plants scoring high use value, relative citation of frequency, and fidelity level values must be further tested for their pharmacological and phytochemical research.

# **Declarations**

**List of abbreviations:** Relative Frequency of Citation (RFC),UR, Use Report; Use Vaue (UV), Fidelity Level (FL), and FIV, Family Importance Value.

Ethics statement: Prior to the survey, we obtained oral informed consent from each participant.

**Consent for publications**: Not applicable.

Funding: Authors have not received any funding during this research.

Conflicts of Interest: The authors declare that there are no conflicts of interest in this article.

**Availability of data and materials:** The figures and tables supporting the results of this study are included in the article, and the original data sets are available from the first author upon request.

**Authors' contributions:** The manuscript is written by SR. ZI and QR Supervised this work. RQ and GMS helped in data analysis. All the authors approved the final manuscript after revision.

# Acknowledgements

We are thankful to the local community members of the study area for sharing their valuable information. The manuscript is extracted from the Ph.D. Dissertation of the first author.

# **Literature Cited**

Abbasi AM, Khan MA, Shah MH, Shah MM, Pervez A, Ahmad M. 2013. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan. Journal of Ethnobiology and Ethnomedicine 9(1):1-13.

Adnan M, Bibi R, Mussarat S, Tariq A, Shinwari, ZK. 2014. Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against *Escherichia coli*. Annals of Clinical Microbiology and Antimicrobials 13(1):1-18.

Ahmad I, Ibrar M, Ali N. 2011. Ethnobotanical study of tehsil Kabal, Swat district, KPK, Pakistan. Journal of Botany 1:59.67.

Ahmad KS, Kayani, WK, Hameed M, Ahmad F, Nawaz T. 2012. Floristic diversity and ethnobotany of Senhsa, district Kotli, Azad Jammu & Kashmir (Pakistan). Pakistan Journal of Botany 44(1):195-201.

Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SMH, & Abbasi AM. 2020. Ethnobotanical survey of the medicinal flora of Harighal, Azad Jammu & Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine 16(1):1-28.

Aziz MA, Adnan M, Khan AH, Rehman AU, Jan R, Khan J. 2016. Ethno-medicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. Journal of Ethnobiology and Ethnomedicine 12 (1):1-14.

Bano A, Ahmad M, Hadda TB, Saboor A, Sultana S, Zafar M, Ashraf, MA. 2014. Quantitative ethnomedicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. Journal of Ethnobiology and Ethnomedicine 10(1):1-18.

Barkaoui M, Katiri A, Boubaker H, Msanda F. 2017. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. Journal of Ethnopharmacology 198:338-350.

Bun SS, Ollivier, E. 2020. Ethnobotanical study of medicinal plants used by K'Ho-Cil people for treatment of diarrhea in Lam Dong Province, Vietnam. Journal of Herbal Medicine, Elsevier 19:100320.

Bussmann RW, Sharon D. 2006. Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture. Journal of Ethnobiology and Ethnomedicine 2(1):1-18.

Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, Kayani, S. 2015. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. Journal of Ethnopharmacology 168:164-181.

Champion, D J. 1965. Role change in a bank: some consequences of automation. Purdue University.

Chaudhary MI, He Q, Cheng YY, Xiao PG. 2006. Ethnobotany of medicinal plants from tian mu Shan biosphere reserve, Zhejiang-province, China. Asian Journal of Plant Sciences 5(4):646-653.

Faruque MO, Uddin SB. 2014. Ethnomedicinal study of the Marma community of Bandarban district of Bangladesh. Academia Journal of Medicinal Plants 2(2):014-025.

Friedman J, Yaniv Z, Dafni A, Palewitch, D. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. Journal of Ethnopharmacology 16(2-3):275-287.

Gedif T, Hahn HJ. 2003. The use of medicinal plants in self-care in rural central Ethiopia. Journal of Ethnopharmacology 87(2-3):155-161.

Giday M, Asfaw Z, Woldu Z. 2009. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. Journal of Ethnopharmacology 124(3):513-521.

Giday K, Lenaerts L, Gebrehiwot K, Yirga G, Verbist B, Muys B. 2016. Ethnobotanical study of medicinal plants from degraded dry afromontane forest in northern Ethiopia: Species, uses and conservation challenges. Journal of Herbal Medicine 6(2):96-104.

Hamayun M. 2005. Ethnobotanical profile of Utror and Gabral valleys, district Swat, Pakistan. Ethnobotanical Leaflets 2005(1):9.

Hassan N, Nisar M, Kakar SU, Hassan R, Zhiwei F, Nong Z, Wang D. 2017. Determination of informant consensus factor of medicinal plants used as therapy in district Dir Lower Pakistan. Journal of Medicinal Plants Study 5(4):183-188.

Hassan N, Din MU, Shuaib M, Ul-Hassan F, Zhu Y, Chen Y, Iqbal A. 2019. Quantitative analysis of medicinal plants consumption in the highest mountainous region of Bahrain Valley, Northern Pakistan. Ukrainian Journal of Ecology 9(1):35-49.

Hussain W, Ullah M, Dastagir G, & Badshah LAL. 2018. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna Journal of Phytomedicine 8(4):313.

Hussain S, Hussain W, Nawaz A, Badshah L, Ali A, Ullah S, Bussmann RW. 2022. Quantitative ethnomedicinal study of indigenous knowledge on medicinal plants used by the tribal communities of Central Kurram, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 23(5):1-31.

Ishtiaq M, Maqbool M, Ajaib M, Ahmed M, Hussain I, Khanam H, Ghani A. 2021. Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Samahni, District Bhimber Azad Jammu and Kashmir, Pakistan. Plos One 16(1):e0243151.

Jan G, Khan MA, Ahmad H, Gul F. 2011. Indigenous medicinal plants used by local people of Shahi, lower Dir (Khyber Pakhtunkhwa), southern Himalayan regions of Pakistan. International Journal of Biology and Biotechnology 8(2):345-353.

Jima TT, Megersa M. 2018. Ethnobotanical study of medicinal plants used to treat human diseases in Berbere District, Bale Zone of Oromia Regional State, Southeast Ethiopia. Evidence-Based Complementary and Alternative Medicine 2018.

Karaköse M. 2022. An ethnobotanical study of medicinal plants in Guce district, north-eastern Turkey. Plant Diversity 3:7-10.

Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, Yaseen G. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of Ethnopharmacology 156:47-60.

Kayani S, Ahmad M, Sultana S, Shinwari ZK, Zafar M, Yaseen G, Hussain M, Bibi T. 2015. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. Journal of Ethnopharmacology 22(164):186-202.

Kamal M, Adnan M, Murad W, Bibi H, Tariq A, Rahman H, Shinwari ZK. 2016. Anti-rheumatic potential of Pakistani medicinal plants: a review. Pakistan Journal of Botany 48(1):399-413.

Kayani S, Ahmad M, Zafar M, Sultana S, Khan M. PZ, Ashraf MA, Yaseen G. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of Ethnopharmacology 156:47-60

Khan A, Ali S, Murad W, Hayat K, Siraj S, Jawad M, Khan, A. 2021. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan. Journal of Ethnopharmacology 28:114437.

Kidane L, Gebremedhin G, Beyene T. 2018. Ethnobotanical study of medicinal plants in Ganta Afeshum district, eastern zone of tigray, northern Ethiopia. Journal of Ethnobiology and Ethnomedicine 14(1):1-19.

Kadir MF, Sayeed MS, B Setu, NI, Mostafa A, Mia MMK. 2014. Ethnopharmacological survey of medicinal plants used by traditional health practitioners in Thanchi, Bandarban Hill Tracts, Bangladesh. Journal of Ethnopharmacology 155(1):495-508.

Malik K, Ahmad M, Bussmann RW, Tariq A, Ullah R, Alqahtani AS, Sultana S. 2018. Ethnobotany of anti-hypertensive plants used in northern Pakistan. Frontiers in pharmacology 9:789.

Mahmood A, Mahmood A, Malik RN, Shinwari ZK. 2013. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. Journal of Ethnopharmacology 148(2):714-723.

Martin G J. 1995. Ethnobotany-A People and Plants conservation manual. Nature & Resources. Parthenon Publishing Group Casterton Hall, Carnforth Lancashire, England LA6 2LA;. 38–9.

Mechaala S, Bouatrous Y, Adouane S. 2021. Traditional knowledge and diversity of wild medicinal plants in El Kantara's area (Algerian Sahara gate): An ethnobotany survey. Acta Ecologica Sinica 42(1):1872-2032.

Merrouni IA, Elachouri M. 2021. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. Journal of Ethnopharmacology 266:113435.

Miara MD, Ait Hammou M, Dahmani W, Negadi M, Djellaoui A. 2018. Nouvelles données sur la flore endémique du sous-secteur de l'Atlas tellien Oranais "O3" (Algérie occidentale). Universidad de Málaga. Servicio de Publicaciones e Intercambio Científico.

Mrabti HN, Jaradat N, Kachmar MR, Ed-Dra A, Ouahbi A, Cherrah, Y, Faouzi MEA. 2019. Integrative herbal treatments of diabetes in Beni Mellal region of Morocco. Journal of Integrative Medicine 17(2):93-99.

Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, Ahmad A. 2013. Ethnobotanical assessment of plant resources of Banda Daud Shah, district Karak, Pakistan. Journal of Ethnobiology and Ethnomedicine 9(1):1-10.

Nadeem M, Shinwari ZK, Qaiser M. 2013. Screening of folk remedies by genus Artemisia based on ethnomedicinal surveys and traditional knowledge of native communities of Pakistan. Pakistan Journal of Botany 45(1):111-117.

Ozkan G, Kamiloglu S, Ozdal T, Boyacioglu D, Capanoglu E. 2016. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules, MDPI 21(3):257.

Rehman S, Iqbal Z, Qureshi R, Rahman IU, Sakhi S, Khan I, Ijaz F. 2022a. Ethnoveterinary practices of Medicinal Plants among Tribes of Tribal district North Waziristan, Khyber Pakhtunkhwa, Pakistan. Frontiers in Veterinary Science 9:815294.

Rehman S, Iqbal Z, Qureshi R., Rahman I-U, Khan MA, Elshaer M, Abu-Bakr-Elsaid NM. 2022b. Ethnogynaecological Knowledge of Traditional Medicinal Plants Used by the Indigenous Communities of North Waziristan, Pakistan. Evidence-Based Complementary and Alternative Medicine, 2022:6528264. doi:10.1155/2022/6528264.

Rehman S, Iqbal Z, Qureshi R, Rahman IU, Ijaz F, Khan MA, Alzahrani Y. 2022c. Ethnic practices in treating skin diseases:The traditional dermatologist's role. Clinics in Dermatology. doi:10.1016/j.clindermatol.2022.09.005.

Rehman S, Iqbal Z, Qureshi R, Shah GM, Irfan M. 2023. Article Ethnomedicinal plants uses for the treatment of respiratory disorders in tribal District North Waziristan, Khyber Pakhtunkhawa, Pakistan. Ethnobotany Research and Applications, 25:1-16.

Yebouk C, Redouan FZ, Benítez G, Bouhbal M, Kadiri M, Boumediana AI, Merzouki, A. 2020. Ethnobotanical study of medicinal plants in the Adrar Province, Mauritania. Journal of Ethnopharmacology 246:112217.

Sabran SF, Mohamed M, Abu Bakar, MF. 2016. Ethnomedical knowledge of plants used for the treatment of tuberculosis in Johor, Malaysia. Evidence-Based Complementary and Alternative Medicine, 2016:2850845.

Sarma H, Deka S, Deka H, Saikia RR. 2012. Accumulation of heavy metals in selected medicinal plants. Reviews of environmental contamination and toxicology, Springer 214:63-86.

Shad AA, Shah HU, Bakht J. 2013. Ethnobotanical assessment and nutritive potential of wild food plants. JAPS, Journal of Animal and Plant Sciences 23(1):92-99.

Shil S, Choudhury MD, Das S. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. Journal of Ethnopharmacology 2014; 152:135–141.

Skalli S, Hassikou R, Arahou, M. 2019. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon. Elsevier 5(3):01421

Sodhi NS, Koh LP, Brook BW, Ng PK. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution 19(12):654-660.

Taïbi K, Abderrahim LA, Ferhat K, Betta S, Taïbi F, Bouraada F, Boussaid M. 2020. Ethnopharmacological study of natural products used for traditional cancer therapy in Algeria. Saudi Pharmaceutical Journal 28(11):1451-1465.

Ullah M, Khan MU, Mahmood A, Malik RN, Hussain M, Wazir SM, Shinwari, ZK. 2013. An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. Journal of Ethnopharmacology 150(3):918-924.

Ullah H, Qureshi R, Munazir M, Bibi Y, Saboor A, Imran M, Maqsood M. 2023. Quantitative ethnobotanical appraisal of Shawal Valley, South Waziristan, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 25, 1–

Umair M, Altaf M, Bussmann RW, Abbasi AM. 2019. Ethnomedicinal uses of the local flora in Chenab riverine area, Punjab province Pakistan. Journal of Ethnobiology and Ethnomedicine 15(1):1-31.

Vitalini S, Iriti M, Puricelli C., Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. Journal of Ethnopharmacology 145(2):517-529.

Yebouk C, Redouan FZ, Benítez G, Bouhbal M, Kadiri M, Boumediana AI, Merzouki, A. 2020. Ethnobotanical study of medicinal plants in the Adrar Province, Mauritania. Journal of Ethnopharmacology 246:112217.

Zatout F, Benarba B, Bouazza A, Babali B, Bey NN, Morsli A. 2021. Ethnobotanical investigation on medicinal plants used by local populations in Tlemcen National Park (extreme Northwest Algeria). Age (years), Mediterranean Botany 15(30):1-12.