

Ethno-pharmacological Evaluation of Plants Resources of District Malakand, Pakistan

Muhammad Ibrahim, Naveed Akhtar, Sara Khan, Haji Bahadar

Correspondence

Muhammad Ibrahim^{1*}, Naveed Akhtar¹, Sara Khan², Haji Bahadar³

- ¹Department of Botany, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
- ²Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
- ³Institute of Pharmaceutical Sciences, Khyber Medical University Peshawar, Khyber Pakhtunkhwa, Pakistan

*Corresponding Author: ibrahim.bot@gmail.com

Ethnobotany Research and Applications 25:47 (2023) - http://dx.doi.org/10.32859/era.25.47.1-15 Manuscript received: 28/02/2023 - Revised manuscript received: 02/04/2023 - Published: 07/04/2023

Research

Abstract

Background. The present study was conducted to assess the ethno-pharmacological practices of medicinal plants by the local tribes of District Malakand, Pakistan. The people of the area are mostly poor and rely on local medicinal plants for their basic primary health care needs. During the survey it was perceived that the area is under extreme threat of overgrazing, deforestation and agricultural land expansion and needs urgent and proper ecological management to protect the important medicinal flora for future generations.

Methods. The current Ethno-pharmacological study consists of frequent field visits and interviews with 200 local informers of the study area having different socio-economic and educational backgrounds. The information was collected from the indigenous people through interviews and semi- structured questionnaires .The data collected were analyzed with the help of quantitative indices such as Informant consensus factor (Fic) and Fidelity Level (FL%). The plants collected were identified with the help of flora of Pakistan and online plant databases.

Results. A total of 130 medicinal plants belonging to 112 genera and 55 families were documented during this survey. The results showed that the plants collected during the survey were predominantly herbs (51%) followed by trees (27%), shrubs (19%) and climbers only (03%). The plants collected were mostly from Ruderal habitat (40%), followed by arable (36%), woodland (18%) and wetland (06%). On the basis of habit the plants collected were mostly Perennials (58%), followed by Annuals (39%) and Biennials only (03%). The majority of the plants used in the preparation of crude drugs were whole plant (33%), followed by leaves (25%), fruits (08%), roots (06%), shoots, flowers, barks, seeds (05%), gum and latex (03%) and bulb (02%) respectively.

The highest Fic. values were recorded for cardiovascular and hypertensive diseases (1.0) followed by sore throat and narcotic diseases (0.80). The most important and extensively used species were Allium sativum L., Caralluma tuberculata N.E. Brown and Mentha spicata L. each with 100% FL value. This study showed that the area is gorgeous and rich in medicinal flora. The botanical name, local name, family name, flowering season, part used, and ethnopharmacological uses of local medicinal plants were documented.

Conclusion. During this survey it was observed that the research area District Malakand, Pakistan is rich in medicinal flora and most of the indigenous people are poor and depend on medicinal plants for their basic primary health care needs. The survey showed that medicinal plants were mostly used by the local people to cure of gastrointestinal, skin, mouth, genital, urinary, cold, cough and joint diseases. The study will provide a baseline for further ethno-botanical, ethno-medicinal, phytochemical and antimicrobial studies.

Keywords: Medicinal plants, Ethno-pharmacological uses, Gastrointestinal diseases, Malakand, Pakistan.

Background

The use of plants as a source of medicines is as old as human civilization. Medicinal plants play an imperative role in the primary health care system of local people as these plants are the chief source of medication for the indigenous people. These plants possess natural chemical compounds which are used to cure various ailments. These natural chemical compounds have therapeutic properties (Ahmad *et al.* 2009, Hussain *et al.* 2018, Zaman *et al.* 2013). Out of 422,000 flowering plants reported from all over the world, approximately 50,000 plants are used for medicinal purposes. About 60% of the world population and about 80% of the population dwelling in developing countries rely on indigenous customary treatments (Hamilton 2004). More than 4.5 billion people in the developing world depend on local medicinal plants for their primary health care needs. Due to high cost of synthetic drugs and its side effects the majority of the rural people in villages used medicinal plants for the treatment of their ailments (Bhat *et al.* 2013). Medicinal plants contain a large diversity of bioactive compounds (Akkol *et al.* 2021, Hayat *et al.* 2021) that might help in the treatment of a wide variety of diseases in humans and animals (Ahmad *et al.* 2020) and the development of herbal drugs (Murad *et al.* 2012). The related traditional knowledge has been transferred mostly orally from generation to generations (Zeleke 2016), and is still important for mental, physical and social benefits (Jan *et al.* 2011). According to the World Health Organization, about 4 billion people in emerging countries trust and consistently use the benefits of herbal remedies (Khan *et al.* 2021).

About 84% of people in Pakistan were dependent on traditional medicinal plants in early 1950's but now this practice is restricted to rural areas only (Ibrar *et al.* 2007). Medicinal plants are receiving a great importance and popularity in the modern world today. These traditional herbal medicines are considered to be safer and have less side effects as compared to synthetic drugs. The herbal medicines are also rich in vitamins and minerals apart from their medicinal constituents (Hussain *et al.* 2005). The significance of plants as a diet and folk medicines against many illnesses like asthma, malaria, jaundice, epilepsy, etc. has been well-known through several ethnopharmacological studies all over the world (Aberoumand 2013, Mir 2014). The use of such plants not only fulfill the nutrients intake level but has also certain fitness welfares counter to long-lasting illnesses such as stroke, cardiac ailment and certain categories of cancer (Patil *et al.* 2012).

These medicinal plants possess many therapeutic properties which are used against various diseases and have the latent to safeguard body from inflammatory, cardiovascular, cancer, and diabetic ailments (Abbet *et al.* 2014, Hussain *et al.* 2009). Plants are linked with cure or defense of health situations such as malnourishment, cardiac ailment, tumor and diabetes (Neudeck *et al.* 2012). These plants also have pharmacological significance and are used as appetizer, purgative, carminative, astringent, diuretic, and blood purifier. These also possess stout latent to defend human body from cancers, high cholesterol level, and Heart diseases (Alverez, 2004, Kruger *et al.* 1998).

At present the use and importance of medicinal plants is increasing every day. Useful chemical ingredients which are medicinally important are screened and extracted from these plants and are then used in crude and synthetic drugs. Ethno-pharmacological and therapeutic research work has been highly appreciated and valued now-a-days in the present health care system all over the world (Black 1996).

Materials and Methods

Study area

The present ethnobotanical study was carried out in District Malakand, Pakistan Figure 1. (Murad *et al.* 2012). It is located at 34° 35′ North latitude and 71° 57′ East longitude. Malakand is a very fertile valley with mostly sandy-loamy soil surrounded by hills. The climate of district Malakand is pleasant in summer while a bit cooler in winters. The total area of district Malakand is 952 sq. km (368 sq. miles). The main tribes and races which live here are Yousafzai, Baizai, Ranizai, Utmankhel, Piran-Syeds and Gujars. Pashto is the only speaking language of the peoples of this area. The local people are mostly farmers and poor and depend on agricultural products to fulfill their basic needs (Office of the Deputy commissioner Malakand 2015).

The research work was done during different seasons of the year 2019. The area was visited on weekly basis in order to collect the ethno-pharmacological data. The data was collected from the local people, Pansaries and Hakeems through interviews and a semi-structured questionnaire. The medicinal flora in the area was studied with respect to their habit, habitat, growth form, frequency, part used, flowering season, plant status, methods of collection, methods of crude drug preparation, mode of administration and ethno-pharmacological uses.

The plant specimens collected during the study were properly pressed, dried, preserved and fixed on herbarium sheets. The collected plants were then identified with the help of Flora of Pakistan (Ali & Qaiser 1991-2015).

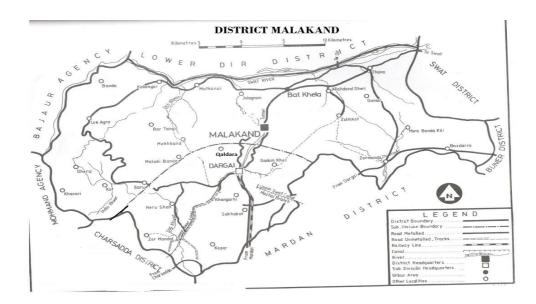


Figure 1. Map of the study area District Malakand, Pakistan

Informant Consensus Factor (Fic)

Informant consensus factor (Fic) was calculated after the reported traditional medications and corresponding diseases were grouped in to 22 categories. Fic values were obtained by calculating number of use citations in each disease category (Nur), minus the number of times a species were used (Nt), divided by the number of used citations in each category minus one. Fic values was calculated by means of the following formula:

Fic values lie between 0 and 1. Those plants having high Fic values are considered to be more active pharmacologically than those having low Fic values (Heinrich *et al.* 1998).

Fidelity Level (FL)

Fidelity level is used for knowing the key informant's most preferred species used for curing certain disease. Those medicinal plants which were frequently used by the local rural communities of the area for the treatment of diseases have high FL values than those that are used less frequently. Fidelity level showed the percentage of informants claiming the use of a certain plant species for the same major purpose. For calculating FL values all the diseases were grouped into 22 categories. FL is calculated by using this formula:

$$FL = Ip / Iu \times 100$$

Where Ip is the number of respondents who reported the use of medicinal plants for a specific disease and Iu is the total number of respondents who mentioned the same plant for any other disease. Those medicinal plants which were used in some recurring for the same disease are considered to be more active biologically (Jadid *et al.* 2020, Srithi *et al.* 2009).

Results

Informant's demographics:

In the current study a total of 200 participants including local people (65%) and Traditional health practitioner (35%) were interviewed in the fields, homes, shops and other social gathering places. Among 200 participants 120 (60 %) participants were men and 80 (40%) were women, respectively. The participants between age groups 60–80 years held more knowledge about medicinal plants and its uses, followed by the age group 40–60 years and 20-40 years old respectively. Majority of the participants interviewed were illiterate (58%), followed by Primary level (26%), Matric level (10%) and Graduate level only (06%) respectively.

Ethno-pharmacological Data Analysis:

The present ethno-botanical survey of 130 medicinal plants revealed that medicinal plants collected were mostly herbs (51%), followed by trees (27%), shrubs (19%) and climbers (03 %) respectively (Fig. 2a). On the basis of habitat plants collected were mostly from the Ruderal habitat (40%) followed by Arable (36%), Woodland (18%) and Wetland (06 %) respectively. (Fig. 2b). The medicinal plants collected were mostly Perennial plants (58%) followed by Annuals (39%) and Biennials (03%). (Fig. 3a). This means that perennial plants are mostly available throughout the year for local people to prepare herbal remedies. Majority of the plants collected during the survey were common (64%) and less were Scattered (36%) on the basis of their frequency (Fig.3b). This shows that majority of the plants were easily collected from the study site. The part used in the preparation of crude drugs were mostly whole plant (33%), followed by leaves (25%), fruits (08%), roots (06%), shoots, flowers, bark and seeds (05%) each, gum and latex (03%) each, and bulb only (02%) (Fig. 4a). Most of the medicinal plants collected during this study were in spring season (59%), followed by summer season (32%), autumn season (05%) and winter season (04%) respectively (Fig. 4b). Most of the natural phytochemical ingredients were found to be present in naturally growing wild plants as compared to cultivated plants. The method used for the preparation of crude drugs by the local people of Malakand were mostly decoction (47%), followed by infusion (31%), concoction (10%), maceration of seeds (06%) and powder formation (06%) respectively (Fig. 5a). The mode of administration of crude drugs prepared by the local people from herbal remedies were mostly through Oral route (75%) followed by dermal application (25%) (Fig. 5b). The maximum Informant consensus factor (Fic) value were documented for cardiac and hypertensive ailments (Fic= 1.0), followed by Opthalmatic or eye diseases (Fic= 0.83), sore throat and narcotic diseases (Fic= 0.80) respectively as shown in (Table 2). The most significant and widely castoff species were Allium sativum L., Caralluma tuberculata N. E. Brown and Mentha spicata L. each with 100% Fidelity level (FL) value as shown in (Table 3).

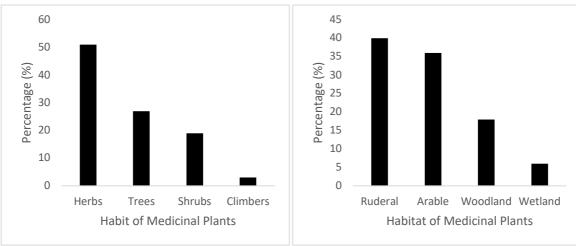


Figure 2. (a) Habit of Medicinal Plants (b) Habitat of Medicinal Plants

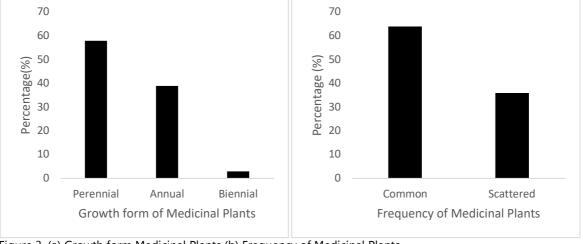


Figure 3. (a) Growth form Medicinal Plants (b) Frequency of Medicinal Plants

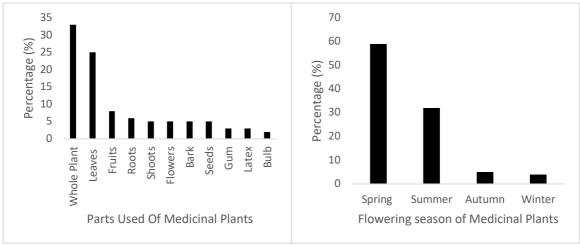


Figure 4. (a) Part used Medicinal Plants (b) Frequency of Medicinal Plants

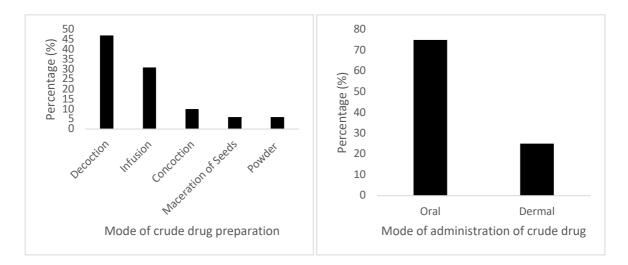


Figure 5. (a) Mode of crude drug preparation (b) Mode of administration of crude drugs

Table 1. Medicinal Plants and their Ethno-Pharmacological uses

Family name	Botanical name	Local name	Habit	Part Used	Ethno-Pharmacological Uses	
Acanthaceae	<i>Justicia adhatoda</i> L.	Baikar	Shrub	Leaves and flowers	Poultice is applied to swellings.	
Adiantaceae	Adiantum incisum Forssk.	Pato sanra	Herb	Whole plant	Decoction is used against cough and fever.	
Amaranthaceae	Achyranthus aspera L.	Naray Ghishky	Herb	Whole plant	Decoction is used to treat toothache and asthma.	
Anacardiaceae	<i>Mangifera indica</i> L.	Aam	Tree	Fruit	Fruit is used as laxative and Tonic.	
Apiaceae	Coriandrum sativum L.	Dhanya	Herb	Leaves and seeds	Leaves and seeds are used as Carminative.	
Apiaceae	Carum carvi L.	Dhanya botay	Herb	Leaves and seeds	Leaves and seeds are used as a flavoring agent.	
Apocyanaceae	Rhazya stricta Decne.	Ghandichar	Herb	Whole plant	Leaves are applied as poultice to joint infections.	
Apocyanaceae	<i>Nerium oleander</i> L.	Ghanderi	Shrub	Leaves and flowers	Juice extracted is used to treat toothache and swellings.	
Araceae	Colocassia esculenta (L.)	Kachalo	Herb	Leaves and rhizome	Corm is used as laxative and stomachic.	
Asclepiadaceae	Calotropis procera W.T. Aiton	Spalmay	Shrub	Whole plant	Infusion is used to cure skin diseases.	
Asclepiadaceae	Caralluma tuberculata N.E. Br	Pamankai	Herb	Succulent stem	Succulent stem is used to cure to diabetes and hypertension.	
Asclepiadaceae	Periploca aphylla Decne.	Barrara	Shrub	Stem and fruits	Decoction is applied to skin diseases and swellings.	
Asteraceae	Xanthium strumariumm L.	Ghat ghishkay	Herb	Leaves	Infusion from leaves is used as Sedative and diaphoretic.	
Asteraceae	Helianthus annus L.	Nwarparast	Herb	Seeds	Oil from seeds is used as laxative and for heart diseases.	
Asteraceae	Tagetus erectus L.	Dambar gulai	Herb	Leaves and flowers	Infusion is used to regulate menses.	
Asteraceae	Taraxicum officinale L.	Ziar gulai	Herb	Whole plant	Juice is used as diuretic.	
Asteraceae	Silybum marianum (L.) Gaertn.	Ghata ghana	Herb	Leaves and seeds	Leaves and seeds are used as diuretic.	
Asteraceae	Parthenium hysterophorus L.	Sheen botay	Herb	Whole plant	Infusion is used is Anti-diabetic.	
Asteraceae	Lactuca serriola L.	Shoda pai	Herb	Whole plant	Juice extracted is used to treat Rheumatism and kidney problems.	
Asteraceae	Saussurea heteromalla (D. Don) Raizada & Saxena	Hajj banry	Herb	Seeds	Seeds are used as anti-pyretic and carminative.	
Asteraceae	Centaurea iberica Sennen & Elias	Speena ghana	Herb	Whole plant	Infusion from whole plant is used to remove kidney stones.	
Asteraceae	Centaurea Americana Spreng.	Ghana	Herb	Whole plant	Infusion from whole plant is used to remove kidney stones.	
Asteraceae	Carthamus oxycantha L.	Kareeza	Herb	Seeds	Seeds are used to treat male infertility and jaundice.	
Berberidaceae	Berberis lyceum Royle.	Ziar largay	Shrub	Root, bark, rhizome	Powder of root, bark and rhizome is used as anti- inflammatory and carminative.	
Brassicaceae	Brassica campestris L.	Sharsham	Herb	Seeds and leaves	Oil extracted from seeds are used as emollient and for massage.	
Brassicaceae	Brassica nigra (L.) W.D.J.Koch	Toor sharsham	Herb	Leaves and seeds	Oil extracted from seeds are used as emollient and for massage.	
Brassicaceae	Nasturtium officinale W.T. Aiton	Tarmeera	Herb	Young shoots	Infusion is used as stomachic and purgative.	
	1	1				

Brassicaceae	Capsella bursa-pastoris (L.) Medik.	Bambaisa	Herb	Leaves and seeds	Leaves and seeds are used as stimulant and diuretic.
Buxaceae	Buxus wallichiana Baill.	Shamshad	Shrub	Whole plant	Juice is used as Purgative and diaphoretic.
Cactaceae	Opuntia dilleni L.	Zuqam	Shrub	Whole plant	Infusion is used as expectorant and demulcent.
Canabaceae	Canabis sativa L.	Bhang	Shrub	Leaves and flowers	Leaves and flowers are used as narcotic and anti-anxiety.
Caryophyllaceae	Silene conoidea L.	Mangotay	Herb	Whole plant	Infusion from the plant is used as Opthalmatic.
Caryophyllaceae	Silene vulgaris (Moench) Garcke	Mangotay	Herb	Whole plant	Infusion from the plant is used as Opthalmatic.
Celasteraceae	Gymnosporea royleana M.A. Lawson	Soor azghay	Shrub	Leaves	Decoction from the plant is used against toothache.
Chenopodiaceae	Chenopodium album L.	Sarmay	Herb	Whole plant	Juice extracted from the whole plant is used as anti- inflammatory.
Chenopodiaceae	Chenopodium murale L.	Sarmay	Herb	Whole plant	Juice extracted from the whole plant is used to treat urinary problems.
Chenopodiaceae	Spinacea oleracea L.	Palak	Herb	Leaves and seeds	Leaves are used as laxative and seeds are used to treat jaundice.
Convolvulaceae	Convolvulus arvensis L.	Pirwati	Climber	Whole plant	Juice extracted are used as diuretic.
Cupressaceae	<i>Thuja orientalis</i> L.	Sarwa	Small tree	Leaves and seeds	Leaves and seeds are used to cure skin infections.
Cuscutaceae	Cuscuta reflexa Roxb.	Maraz botay	Climber	Whole plant	Infusion is applied to skin against Scabies and eczema.
Euphorbiaceae	Euphorbia helioscopia L.	Mandanro	Herb	Leaves	Milky juice is used to cure skin diseases.
Euphorbiaceae	Mallotus phillipiniensis (Lam.) Müll. Arg.	Kambela	Small tree	Leaves and bark	The decoction from the leaves and bark is used to cure wounds.
Euphorbiaceae	Ricinus communis L.	Randa	Shrub	Seeds	Seeds are used to treat constipation and as purgative.
Euphorbiaceae	Euphorbia royleana Boiss.	Zahro botay	Shrub	Latex	Latex is extracted and is used as Analgesic and anti- inflammatory.
Fabaceae	Acacia modesta Wall.	Palusa	Tree	Gums	Gum is mixed with flour and Desi Ghee and are used as sexual tonic and for backache.
Fabaceae	Acacia nilotica (L.) Willd. ex Delile	Kikar	Tree	Gums and leaves	Gum is mixed with flour and Desi Ghee and are used as sexual tonic and for backache.
Fabaceae	Albizzia lebbeck (L.) Benth	Srekh	Tree	Bark, seeds and pods	Powder made from bark, seeds and pods is used to treat skin diseases.
Fabaceae	Butea monosperma (Lam.) Taub.	Palai	Tree	Leaves and flowers	Decoction from leaves are used against Diarrhea. Infusion from flowers are used to treat dysentery.
Fabaceae	Cassia fistula L.	Landice	Tree	Leaves and fruits	Fruits are used anti-spasmodic and laxative.
Fabaceae	Cassia occidentalis L.	Beenak botay	Herb	Leaves and seeds	Leaves and seeds are used to cure menstrual problems.
Fabaceae	Dalbergia sisso Roxb. ex DC	Shawa	Tree	Leaves and bark	Leaves and bark decoction are used to cure skin diseases.
Fabaceae	Lathyrus aphaca L.	Pirwatay	Prostrate herb	Whole plant	Juice is used as narcotic and sedative.

Fabaceae	Medicago denticulata L.	Pishtaray	Herb	Leaves and shoots	Infusion is used to treat bronchitis.
Fabaceae	<i>Meliolotus parviflora</i> L.	Leewanay	Herb	Whole plant	Infusion is used to treat genital diseases.
Fabaceae	Prosopis glandulosa Torr	Wilayati kikar	Tree	Leaves, flowers and gums.	Concoction of gum with flour and ghee is used as sexual tonic.
Fabaceae	Trifolium repens L.	Shawatal	Herb	Whole plant	Juice extracted are used to treat cough and fever.
Fumariaceae	Fumaria indica Pugsley.	Papra	Herb	Whole plant	Infusion from the plant is used as blood purifier and sedative.
Juglandaceae	Juglans regia L.	Ghwaz	Tree	Bark, leaves and fruits	Bark and leaves are used as anthelmintic and fruits are used as tonic.
Lamiaceae	Otostegia limbata (Benth.) Boiss.	Spin azghay	Shrub	Whole plant	Decoction is used to treat mouth diseases and wound healing.
Lamiaceae	Mentha spicata L.	Podina	Herb	Whole plant	Leaves and young shoots are used as flavoring agent and anti-spasmodic.
Lamiaceae	Mentha longifolia (L.) Huds.	Valenay	Herb	Whole plant	Leaves and young shoots are used as flavoring agent and anti-spasmodic.
Lamiaceae	Salvia moorcroftiana L.	Khar dug	Herb	Whole plant	Juice extracted is used for wound healing and boils.
Lamiaceae	Ocimum basilicum L.	Kashmalai	Herb	Whole plant	Decoction from the whole plant is used as anti-spasmodic and seeds as carminative.
Lamiaceae	Ajuga bracteosa Wall.ex Benth	Gothi	Herb	Whole plant	Infusion is used as anti-fever and for sore throat.
Lamiaceae	Micromeria biflora Benth.	Shamakai	Herb	Whole plant	Juice extracted is used as toothache and for wounds healing.
Lamiaceae	Colebrookia oppositifolia Sm.	Bazeday	Shrub	Leaves and roots	Decoction from leaves and roots is used to treat wounds healing and skin diseases.
Liliaceae	Allium cepa L.	Piaz	Herb	Leaves and bulbs	Leaves and bulbs are used as stimulant, expectorant and anti-septic.
Liliaceae	Allium sativum L.	Oouga	Herb	Leaves and bulbs	Leaves and bulbs are used as stimulant, expectorant and anti-septic.
Liliaceae	Asphodelus tenuifolius L.	Piazakai	Herb	Seeds	Seeds are used as anti-inflammatory and as diuretic.
Liliaceae	Asparagus plumosus Cav.	Tendonai	Herb	Young shoots	Young shoots are used to cure Dysentery and diarrhea.
Malvaceae	Malvastrum tricuspidatum A. Gray	Skha botay	Herb	Whole plant	Juice is applied to cure wound healing.
Malvaceae	Abutilon indicum (L.) Sweet.	Ziar gulai	Shrub	Leaves and flowers	Leaves and flowers infusion is used to cure asthma and urinary tract problems.
Malvaceae	Abelmoschus esculentus (L.) Moench	Bhindai	Herb	Fruit	Fruit is used as diuretic and demulcent.

Meliaceae	<i>Melia azedarach</i> L.	Shanday	Tree	Leaves and fruits	Infusion from leaves and fruits are used as Anti-septic and
					to treat skin diseases.
Moraceae	Ficus carica L.	Inzar	Tree	Fruits	Fruits are used to cure dysentery and urinary bladder problems.
Moraceae	Ficus glomerata L.	Oormal	Tree	Leaves, bark and fruits	Infusion from leaves and bark is used treat mouth infections, nose bleeding and leucorrhea.
Moraceae	Ficus religiosa L.	Peepal	Tree	Leaves, bark and fruits	Infusion from leaves and bark is used to treat infertility. Fruits are used for sexual weakness.
Moraceae	Ficus benghalensis L.	Barh	Tree	Leaves, roots and fruits	Leaves and roots decoction is used against vaginal complaints. Fruits are used to cure diabetes.
Moraceae	<i>Morus alba</i> L.	Toot	Tree	Fruits	Fruits are used as Purgative and for nose bleeding.
Moraceae	Broussonetia papyrifera (L.) Vent.	Gul toot	Tree	Fruits	Fruits are Diuretic and laxative.
Moraceae	<i>Psidium guyava</i> L.	Amrood	Tree	Fruits	Fruits are stomachic and digestive.
Moraceae	Eucalyptus globulus Labill.	Lachi	Tree	Leaves, bark and oil	Infusion from the leaves and bark is anti-septic and are used to cure skin diseases and burns.
Nyctaginaceae	<i>Mirabilis jalapa</i> L.	Gul-i-Nazak	Herb	Whole plant	Poultice of leaves is applied to swellings and wounds.
Oleaceae	Olea ferruginea Wall.ex Aitch	Khoona	Tree	Leaves and fruits	Fruits and oil is used to treat rheumatism and toothache.
Oleaceae	Jasminum officinale L.	Rambel	Climber	Leaves and flowers	Infusion from leaves are used to treat impotency and
		chambel			menstrual problems.
Oxalidaceae	Oxalis corniculata L.	Threwakay	Herb	Whole plant	Plant juice is used as stomachic and anti-fever.
Pinaceae	Pinus roxburghii Sarg.	Nakhtar	Tree	Resin and seeds	Resins are used to treat gonorrhea and snake bite.
Plantaginaceae	Plantago lanceolata L.	Jabai	Herb	Leaves and seeds	Leaves and seeds are used to cure Dysentery.
Plantanaceae	Platanus orientalis L.	Chinar	Tree	Bark	Decoction from bark is used to cure Diarrhea and dysentery.
Poaceae	Cyanodon dactylon (L.) Pers	Kabal	Herb	Whole plant	The decoction made is used to treat Jaundice and urinary tract diseases.
Poaceae	Avena sativa L.	Jamdar	Herb	Straw	Straw extraction is used as anti-spasmodic.
Poaceae	Dichanthium annulatum (Forssk) Stapf	Wakha	Herb	Whole plant	Decoction made is used to treat dysentery and diarrhea.
Poaceae	Hordeum vulgare L.	Warbashi	Herb	Seeds	The seeds used are stomachic, digestive and expectorant.
Poaceae	Lolium multiflorum Lam.	Mastak	Herb	Whole plant	The extraction made is used as aphrodisiac and anodyne.
Poaceae	Polypogon monspeliensis L.	Gaya	Herb	Whole plant	The decoction made is used to cure heart palpitations.
Polygonaceae	Polygonum barbatum L.	Polpulak	Herb	Whole plant	The infusion made is used as astringent and cooling agent.
Polygonaceae	Rumex dentatus L.	Shalkhay	Herb	Whole plant	Juice is diuretic, stomachic and purgative.
Portulaceae	Portulaca oleracea L.	Warkhary	Herb	Leaves and shoots	Leaves and shoots infusion is used to cure Burns, cough and skin diseases.

Pteridaceae	Dryopteris jaxtaposta L.	Kwanjay	Herb	Fronds	Fronds decoction is digestive.
Punicaceae	Punica granatum L.	Anangone	Shrub	Bark and fruits	Decoction from bark and Juice from fruits are used to cure arthritis, bleeding and dysentery.
Ranunculaceae	Ranunculus arvensis L.	Ziar gulai	Herb	Whole plant	Infusion is used to cure asthma and fever.
Ranunculaceae	Ranunculus muricatus L.	Ziar gulai	Herb	Whole plant	Infusion is used to cure asthma and fever.
Rhamnaceae	Sageretia thea (Osbeck) M.C. Johnst	Mamanra	Shrub	Leaves and fruits	Leaves and fruits are used as emollient and to cure jaundice.
Rhamnaceae	Ziziphus nummularia (Burm.f.)Wight & Arn.	Karkanda	Small tree	Fruits	Fruits are anti-spasmodic, anti-microbial and diuretic.
Rhamnaceae	Ziziphus jujuba Mill.	Beera	Tree	Fruits	Fruits are used as diuretic, emollient, expectorant and tonic.
Rosaceae	Rosa moschata Benth.	Gulab	Shrub	Flower	Flowers juice are used as Opthalmatic and to cure skin burning.
Rosaceae	Prunus domestica (L.)Thunb.	Alucha	Tree	Fruits	Fruits are laxative, stomachic and digestive.
Rosaceae	Prunus armeniaca (L.) Blanco.	Khubani	Tree	Fruits and seeds	Fruits and seeds are laxative, emollient and expectorant.
Rosaceae	Prunus persica (L.) Batsch	Shaltalo	Tree	Fruits	Fruits are laxative and diuretic.
Rosaceae	Cotoneaster microphyllus Wall.	Kharawa	Shrub	Fruits	Fruits are astringent and to cure cough and fever.
Rosaceae	<i>Eriobotrya japonica (</i> Thunb.) Lindl	Lokat	Tree	Fruits	Fruits are diuretic and expectorant.
Rutaceae	Citrus medica (L.) Osbeck	Neembo	Shrub	Fruits and leaves	Fruits and leaves astringent.
Rutaceae	Citrus aurantium L.	Naranj	Tree	Fruits and leaves	Fruits and leaves are Bitter, anti-fertile and anti-spasmodic.
Rutaceae	Citru sinensis (L.) Osbeck	Malta	Tree	Fruits and leaves	Fruits are used as appetizer and blood purifier.
Salicaceae	Populus ciliate Wall. ex Royle	Spairdar	Tree	Bark and leaves	Bark and leaves are used as blood purifier and to treat menstrual cramps.
Salicaceae	Salix babylonica L.	Wala	Tree	Bark and leaves	Plant parts are used as astringent and anti-rheumatic and to cure skin diseases.
Sapindaceae	Dodonaea viscosa Jacq.	Ghwaraskay	Shrub	Leaves	Leaves poultice is used to cure wounds and joint pains.
Sapindaceae	Litchi chinensis Sonn.	Leechi	Tree	Bark and fruits	Bark and fruits are used to treat sore throats and intestinal problems.
Sapotaceae	Monotheca buxifolia (Falc.) A. DC.	Gurgura	Tree	Fruits	Fruits are used as Tonic, laxative and digestive.
Scrophulariaceae	Verbascum thapsus L.	Khar ghwag	Herb	Leaves and flowers	Infusion from leaves and flowers are used to cure asthma, boils and as anti-inflammatory.
Simaroubaceae	Ailanthus altissima (Mill.) Swingle	Backyana	Tree	Leaves and bark	Leaves and bark is used as astringent, anti-spasmodic and vermifuge.
Solanaceae	Solanum nigrum L.	Kachmacho	Herb	Leaves and fruits	Leaves and fruits are used as diuretic and to cure diarrhea.
Solanaceae	Solanum surratense Burm.f.	Maraghonai	Herb	Fruits	Fruits are used to cure asthma and cough.
Solanaceae	Capsicum annum L.	Marchakay	Herb	Fruits	Fruits and seeds are used as appetizer and irritant.

Solanaceae	Datura innoxia L.	Batora	Shrub	Leaves, flowers and	Plant parts are used as anodyne and narcotic.
				seeds	
Solanaceae	Withania somnifera L.	Kotilal	Shrub	Whole plant	The juice is used as aphrodisiac, narcotic and as sexual tonic.
Thymelaceae	Thymelea passerine (L.) Coss. & Germ	Shamakai	Herb	Whole plant	Decoction made is used as diuretic and toothache.
Tilicaceae	Grewia optiva (Buch-Ham). Ex Roxb.)	Pastawoonay	Shrub	Bark, leaves and fruits	Extraction is used as aphrodisiac and anti-fever.
Verbenaceae	Vitex negundo L.	Vermandai	Shrub	Leaves, roots and seeds	Infusion is used as astringent and vermifuge.
Vitaceae	Vitis vinifera L.	Kwar	Climber	Fruits	Fruits are used as diuretic and laxative.

Table 2. FIC values of traditional medicinal plants for treating human ailments in District Malakand.

Disease categories	Nur	Nt	Fic
Gastrointestinal	77	50	0.64
Skin diseases	60	20	0.67
Diuretic	44	17	0.62
Cold, cough, influenza	49	21	0.58
Expectorant	35	19	0.47
Rheumatism	51	27	0.48
Genital diseases	37	18	0.52
Astringent	34	20	0.42
Tonic	55	31	0.44
Asthma	30	19	0.38
Toothache	25	14	0.45
Antiseptic	20	09	0.57
Analgesic	33	18	0.46
Anti-diabetic	17	10	0.43
Aromatic	21	13	0.40
Mouth diseases	14	08	0.46
Sore throat	16	04	0.80
Blood purification	09	05	0.50
Narcotic	06	02	0.80
Opthalmatic	07	02	0.83
Hypertensive	05	01	1.0
Cardiovascular	03	01	1.0

Table 3. Fidelity level value of important medicinal plants used against a given disease.

Medicinal plant	Diseases	lp	lu	FL Value%
Mentha longifolia	Gastrointestinal	26	30	86.66
Periploca aphylla	Skin diseases	17	20	85.00
Rumex dentatus	Diuretic	15	19	78.94
Morus alba	Cold, cough	19	24	79.16
Calotropis procera	Expectorant	10	13	76.92
Justicia adhatoda	Rheumatism	15	19	78.94
Meliolotus parviflora	Genital diseases	09	10	90.00
Citrus medica	Astringent	22	25	88.00
Acacia modesta	Tonic	17	21	80.95
Solanum surratense	Asthma	13	15	86.66
Olea ferruginea	Toothache	09	10	90.00
Melia azedarach	Anti-septic	10	15	66.66
Ricinus communis	Analgesic	20	22	90.90
Caralluma tuberculata	Diabetic	11	11	100.00
Mentha spicata	Aromatic	20	20	100.00
Ajuga bracteosa	Oral diseases	07	09	77.77
Otostegia limbata	Sore throat	15	17	88.23
Fumaria indica	Blood purification	10	12	83.33
Datura innoxia	Narcotic	05	10	50.00
Silene conoidea	Opthalmatic	09	10	90.00
Allium sativum	Hypertensive	20	20	100.00
Helianthus annuus	Cardiovascular	15	20	80.00

Discussion

About 80% of the global population are thought to be directly or indirectly dependent on traditional herbal or plant-based medicines to fulfill their primary health care needs (Ahmad, 2005). In developing and underdeveloped countries like Pakistan it is believed that 84% individuals still depend on folk herbal medicines to cure their ailments (Hocking 1958). In the current ethno-pharmacological study 130 medicinal plants were investigated for their ethno-

pharmacological practices in the research area. It was perceived during the investigation that a single plant species were used by the indigenous people for the cure of more than one ailments. Similar Ethno-pharmacological studies have been conducted by other scientists like (Barkatullah *et al.* 2009, Hussain *et al.* 2005, Ibrar *et al.* 2007, Jan *et al.* 2008, Murad *et al.* 2011, Qasim *et al.* 2010, Qureshi *et al.* 2008) whose results are analogous and parallel to the present study.

The study show that the area have abundant important medicinal plants and the native people and herbalists of the area are consuming these important plants to treat different types of ailments. Information regarding the use of these plants for the listed diseases were also described by other researchers in the study area such as (Barkatullah *et al.* 2009, Zabihullah *et al.* 2006). During the survey it was keenly observed that medicinal plants in the area are on the decline with each passing day due to over exploitation by the local people, overgrazing, degradation of habitat and ignorance of the local people about the importance and use of these medicinal plants. As a result of this negligence and misuses the beneficial medicinal plants of the region has been lessened to a great extent. These results are parallel and similar to the results of other workers such as (Shinwari & Khan 2000).

These plants were mostly used to cure ailments such as respiratory, throat, mouth, joints, Gastro-intestinal, skin and genital complaints. Such uses of medicinal plants for the cure of such illnesses are similar and in line to the results of other researchers such as (Ahmad & Hussain 2008, Qureshi *et al.* 2009, Tariq *et al.* 2004).

The presence of these important medicinal plants has also been reported from other parts of Pakistan with almost similar ethno-pharmacological uses. These medicinal plants will provide a baseline for future studies and will help in the discoveries of novel drugs.

Conclusion and Recommendations:

The assessment of the present Ethno-pharmacological survey showed that, the research area has plenty of medicinal flora which is used by the indigenous people extensively to cure a wide range of human ailments. The major chunk of the inhabitants of the research area farmers and poor mostly rely on native medicinal plants to fulfill their primary health care needs. It is also obvious from the conducted interviews that the indigenous knowledge about medicinal plants and their usage is only limited to elder and old aged persons and local herbalists as the new generation is not interested in old traditional medicines due to availability of modern synthetic drugs. Therefore, it is recommended that there is a dire need to take positive and immediate steps for the careful conservation of medicinal plant resources of the area before this valuable asset of medicinal flora become extinct or lost forever in future. The indigenous knowledge about medicinal plants and their ethno-pharmcological uses should be documented properly and must be transmitted to the younger generation. This study will provide a baseline for further Ethno-botanical, Ethno-medicinal, Anti-microbial and phytochemical investigations in the area.

Declarations

Ethics statement: Prior to the survey, we obtained oral informed consent from each participant.

Consent for publication: Not applicable.

Availability of data and materials: Requests for data can be directed to the first author.

Funding: The study did not receive any funds from any research institute.

Competing interests: The authors declare that they have no competing interests."

Author contributions: Muhammad Ibrahim conducted the research work and data analysis and wrote the first draft of the manuscript. All authors read, revised, reviewed and approved the final draft of the manuscript.

Acknowledgments

The authors are very grateful to the local people and Traditional Health Practitioners of the area for their valuable time, respect and sharing their precious knowledge.

Literature Cited

Abbet C, Mayor R, Roguet D, Spichiger R, Hamburger M, Potterat O. 2014. Ethno-botanical survey on wild alpine food plants in Lower and Central Valais (Switzerland). Journal of Ethnopharmacology 151:624-634.

Aberoumand A. 2013. Determination and Comparison of Potential Nutritive Values and Mineral Elements of Three Important Food Edible Plants from Southern Part of Iran. Croatian Journal of Food Technology, Biotechnology and Nutrition 6(3-4):148-151.

Ahmad H. 2005. Issues regarding medicinal plants of Pakistan. Udyana Today 6(3):6-7.

Ahmad M, Khan MA, Rashid U, Zafar M, Arshad M, Sultana S. 2009. Quality assurance of herbal drug valerian by chemotaxonomic markets. African journal of Biotechnology 8(6):1148-1154.

Ahmad SS, Hussain SZ. 2008. Ethnomedicinal survey of plants from salt Range (Kallar kahar) of Pakistan. Pakistan Journal of Botany 40(3):1005-1011.

Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Hussain T. 2020. Modification of miRNA expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. Phytomedicine 68:153-168.

Akkol-Solakoglu S, Hevey D, Richards D. 2021. A randomised controlled trial comparing internet-delivered cognitive behavioural therapy (iCBT) with and without main career access versus treatment-as-usual for depression and anxiety among breast cancer survivors: Study protocol. Internet Interventions 24:100367.

Alverez KV. 2004. Chemical composition of different vegetables. Plant Foods for Human Nutrition 52:235-253.

Baquar SR. 1989. Medicinal and poisonous plants of Pakistan. Karachi. Pp. 95-96, 184-185, 248-249, 337-440.

Barkatullah, Ibrar M, Hussain F. 2009. Ethnobotanical studies of plants of Charkotli Hills, Batkhela District Malakand, Pakistan. Frontiers of Biology in China 4(4):539-548.

Bhat J, Kumar M, Bussmann R. 2013. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalya, India, Journal of Ethnobiology and Ethnomedicine 9:(1).

Bhatti GR., Qureshi R, Shah M. 1998. Ethnobotany of *Calotropis procera* with special reference to the people of Nara Desert. Scientific Sindh 5:13-22.

Black MJ. 1996. Transforming ethnobotany for the new millennium. Annals of the Missouri Botanical Garden 83:58-66

Chaghtai SM, Ghawas IH. 1976. The study of the effect of exposure on community setup in Malakand pass, NWFP. Pakistan. 1976; Sultania 2:1-8.

Chevallier A. 1996. Materia Medica Handbook. (Course Handout Middle six university).

Deputy Commissioner (D.C) Office Malakand at Batkhela. 2021. Data collected regarding Population.

Hamilton AC. 2004. Medicinal plants: Conservation and livelihoods. Biodiversity and Conservation 13(8):1477-1517.

Hayat K, Khan A, Bibi F, Salahuddin, Murad W, Fu Y, El-Saber Batiha G, Alqarni M, Khan A, Al-Harrasi, A. 2021. Effect of Cadmium and Copper exposure on growth, physio-chemicals and medicinal properties of *Cajanus cajan* L. (Pigeon Pea). Metabolites 11(11):769.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Science & Medicine. 47(11):1859-1871.

Hocking, GM. 1958. Pakistan medicinal plants 1. Qualitas plantarum et Materiae Vegetabiles. 6:121-136.

Hussain F, Sher H, Ibrar M, Durrani MJ. 2005. Ethnobotanical uses of plants of District Swat, Pakistan. Pakistan Journal of Plant Sciences 11 (2):137-158.

Hussain J, Khan AL, Rehman N, Hamayun M, Shinwari ZK., Malik W, Lee IJ. 2009. Assessment of herbal products and their composite medicinal plants through proximate and micronutrients analysis. Journal of Medicinal Plant Research 3(12):1072-1077.

Hussain W, Ullah M, Dastagir G, Badshah L. 2018. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna Journal of Phytomedicine 8(4):313.

Ibrar M, Hussain F, Amir S. 2007. Ethnobotanical studies on Plant resources of Ranyal Hills, District Shangla, Pakistan. Pakistan Journal of Botany 39(2):329-337.

Jadid N, Kurniawan E, Himayani CES, Andriyani, Prasetyowati I, Purwani KI, Muslihatin W, Tjahjaningrum ITD. 2020. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. Plos ONE 15(7):e0235886.

Jan G, Khan MA, Ahmad H, Gul F. 2011. Indigenous medicinal plants used by local people bf Shahi, Lower Dir. (Khyber Pakhtonkhwa) Southern Himalayan Regions of Pakistan. International Journal of Biology and Biotechnology (Pakistan) 8(2):213-316.

Jan S, Khan MA, Uddin S, Murad W, Hussain M, Ghani A. 2008. Herbal remedies used for gastrointestinal disorders Kaghan valley, NWFP, Pakistan. Pakistan Journal of Weed Sciences Research 14(3-4):169-200.

Khan A, Ali S, Murad W, Hayat K, Siraj S, Jawad M, Abbas R, Uddin J, Al-Harrasi A, Khan A. 2021. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan. Journal of Ethnopharmacology 281:114437.

Khan IA, Allgoood J, Walker LA, Abourashed EA, Schelenk D, Benson WH. 2001. Determination of heavy metals and pesticides in ginseng products. Journal of Association of Agriculture Chemist Internationa. 84:936-939.

Kruger M, Sayed N, Langenhoven M, Holing F. 1998. Composition of South African foods: Vegetables and fruit. Research Institute for Nutritional Diseases, South African Medical Research Council, South Africa, pp. 2-39.

Mir MY. 2014. Documentation and ethnobotanical survey of wild edible plants used by the tribals of Kupwara, J & K, India. International Journal of Herbal Medicine 2(4):11-18.

Murad W, Ahmad A, Gilani SA, Khan MA. 2011. Indigenous knowledge and folk use of medicinal plants by the tribal communities of Hazar Nao Forest, Malakand District, North Pakistan. Journal of medicinal plants Research 7:1072-1086.

Murad W, Ahmad A, Ishaq G, Khan MS, Khan M, Ullah I, Khan I. 2012. Ethnobotanical studies on plant resources of Hazar Nao forest, district Malakand, Pakistan. Pakistan Journal of Weed Science Research 18(4).

Nasir E, Ali SI. 1970-2015. Flora of West Pakistan. Vol. No. 1-190. Islamabad, Karachi.

Nasir E, Ali SI. 1970-1995. Flora of West Pakistan and Kashmir. Pakistan Agriculture Research Council, Islamabad.

Neudeck L, Avelino L, Bareetseng P, Ngwenya BN, Teketay D, Motsholapheko MR. 2012. The contribution of edible wild plants to food security, dietary diversity and income of households in Shorobe Village, northern Botswana. Ethnobotanical Research and Applications 10:449-462.

Patil RP, Pai SR, Pawar NV, Shimpale VB, Patil RM, Nimbalkar MS. 2012. Chemical Characterization, Mineral Analysis, and Antioxidant Potential of Two Underutilized Berries (*Carissa carandus* and *Eleagnus conferta*) from the Western Ghats of India. Critical Reviews in Food Science and Nutrition 52:312-320.

Qasim M, Gular S, Shinwari ZK, Aziz I, Khan MA. 2010. Traditional ethnobotanical uses of halophytes from Hub, Balochistan. Pakistan Journal of Botany 42(3):1543-1551.

Qureshi R, Bhatti GR. 2008. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan. Fitoterapia 79:648-673.

Shinwari MI, Khan MA. 2000. Folk use of medicinal herbs of Margalla Hills National Park, Islamabad. Journal of EthnoPharmacology 69:45-56.

Srithi K, Balslev H, Wangpakapattannawong P, Srisanga P, Trisonthi C. 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thiland. Journal of Ethnopharmacology 123(2):33542.

Tariq P, Kapadia Z, Ahmad S, Badar Y. 2004. Antimicrobial activity of some new species of medicinal plants of Karachi region. Hamdard Medicus 38:70-78.

Zabihullah Q, Rashid A, Akhtar N. 2006. Ethnomedicinal survey in Kot Manzery Baba valley, Malakand Agency, Pakistan, Pakistan Journal of Plant Sciences 12(2):115-121.

Zaman S, Hazrat A, Ullah S. 2013. Ethnobotanical survey of medicinal plants from tehsil Dargai, district Malakand, Pakistan. Fuuast Journal of Biology 3:109-113.

Zeleke B. 2016. Human induced threats for Biodiversity Conservation in Maze National Park, SNNPR, Ethiopia. International Journal of Ecology and Development 31(2):60-69.