

Quantitative ethno-gynecological survey of traditional medicinal plants from Punjab province, **Pakistan**

Huma Zareef, Fazli Malik Sarim and Rahmatullah Qureshi

Correspondence

Huma Zareef¹, Fazli Malik Sarim¹ and Rahmatullah Qureshi²*

¹Department of Chemical & Life Sciences, Faculty of Sciences & IT, Qurtuba University of Science and IT, Peshawar, 25000, Pakistan

²Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan

*Corresponding Author: rahmatullahq@uaar.edu.pk, rahmatullahq@yahoo.com

Ethnobotany Research and Applications 26:45 (2023) - http://dx.doi.org/10.32859/era.26.45.1-20 Manuscript received: 22/06/2023 - Revised manuscript received: 10/09/2023 - Published: 15/09/2023

Research

Abstract

Background: The purpose of the present study was to document quantitative indigenous knowledge of medicinal plants used for treating various gynecological disorders by the herbalist (Hakeem) and traditional communities of selected rural areas of Punjab, Pakistan.

Materials and Methods: The study was conducted from February 2022 to January 2023. During the research work, the use of medicinal plants and their medicinal uses for curing gynecological disorders were recorded by interviewing 600 informants of different age groups (20-85 years) via semi-structured interviews.

Results: In all, 60 therapeutic plants belonging to 15 families were recorded that were used by the traditional communities of study areas for the cure of various kinds of gynecological disorders. Among families, Asteraceae was the largest that contributed 17 species. The dominant life form was herbs (39 species) and the mostly used plant part was whole plant (14 species). The highest Relative Frequency Citation (RFC) was recorded for Anethum graveolens (0.96). Similarly, the highest Use Value (0.98) was recorded for Amaranthus caudatu,s Amaranthus angustifolius and the lowest (0.33) for Justicia adhatoda. Likewise, the highest Fidelity Level (FL) was recorded for Anaphalis nepalensis (100%) which was used to treat leucorrhea, and the lowest FL was recorded for Oxystelma esculentum (41.94%) in treating gonorrhea. Family importance index (FIV) indicated that Asteraceae was the dominant (96.66) in the region for contributing medicinal plants, while Zingeberaceae was the lowest one (16.66).

Conclusions: The selected sites being remote areas are devoid of basic health facilities, so the natives learnt about medicinal plants to treat human diseases including gynecological problems. The current research work illustrated that the inhabitants have good knowledge about native plants for treating gynecological disorders. This research can be used as a benchmark for future pharmacological studies to discover novel herbal medicines.

Keywords: Folk knowledge, Quantitative, Medicinal plants, Gynecological disorders, Punjab, Pakistan

Background

Medicinal plants are essential part of human healthcare system and according to an estimate, approximately three-fourths of the plant-derived drugs are discovered from native plants locally and globally (Wakdikar 2004). Some of these studies contributed fortuitously to recording the traditional use of plants for discovering some drugs. According to the literature, 25% of modern drugs are plant-based either compounds, derivatives, or precursors obtained from plants. According to Schippmann *et al.* 2006, more than 50,000 flowering plants are globally utilized for medicinal purposes. Folk medicines are used as the chief potential for the major healthcare systems within the ethnic regions due to the shortage of contemporary healthcare facilities, the remote distance of the region, along a powerful intellectual faith due to the effectiveness of traditional medications (Rehman *et al.* 2022).

Consequently, the purpose of this research was to gather ethno-gynecological information regarding native plants from the inhabitants of six remote districts of Punjab province that might help to discover novel compounds for drug innovation. The current study would have a massive role at both national as well as international world in the applications of folk plants for the treatment of gynecological troubles. The current research will give baseline knowledge for future studies concerning phytochemistry, pharmacology, as well as conservation of gynecological plants. Ethno-gynecology is a research area within ethnobotany to document traditional methods of treatment of female disorders by the tribal living in different regions of the world. Medicinal plants are chief sources of medications to treat gynecological disorders like abortion, menstrual complaints, lactation, menopause, leucorrhea, infertility, childbirth, etc. Among the global ailments, 18% of diseases are related to female healthcare troubles (Jan et al. 2020). Modern drugs are common in practice nowadays for treating gynecological problems, but these are found associated with some potential side effects specifically when used for a longer time period (Lawal et al. 2020). There is an increasing interest in the developed world to use plant-based drugs to overcome human ailments. In terms of ethno-gynecological studies, there is sporadic information available, and few studies reported (Qureshi et al. 2009; Sahu 2011; Mahmood et al. 2013; Ahmad et al. 2014; Sadeghi & Mahmood 2014; Adnan et al. 2015; Aziz et al. 2018; Jan et al. 2020; Uzun et al. 2020; Al-Robai et al. 2022; Jan et al. 2022; Munir et al. 2022; Rehman et al. 2022). The current study was consequently planned to record folk knowledge of medicinal plants along with their gynecological applications within the six chief arid regions (i.e. Dera Ghazi Khan, Rahim Yar Khan, Bahawalnagar, Muzaffargarh, Vehari and Layyah) of Punjab Province, Pakistan. These are remote areas are deficient of basic healthcare facilities. People of the areas are poor and are going through elevated stages of scarcity with very poor lifestyles. Such conditions forced the inhabitants to utilize folk drugs as well as keep the native information intact.

In this research, we tried to find out answers of the subsequent questions regarding the therapeutic flora employed to treat gynecological diseases: (i) Which species are utilized natively for the treatment of gynecological diseases? (ii) Which kind of gynecological ailment is cured by a specific plant? (iii) Are specific plant families much or fewer utilized than supposed? (iv) Which section of the plant is utilized for the curative purpose? (v) What is the method of direction or intake of the medicine? Moreover, we carried out this research to discover precious therapeutic plants, to conserve the native assets of medicinal plants for awareness, as well as to make the native inhabitants conscious of the significance of feasible utilization of therapeutic flora. The current study was therefore proposed with the goal of documenting the ethnobotanical knowledge to record ethno-gynecological information of plant reserves specifically used for gynecological disorders by the local communities as well as to choose aspirant plants for more in vitro examinations.

Materials and Methods

Study area

The province contains about half the populace of Pakistan and is the world's fifth-chief crowded sub-national division, as well as the main heavily populated exterior to China or India. In the 2017 census (www.pbs.gov.pk), the populace of Punjab, Pakistan is 109,989,655 with 107,541,602 adhesives. The main religions within Punjab, Pakistan (2017 Census) are Islam (97.8%), Christianity (1.9%), Hinduism (0.2%), and others (0.1%). The main local language spoken within the Punjab is Punjabi, constituting the major language used as a way of communication within the country. Punjabi is distinguished as the provincial language of Punjab however it is not given any executive appreciation within the constitution of Pakistan on the national level. Numerous languages directly associated to Punjabi are spoken within the border of the area. Inside the southern part of Punjab, the popular language is Saraiki, whereas within the north there are presenters of Hindko and Pothwari. Pashto is also spoken within a few parts of Punjab, particularly within Attock, Mianwali as well as Rawalpindi districts. The map of study area is shown in Figure 1.

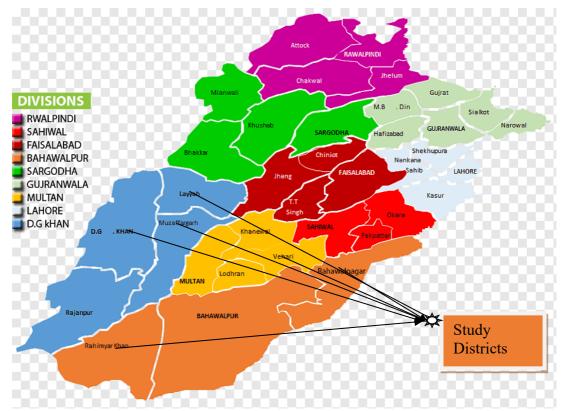


Figure 1. Map of study area showing location of plants collection

Ethnobotanical data collection

In order to collect information regarding medicinal plants, the overall research locality was visited frequent times as well as seasonally (spring, summer, winter and autumn) from February 2022 to January 2023. In the study area, the main target places were Dera Ghazi Khan, Rahim Yar Khan, Muzaffargarh, Vehari, Bahawalnagar and Layyah. These areas were represented by Punjabi and Siraiki ethnic groups residing in remote areas with poor communications and deprived of contemporary healthcare facilities. People of the areas had less earnings position as well as were suffering from elevated stages of scarcity. The purpose of the field visits was to collect field information along with activities such as (1) plant's collection, (2) indigenous information regarding medicinal plant uses along with recipes, through semi-structured questionnaires interviews, keen observations and group discussions and (3) photography. The questionnaire was organized in such a technique to gather greatest information regarding diverse floras, comprising (a) name of informers, sex, age, profession as well as education (b) knowledge regarding plants e.g. native name of the plant, components utilized, process of formation of recipe, method of direction as well as ethnobotanical uses.

The survey and interview techniques assisted to record native folk knowledge by involving knowledgeable persons, conventional healers (Hakims) and native people. Respondents were selected through arbitrary selection of natives who were significantly associated to plants and were involved in folk healthcare. Interviews were carried frequently in fields, by interviewing 600 people of different ages (20-85 years). Both males and females (250 males including 50 male herbalists/Hakeems and 350 women including 70 female herbalists/Dayiahs) were chosen Table 1). Participants were informed regarding the study purposes as well as were permitted to cease the interview at any moment. Every informer was interviewed habitually each season. The national language of Pakistan (Urdu) as well as the local language of the research region (Punjabi) was used as a source of contact. Afterward, an English language questionnaire was filled for every informer. The questionnaire that was employed for information compilation contains subsequent queries; (i) informer name, address, gender, *qualification*, age as well as occupation, (ii) plant's native name, place of plant collection, therapeutic significance, remedial significant component, mode of administration, and native curative method. The informers were requested to tell about the entire plants flora they recognized.

Category	Total	Percentage
Gender		
Male	250	41.66
Female	350	58.33
Age group		
Between 20-40	100	16.66
Between 40-50	120	20
Between 50-65	160	26.66
Between 75-85	110	18.33
Male Herbalists (Hakeems)	40	6.66
Female Herbalists (Da'ais)	70	11.66
Total No. of Informants	600	

Table 1. Ethnographic data of the natives interviewed for ethnobotanical survey.

Plant identification and preservation

The collected plant specimens were identified by Professor Dr. Rahmatullah Qureshi, (Department of Botany, Arid Agriculture University Rawalpindi), with the help of Floristic literature (www.efloras.org/). The Plants of the World Online (https://powo.science.kew.org) was consulted for the nomenclature. The fully determined voucher specimens were deposited to the Department of Chemical and Life Sciences, Qurtuba University Peshawar (Pakistan) for record.

Quantitative analysis of ethno-gynecological medicinal data

The collected ethno-gynecological data was analyzed using different quantitative indices including relative frequency citation (RFC), use value (UV) of medicinal plant, fidelity level (FL) and family importance value (FIV). The obtained data were presented in percentages and proportions (Bano *et al.* 2014; Shah *et al.* 2020; Rehman *et al.* 2022). The details of indices are provided below:

Relative frequency citation (RFC)

Relative frequency citation (RFC) shows the importance of each species in the study area given by the FC (FC is the number of local informants reported the uses of plant species) divided by the total number of informants (N). The RFC was calculated by the following formula (Ibrar *et al.* 2015; Hussain *et al.* 2018; Rehman *et al.* 2022; Zareef *et al.* 2023):

$$\mathsf{RFC} = \frac{\mathsf{FC}}{N} (0 < \mathsf{RFC} < 1)$$

Use value (UV) of plant species

Use value (UV) determines the relative importance of plant species uses. (Ahmed *et al.* 2019). It was calculated using the following formula:

$$UV = \sum \frac{Ui}{N}$$

where "UV" indicates the use value of individual species, "Ui" is the number of uses recoded for a given species by each informant and "*N*" represents the number of total informants (Aziz *et al.*2018).

Fidelity Level (FL)

The fidelity level (FL) was elucidated for the most commonly used classification via manipulating the proportion of informers claiming the utilization of a definite plant for the identical key function (Ahmad *et al.* 2017).

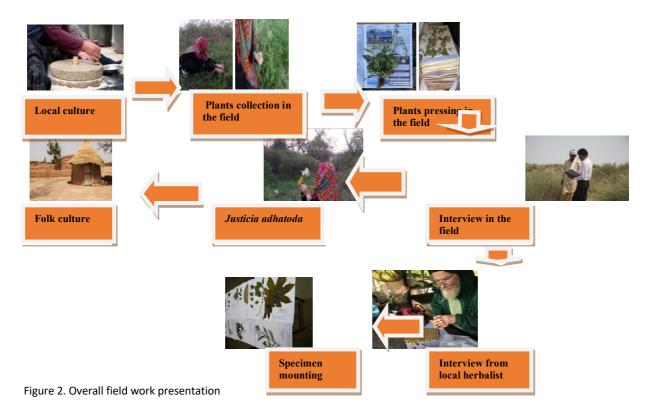
$$FL = \frac{Np}{N} \ge 100$$

where Np is the number of informers that declare a use of a plant species for a specific disorder as well as N is the number of informers that utilize the plants (Rehman *et al.* 2023).

Family Importance value (FIV)

This index was computed by the accounted formula given beneath:

$$FIV = \frac{FC}{N} \ge 100$$


where FC is the number of people mention the particular family as well as N represents the entire number of informers. Higher FIV values signify enormous knowledge as well as small values show fragile understanding of specific plant families (Nadaf *et al.* 2019).

Results

Informers demographic features

During the field visits, the entire of 250 males including 40 male healers (Hakims) and 350 females including 70 female herbalists (Da'ais) of different age groups (20-85 years) were interviewed regarding ethno-gynecological medicinal information (Table 1). There was a common observation in the study area that elder or old aged people were rich in traditional medicinal information because of their experience of using such plants-based medicines over a longer periods of times as compared to young people who were unaware of folk knowledge about medicinal plants. Most of the ethno-gynecological information was obtained from the local inhabitants of more than 55 years old. Informers with an age higher than 65 were generally uneducated. It was observed that the informers of an age over 55 were much well-informed. It was commonly observed that male herbalists mostly have much better knowledge regarding herbal medicines because of their experience and inherited from their family. Whereas female herbalists, they learned this folk knowledge from their experience and mostly inherited. Overall field survey has been shown in Figure 2.

Comparable outcomes were documented by other authors from neighboring regions and from other countries (Adnan *et al.* 2015; Jan *et al.* 2017; Jan *et al.* 2020; Jan *et al.* 2022; Rehman *et al.* 2022). The recorded information demonstrated that females were much familiar in contrast to males, also reported by the other research (Ahmad *et al.* 2014; Aziz *et al.* 2018; Tariq *et al.* 2018; Munir *et al.* 2022). Because females have a key task in preparing daily foods for a family, herbal home-based medications, as well as in helping for the fitness of the entire family members (Sarwat *et al.* 2012; Shinwari *et al.* 2017; Hussain *et al.* 2018).

Description of medicinal plant families

Overall sixty plant species belonging to 15 families were found in current study area which are mentioned in Table 2. Among them, Asteraceae was the largest family having 17 species, 28.33% followed by Apiaceae (10 species 16.66%), Amaranthaceae (7 species 11.66%), Apocynaceae (4species 6.66%), Brassicaceae (4 species 6.66%), Fabaceae (3 species5%), Zingeberaceae (3 species 5%) Zygophyllaceae (2 species 3.33%) and remaining families Euphorbiaceae, Caricaceae and Fagaceae with one species (1.66%) each (Fig. 3). The cause of supremacy of family Asteraceae is that members of that family are well recognized because of aroma.

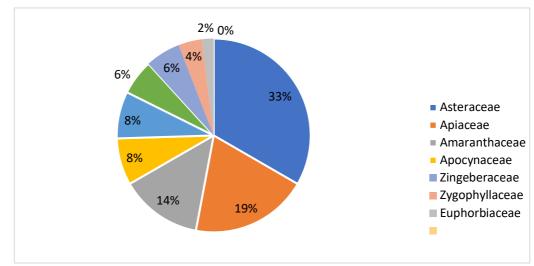


Figure 3. Percentage of families in the study area

Medicinal plant enumerations

Sixty plants were documented in this current study; herbs (39 species, 82.81%) were dominant, followed by shrubs (11 species, 18.33%), and trees (2 species, 3.33%) (Fig. 4). Complete information about each plant species includes botanical name, family, local name, habit, part used and their recipes are listed with RFC and UV and FL% in Table 2.

Figure 4. Percentage of life forms of plants

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP-20221	Achillea millefolium L.	Asteraceae	Kungi	Herb	Whole plant	Treat menstrual disorder	Decoction	0.65	0.65	87.57%
HZ-QUP-20222	Achyranthes aspera L.	Amaranthaceae	Phut kanda	Shrub	Leaves, whole plant	Treat gonorrhea	Decoction	0.5		75%
HZ-QUP-20223	Achyranthes bidentata Blume	Amaranthaceae	Chaff flower	Herb	Roots	Placenta retention	Decoction	0.6	0.65	80%
HZ-QUP-20224	Alhagi maurorum Medik	Fabaceae	NA	Shrub	Arial part	Diuretic, leucorrhea	Infusion, distillate	0.7	0.48	63.56%
HZ-QUP-20225	Alternanthera pungens Kunth.	Amaranthaceae	Keshtto lata	Herb	Whole plant	Treat gonorrhea, leucorrhea	Decoction	0.63	0.66	92%
HZ-QUP-20226	Amaranthus caudatus L	Amaranthaceae	Phulari	Herb	Leaves	Treat gonorrhea	Decoction	0.33	0.98	73.07%
HZ-QUP-20227	Amaranthus spinosus L	Amaranthaceae	Ganair	Herb	Leaves	Treat leucorrhea	Oral	0.53	0.58	73.91%
HZ-QUP-20228	Amaranthus viridis L.	Amaranthaceae	Cholai, Ganar	Herb	Whole plant, root	Excessive menstruation, leucorrhea	Decoction, ointment, poultice	0.56	0.61	93%
HZ-QUP-20229	Anaphalis nepalensis (Spreng.) HandMazz.	Asteraceae	Chora	Herb	Flowers	Gynecological infections, leucorrhea	Decoction	0.67	0.63	100%
HZ-QUP- 202210	Anethum graveolens L.	Apiaceae	Soey	Herb	Fruit	Given to lactating mothers to increase milk flow	Oral	0.96	0.6	62.71%
HZ-QUP- 202211	Artemisia absinthium L.	Asteraceae	Dhada	Herb	Whole plant shoots	Conceive pregnancy, leucorrhea	Oral	0.56	0.56	53.33%
HZ-QUP- 202212	Artemisia sieberi Besser	Asteraceae	Dhada	Herb	Aerial parts	Abdominal pain	Decoction, pill	0.52	0.65	46.27%

Table 2. Medicinal plant species used for gynecological diseases within the research region

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP- 202213	Artemisia vulgaris L.	Asteraceae	NA	Herb	Flower, leaf	Amplification of uterine spasm	Infusion, pill, decoction	0.48	0.5	65.32%
HZ-QUP- 202214	Aster molliusculus (Lindl. ex DC.) C.B.Clarke	Asteraceae	Aster	Herb	Flower	Treat amenorrhea, leucorrhea	Decoction	0.52	0.65	96.15%
HZ-QUP- 202215	Astragalus tribuloides Delile	Fabaceae	NA	Herb	Arial part	Urinary infection	Infusion	0.73	0.52	75.57%
HZ-QUP- 202216	Brassica rapa L.	Brassicaceae	Sharsham saag	Herb	Whole plant	Treat dysmenorrhoea	Decoction	0.85	0.61	86%
HZ-QUP- 202217	Calendula officinalis L.	Asteraceae	Gul-e-Ashrafi	Herb	Flower	Irregular menstrual cycle	Infusion	0.6	0.33	77.33%
HZ-QUP- 202218	Calotropis procera (Aiton) W.T.Aiton	Apocynaceae	Ak	Shrub	Latex, leaves, flower buds	Cure sexually transmitted diseases	Decoction	0.5	0.5	75%
HZ-QUP- 202219	Capsella bursa- pastoris (L.) Medik.	Brassicaceae	shepherd's purse	Herb	Leaves	Regulate or stop excessive menstrual bleeding	Decoction	0.55	0.58	75%
HZ-QUP- 202220	Carica papaya L.	Caricaceae	Unripe papaya	Herb	Fruit	Irregular periods	Oral	0.57	0.6	58.10%
HZ-QUP- 202221	Carthamus oxycantha M. Bieb.	Asteraceae	Kandiyari, Azghibotay	Herb	Flower, seeds	Stimulate menstrual flow	Oral	0.63	0.6	70%
HZ-QUP- 202222	Carthamus tinctorius L.	Asteraceae	Safflower, Kasumba	Herb	Flower	Menstruation	Infusion	0.56	0.34	80%
HZ-QUP- 202223	Cassia acutifolia Delile	Fabaceae	Jangli Kikar	Shrub	Leaf	Diuretic, constipation	Decoction	0.65	0.54	73.76%
HZ-QUP- 202224	<i>Centella asiatica</i> (L.) Urb.	Apiaceae	NA	Herb	Whole plant	Cure hepatitis, syphilis, and leucorrhea	Oral	0.66	0.67	58.30%

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP- 202225	Cichorium intybus L.	Asteraceae	Bhangara	Herb	Leaves, root	Stimulate menstruation, leucorrhea	Decoction	0.65	0.62	63.11%
HZ-QUP- 202226	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae	Kora Kadoo	Herb	Fruit	Gestational diabetes, leucorrhea	Decoction	0.63	0.5	100%
HZ-QUP- 202227	<i>Conyza canadensis</i> (L.) Cronquist	Asteraceae	NA	Herb	Whole plant	Treat uterine hemorrhage	Oral	0.81	0.65	98%
HZ-QUP- 202228	Coriandrum sativum L.	Apiaceae	Dhania	Herb	Fruit	Diuretic, leucorrhea	Decoction	0.71	0.63	96%
HZ-QUP- 202229	<i>Cousinia stocksii</i> C.Winkl.	Asteraceae	NA	Herb	Gum	Diuretic, antiseptic	Powder and pill	0.67	0.63	41.45%
HZ-QUP- 202230	Cuminum cyminum L.	Apiaceae	Zira	Herb	Fruit	Given to pregnant women to cure their stomach problem	Oral	0.66	0.52	93%
HZ-QUP- 202231	Curcuma longa L.	Zingiberaceae	Turmeric	Herb	Root	Irregular periods	Decoction	0.46	0.56	54.10%
HZ-QUP- 202232	Ducrosia anethifolia (DC.) Boiss.	Apiaceae	NA	Herb	Aerial parts, seed	Carminative, stimulate menstruation, lactiferous	Oral, decoction	0.52	0.63	67.18%
HZ-QUP- 202233	Eclipta prostrata (L.) L.	Asteraceae	Pattrati	Herb	Whole plant	Treat post-partum abnormal uterine bleeding	Oral	0.65	0.53	74%
HZ-QUP- 202234	Elettaria cardamomum (L.) Maton	Zingeberaceae	Chotti illaichi	Shrub	Seeds	Treat leucorrhea and female impotency, leucorrhea	Decoction	0.66	0.59	67.19%

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP- 202235	Erigeron bonariensis L.	Asteraceae	Chabal grass, Shpelaye	Herb	Whole plants,	Treat hemorrhage painful menstruation, leucorrhea	Infusion	0.59	0.59	87.12%
HZ-QUP- 202236	Fagonia indica Burm.f.	Zygophyllaceae	Dhamasa, Damaho	Shrub	Whole plant	Gynae problems, Menses	Powder form	0.65	0.63	76.02%
HZ-QUP- 202237	Ferula assa-foetida L.	Apiaceae	Hing	Herb	Leaf	Vaginal suppository, Abortion	Gum resin	0.83	0.65	64.15%
HZ-QUP- 202238	Ferula narthex Boiss.	Apiaceae	Hing	Herb	Root, Stem, Resin	Treat habitual abortion, leucorrhea	Decoction	0.83	0.59	61.22%
HZ-QUP- 202239	Foeniculum vulgare Mill.	Apiaceae	Saunf	Herb	Seeds, fruits	Treat leucorrhea, menses, abortion, infertility, and other reproductive diseases	Decoction and powder form	0.67	0.49	70.37%
HZ-QUP- 202240	Glycyrrhiza glabra L.	Fabaceae	Malti	Herb	Root	Constipation, digestive problem	Pill	0.65	0.53	100%
HZ-QUP- 202241	Haloxylon salicornicum (Moq.) Bunge ex Boiss.	Amaranthaceae	Lana	Shrub	NA	Abortion, excessive bleeding and leucorrhea	Oral	0.55	0.61	94%
HZ-QUP- 202242	Justicia adhatoda L.	Acanthaceae	Baikar	Herb	Whole plant; roots, leaves, stem	Treat gonorrhea, menstrual pain	Decoction	0.29	0.33	66.66%
HZ-QUP- 202243	Launaea procumbens (Roxb.) Ramayya & Rajagopal	Asteraceae	Kandiyari/Bhatter	Herb	Whole plant	Treat painful urination in gonorrhea and also in pregnancy	Oral	0.66	0.63	87.67%

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP- 202244	Lepidium draba L.	Brassicaceae	NA	Shrub	Seed	Aphrodisiac, carminative, diuretic	Infusion	0.66	0.48	93.83%
HZ-QUP- 202245	Lepidium sativum L.	Brassicaceae	Garden cress	Herb	Seed	Abortion, menstruation	Decoction with milk	0.62	0.4	56.11%
HZ-QUP- 202246	<i>Leptadenia</i> <i>pyrotechnica</i> (Forssk.) Decne.	Apocynaceae	Khip	Shrub	Leaves, Shoot	Treat dysmenorrhoea	Decoction and powder form	0.56	0.49	68.37%
HZ-QUP- 202247	Matricaria chamomilla L.	Asteraceae	Chitta Phool	Herb	Flower	Menstruation	Infusion	0.53	0.37	90%
HZ-QUP- 202248	Medicago sativa L.	Fabaceae	Alfalfa	Herb	Seed	Lactiferous, menstruation additive	Decoction	0.66	0.56	70.43%
HZ-QUP- 202249	Nerium oleander L.	Apocynaceae	Kaner, Kanhera	Shrub	Root, Flowers	Abortifacient	Oral	0.33	0.49	96%
HZ-QUP- 202250	Oxystelma esculentum (L.f.) Sm.	Apocynaceae	Dudhi, Dudhani	Herb	Fruit, Whole plant	Treat Gonorrhea	Oral	0.5	0.53	41.94%
HZ-QUP- 202251	Pimpinella anisum L.	Apiaceae	Aniseed, Daalchini	Herb	Fruit	Lactiferous, carminative, menstruation	Decoction, distillate	0.41	0.65	87.46%
HZ-QUP- 202252	Pulicaria andulata L.	Asteraceae	Peeli Bhooti	Herb	Flower, leaf	Nausea, menstruation additive	Decoction	0.52	0.48	95.74%
HZ-QUP- 202253	<i>Quercus infectoria</i> G.Olivier	Fagaceae	Mazu Sabz	Tree	Fruit	Back pain, leucorrhea	Decoction	0.58	0.6	72.63%
HZ-QUP- 202254	Ricinus communis L.	Euphorbiaceae	Castor oil plant, Arind, Harnool	Shrub	Oil	Stimulate menses Constipation, leucorrhea	Orally	0.64	0.53	95%

Voucher No.	Plant species	Families	Local name	Habit	Part used	Medicinal use	Mode of administration or Medicinal Preparation(s)	RFC	UV	FL%
HZ-QUP- 202255	Schinus molle L.	Anacardiaceae	Toor maruch	Tree	Bark, leaves, fruit	Treat menstrual disorder	Decoction	0.52	0.88	90%
HZ-QUP- 202256	<i>Terminalia chebula</i> Retz.	Combretaceae	NA	Tree	Fruit	Lactiferous, carminative	Infusion	0.67	0.4	96.45%
HZ-QUP- 202257	Trachyspermum ammi (L.) Sprague	Apiaceae	Ajwain	Herb	Fruit	Menstruation	Decoction, pill	0.68	0.59	63.77%
HZ-QUP- 202258	Tribulus terrestris L.	Zygophyllaceae	Peeli Bhooti	Herb	Fruit, root, leaf	Urinary infection, constipation, carminative, leucorrhea	Decoction	0.63	0.65	72.05%
HZ-QUP- 202259	Trigonella foenum- graecum L.	Fabaceae	Methi	Herb	Fruit or seed, leaf	Anemia during lactation, lactiferous, gestational hypertension	Decoction	0.66	0.65	65.63%
HZ-QUP- 202260	Zingiber officinale Roscoe	Zingiberaceae	Ginger	Herb	Rhizome	Regulate menses	Decoction	0.47	0.44	58.10%

Plant parts used

Natives used different plant parts (either in combination or separately) within the research region for the treatment of different gynecological disorders. Amongst them, whole plant (14 spp., 23.3%) were the most commonly used part in herbal preparations, followed by leaves (13 spp., 21.6%), fruit (13 spp., 21.6%), flowers (10 spp., 16.6%), roots (8 spp., 12.5%), seed (8 spp., 13.3%), aerial parts (4 spp., 6.6%), stem (2 spp., 3.33%), and bark, gum as well as rhizome was used each from a single species (Fig. 5).

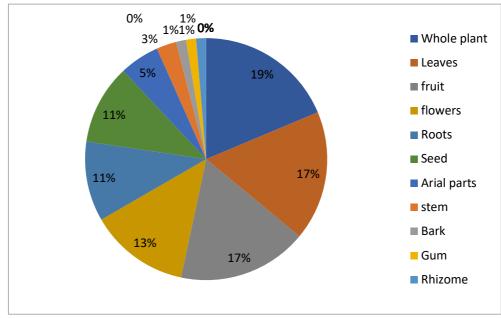


Figure 5. Percentage of Plant parts utilized within research area

Mode of preparation, administration and application

The recipes preparations of the 60 plant species are classified according to their type of preparations, which showed that decoction (34 spp., 56.66%) was an extensively utilized preparation by the natives, followed by oral (13spp., 21.66%), infusion (6spp., 10%), pills (5spp., 8.33%), powder (3spp., 5%) and poultice (single species, 1.66%) as shown in (Fig. 6). It was also documented that the native inhabitants utilized recipes of ethno-gynecological medicinal plant, equally as external as well as for internal use.

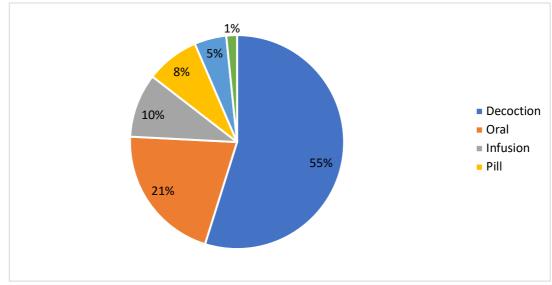


Figure 6. Percentage of mode of administration or Medicinal Preparation(s)

Quantitative analysis

To analyze ethno-gynecological medicinal data, following quantitative indices were quantified from the study areas:

Relative frequency citation (RFC)

The relative frequency of citation (RFC) for every therapeutic plant species is described in Table 2. Such quantitative methods are mostly utilized to search out the relative significance of single curative plant species. On the basis of values of RFC, the number of informers who reported the species for ethno-gynecological gynecological diseases at different locations, and the highest value of RFC was recorded for Anethum graveolens, Brassica campestris, Ferula assa-foetida and Conyza canadensis with 0.96, 0.85, 0.83 and 0.81, respectively (Fig. 7). The maximum values of RCF indicates that these therapeutic plant species are most recognized by the highest number of inhabitants of the study area. The plants with maximum RFC must be further analyzed phytochemically and pharmacologically to find out the active chemical constituents that will lead to novel drug discovery

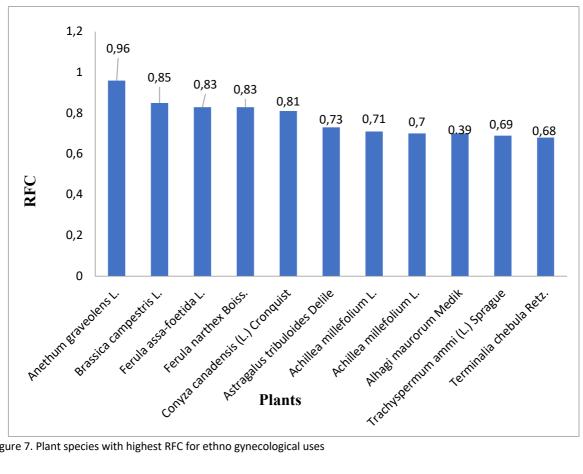


Figure 7. Plant species with highest RFC for ethno gynecological uses

Use value (UV)

The UV of plant species find outs the relative significance of plants within the research region. This index value ranges between zero to one. Curative plants with maximum UV has much use reports as well therapeutic plants with low UV has some less use reports. In the present research, the highest UV value for Amaranthus caudatus, Schinus molle, Alternanthera pungens and Fagonia indica were 0.66, 0.66, 0.65, and 0.63, respectively (Fig. 8). The remedial plants with maximum UV value is because of their frequent occurrence within the studied region. The local inhabitants are much recognizable for their remedial uses (Rahman et al. 2016).

Fidelity Level (FL)

In general, the high FL of a species indicates the utilization of a plant species for a specific disease in an area by the inhabitants (Umair et al. 2017). In the current study, the highest FL value was recorded for Anaphalis nepalensisto treat leucorrhea (100%), followed by Citrulluscolocynthis to treat amenorrhea (100%), Conyza canadensis which is used to treat uterine

hemorrhage (98%), and Terminalia chebula as lactiferous(92%), respectively (Fig. 9). In the same way, Ranunculus sceleratus was accounted for anti-urolithiatic agent to cure kidney stones (96.15%) which is also reported by Rahman et al. (2017).

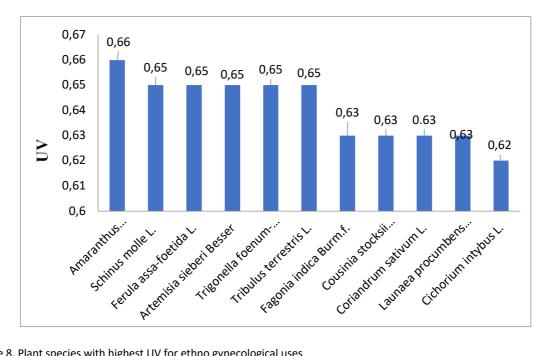


Figure 8. Plant species with highest UV for ethno gynecological uses

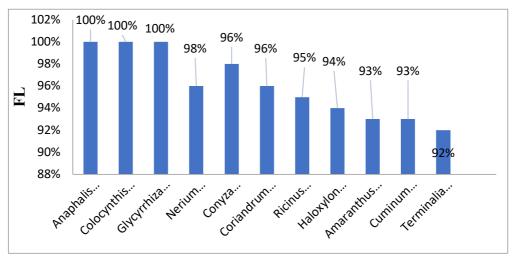


Figure 9. Plant species with highest FL for ethno gynecological uses

Family Importance value (FIV)

The FIV values indicate the contribution of individual families for plant species in the area of study (Table. 2). Based on the highest FIV values in study area, the most dominant family was Asteraceae (96.66%), followed by Amaranthaceae (83.33%), Apiaceae (81.66%), Acanthaceae (66.66%) and Apocyanaceae (63.33%) respectively (Fig. 10). Within the research region, the minimum FIV values were recorded for Fagaceae (26.66%), Zygophyllaceae (27.5%) and Zingeberaceae (16.66%). Nadaf et al. (2019) reported the highest value of FIV for Lamiaceae (35.29%), followed by Apiaceae and Malvaceae (8.82%).

Major threats to plant diversity

Plant resources are under severe threats. These major threats include fires, overgrazing, overexploitation and stone mining activities observed within the visited locations of the research region (Figure 11). Amongst them, the plant diversity of Dera Ghazi Khan, Rahim Yar Khan, Bahawalnagar, Muzaffargarh was exposed to all these major threats. Moreover, Vehari and Layyah were less/non exposed to the threat activities except only overgrazing. Therefore, it is need of time to preserve or conserve these precious plant resources by Public awareness and the government should actively participate in conserving the natural plant resources which are the natural assets of the country.

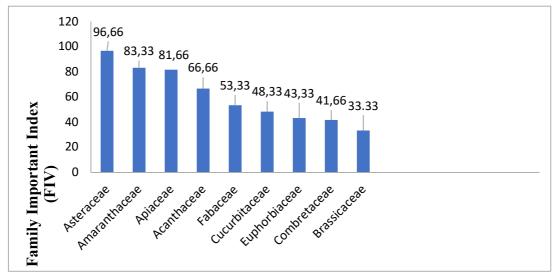


Figure 10. Plant species with highest FIV for ethno gynecological uses

Herbal medications comparative analysis and novelty of study

It is the first study within the area and the area as an entire to the greatest of our knowledge. The current investigation gives information regarding the precious uses of remedial flora for gynecological disorders. The ethno-gynecological results of current study were compared with previously published research articles on national along with international articles on similar topic. It was noticed while comparing some research articles, that some plant species have similar or different therapeutic significances (Rahman *et al.* 2022). This ethno-gynecological information is within significance with a little other ethno medicinal studies with the neighboring region as well as internationally, but slightly this study documented an entire of 60 remedial plant flora, that were specifically utilized for gynecological ailments. The information recognized that the plant parts used, mode of preparation of herbal treatments via the native inhabitants, as well as its method of direction or intake of drug very much differ in the region as well as globally, consequently giving novel ethno medicinal knowledge. These plant species might be use in future studies for further pharmacological as well as phytochemical screening for the detection of novel medicines.

Discussion

During the present research, we documented 60 therapeutic plants belonging to 15 families which are being used by the natives to treat different kinds of gynecological complaints. Ethno-gynecological research have been reported by earlier studies from the neighboring areas of country. Khadim *et al.* (2023) reported total of 108 medicinal plants relating to 54 families from Gujrat Punjab. Rehman *et al.* (2022) documented a total 67 medicinal plant species belonging to 38 families. Jan *et al.* (2020) reported a total of 60 plant species belonging to 40 families.

The present study showed that maximum number of plant species belonged to the family Apiaceae, Amaranthaceae, Apocynaceae, Brassicaceae and Fabaceae. Likewise results had been reported by Jan et al. (2022), Sulaiman et al. (2020) and Umair et al. (2017). Herbs had been the most leading growth forms utilized within herbal medicinal preparations. Similar results had been reported by Ahmad et al. (2014), Zahoor et al. (2017) and Balamurugan et al. (2018). The most utilized plant part was the whole plant. Similar results have been reported by lqbal et al. (2020), Assen et al. (2021), and Zareef et al. (2023). The most dominant mode of herbal preparation was decoction. Likewise, findings have been reported by Haq et al. (2022), Hu et al. (2020) and Ahmad et al. (2014). The highest value of RFC was recorded for Anethum graveolens, followed by Brassica campestris, Ferula assa-foetida, and Conyza canadensis. Similar results have been reported by Amjad et al. (2020) and Jin et al. (2022). The maximum UV value was recorded for Amaranthus caudatus, followed by Schinus molle, Alternanthera pungens and Fagonia indica. Similar findings have been documented by Sulaiman et al. (2020), Bibi et al. (2022), and Jan et al. (2022). The highest FL value was recorded for Anaphalis nepalensis to treat leucorrhea followed by Citrullus colocynthis to treat amenorrhea, Conyza canadensis which is used to treat uterine hemorrhage, and Terminalia chebula as lactiferous, respectively. Likewise, results have been recorded by Saqib et al. (2018) and Arif et al. (2021). The highest FIV values within the study area were Asteraceae followed by Amaranthaceae, Apiaceae, Acanthaceae, and Apocyanaceae, respectively. Similar results have been reported by Maqsood et al. (2022) and Rehman et al. (2022). The greatest FIV value clarifies that the plant species of a specific plant family have been regularly employed in treating various ailments as reported through the

informants. Drug discovery in therapeutic plants is connected with interdisciplinary research including phytochemical screening as well as pharmacological techniques. However, every remedial plant within the present research had neither been depicted to the absolute pharmacological screenings.

Figure 11. Some glimpse of the major threats in the study areas/fields.

Conclusions

This research focused on rustic females' fitness as well as curing. Within the studied areas, contemporary fitness services are inadequate. Pastoral residents (midwives, folk practitioners) have indigenous information about plant-based treatments for curing gynecological ailments. The ethno-gynecological survey revealed that the folk information regarding remedial flora is mostly the positive feature of old age people. During the study, 60medicinal plants have been documented which are being utilized by the natives to treat various gynecological ailments within the research regions. According to ethnobotanical indices, some of the species such as *Amaranthus caudatus, Anethum graveolens, Artemisia sieberi, Glycyrrhiza glabra* and

Terminalia chebula were commonly used plants for the said purpose. This study can be used as a benchmark for futuristic clinical and pharmacological studies for developing plant-based therapeutic agents on gynecology.

Declarations

Ethics approval and consent to participate: Earlier in the study, we obtained oral informed consent from each participant. **Consent for publication**: Not applicable.

Availability of data and materials: The figures and tables supporting the results of this study are included in the article, and the original data sets are available from the first author upon request.

Competing interests: The authors declare that there are no conflicts of interest in this article.

Funding: Authors have not received any funding during this research.

Author's contribution: Huma Zareef wrote the original draft of the manuscript, Fazli Malik Sarim, and Rahmatullah Qureshi supervised this work, helped in statistical analysis also did the formal analysis. All the authors approved the final manuscript after revision.

Acknowledgments

We are grateful to the native area community and associates of the research region for giving out their precious knowledge.

Literature Cited

Ahmad KS, Hamid A, Nawaz F, Hameed M, Ahmad F, Deng J, Mahroof S. 2017. Ethno-gynecological pharmacological studies of indigenous plants in Kel village, Neelum valley, Azad Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine 13: 1-16.

Ahmad M, Sultana S, Fazl-i-Hadi S, Ben Hadda T, Rashid S, Zafar M, Yaseen G. 2014. An ethno-gynecological botanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). Journal of Ethnobiology and Ethnomedicine 10: 1-18.

Ahmed N, Anees M, Zhang L. 2019. An appraisal of ethno-gynecological botanical investigation of indigenous flora from a high temperature affected area in the Southern Punjab, Pakistan. Pakistan Journal of Botany 51(4):1493-1506.

Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SMH, Abbasi AM. 2020. Ethnobotanical survey of the medicinal flora of Harighal, Azad Jammu & Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine 16:1-28.

Arif U, Bhatti KH, Ajaib M, Wagay NA, Majeed M, Zeb J, Kiani J. 2021. Ethno botanical indigenous knowledge of Tehsil Charhoi, District Kotli, Azad Jammu and Kashmir, Pakistan. Ethnobotany Research and Applications 22:1-24.

Assen Y, Woldearegay M, Haile A. 2021. An ethnobotanical study of medicinal plants in Kelala District, South Wollo zone of Amhara region, Northeastern Ethiopia. Evidence-Based Complementary and Alternative Medicine 2021:1-10.

Al-Robai SA, Ahmed AA, Mohamed HA, Ahmed AA, Zabin SA, Alghamdi AA. 2022. Qualitative and Quantitative Ethnogynecological botanical survey in Al Baha Province, Southwestern Saudi Arabia. Diversity 14(10):867.

Aziz MA, Khan AH, Ullah H, Adnan M, Hashem A, Abd Allah EF. 2018. Traditional phytomedicines for gynecological problems used by tribal communities of Mohmand Agency near the Pak-Afghan border area. Revista Brasileira de Farmacognosia 28:503-511.

Adnan M, Tariq A, Mussarat S, Begum S, AbdElsalam NM, Ullah R. 2015. Ethnogynaecological assessment of medicinal plants in Pashtun's Tribal Society. BioMed Research International. doi. 10.1155/2015/196475

Bano A, Ahmad M, Hadda TB, Saboor A, Sultana S, Zafar M, Ashraf MA. 2014. Quantitative ethno-gynecological medicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. Journal of Ethnobiology and Ethnomedicine10(1):1-18.

Balamurugan S, Vijayakumar S, Prabhu S, Yabesh JM. 2018. Traditional plants used for the treatment of gynecological disorders in Vedaranyam taluk, South India-An ethnomedicinal survey. Journal of Traditional and Complementary Medicine 82:308-323.

Bibi F, Abbas Z, Harun N, Perveen B, Bussmann RW. 2022. Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan. PloSone17(2):e0263604.

Hussain W, Ullah M, Dastagir G, Badshah L. 2018. Quantitative ethno-gynecological botanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna Journal of Phytomedicine 8(4):313.

Hu R, Lin C, Xu W, Liu Y, Long C. 2020. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. Journal of Ethnobiology and Ethnomedicine 16(1):1-50.

Haq A, Badshah L, Ali A, Ullah A, Khan SM, Ullah I. 2022. Ethnobotanical study of medicinal plants of Pashat Valley, Bajaur, along Pakistan–Afghanistan border: a mountainous region of the Hindu Kush Range. Nordic Journal of Botany 2022(11):e03580.

Ibrar M, Rauf A, Hadda TB, Mubarak MS, Patel S. 2015. Quantitative ethno-gynecological botanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. Journal of Ethnopharmacology169:335-346.

Jan HA, Abidin SZU, Bhatti MZ, Ahmad L, Alghamdi AK, Alkreathy HM. 2022. Medicinal Plants and Related Ethno-gynecological medicinal knowledge in the communities of Khadukhel Tehsil, Buner District, Pakistan. Sustainability 14(20):13077.

Jin S, Zhang SS, Shad N, Naeem A, Yang YD, Wu SK. 2022. Ethnobotanical investigation of medicinal plants used in Lingchuan county, Shanxi, China. Brazilian Journal of Biology 82:e260774.

Jan HA, Jan S, Bussmann RW, Ahmad L, Wali S, Ahmad N. 2020. Ethnomedicinal survey of the plants used for gynecological disorders by the indigenous community of District Buner, Pakistan. Ethnobotany Research and Applications 19:1-18.

Jan HA, Wali S, Ahmad L, Jan S, Ahmad N, Ullah N. 2017. Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan. European Journal of Integrative Medicine 13:64-74.

Khadim S, Malik K, Qureshi R, Rehman S. 2023. Ethnogynecological study of traditional therapeutic plants used by the indigenous communities: A case study from District Gujrat Punjab, Pakistan. Ethnobotany Research and Applications 26:1-23.

Lawal IO, Olufade II, Rafiu BO, Aremu AO. 2020. Ethnobotanical survey of plants used for treating cough associated with respiratory conditions in Ede South local government area of Osun State, Nigeria. Journal of Plant Research 9(5):647.

Mahmood A, Rashid S, Malik RN. 2013. Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad cities, Pakistan. Journal of Ethnopharmacology 148:158-164.

Munir M, Sadia S, Khan A, Rahim BZ, Gagosh Nayyar B, Ahmad KS, Qureshi R. 2022. Ethno-gynecological botanical study of Mandi Ahmad Abad, District Okara, Pakistan. Plos one 17(4):e0265125.

Nadaf M, Joharchi M, Amiri MS. 2019. Ethno-gynecological medicinal uses of plants for the treatment of nervous disorders at the herbal markets of Bojnord, North Khorasan Province, Iran. Avicenna Journal of Phytomedicine 9(2):153.

Qureshi RA, Ghufran MA, Gilani SA, Yousaf Z, Abbas G, Batool A. 2009. Indigenous medicinal plants used by local women in southern Himalayan regions of Pakistan. Pakistan Journal of Botany 41:19-25.

Rahman IU, Ijaz F, Iqbal Z, Afzal A, Ali N, Afzal M, Asif M. 2016. A novel survey of the ethno medicinal knowledge of dental problems in Manoor Valley (Northern Himalaya), Pakistan. Journal of Ethnopharmacology194:877-894.

Rehman MN, Ahmad M, Sultana S, Zafar M, Edwards S. 2017. Relative popularity level of medicinal plants in Talagang, Punjab Province, Pakistan. Revista Brasileira de Farmacognosia 27:751-775.

Rehman S, Iqbal Z, Qureshi R, Shah GM. 2023. Quantitative ethnobotanical study of medicinal plants used by the indigenous communities of Shawal Valley, District North Waziristan, Pakistan. Ethnobotany Research and Applications 25: 48.

Rehman S, Iqbal Z, Qureshi R, Ur Rahman I, Khan MA, Elshaer M, Abu Bakr Elsaid NM. 2022. Ethno-gynecological knowledge of traditional medicinal plants used by the indigenous communities of North Waziristan, Pakistan. Evidence-Based Complementary and Alternative Medicine 2022: 6528264.

Saqib AA, Gul S. 2018. Traditional knowledge of medicinal herbs among indigenous communities in Maidan Valley, Lower Dir, Pakistan. Bulletin of Environment, Pharmacology and Life Sciences 7:1-23.

Shah S, Khan S, Sulaiman S, Muhammad M, Badshah L, Bussmann RW, Hussain W. 2020. Quantitative study on medicinal plants traded in selected herbal markets of Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 20: 1-36.

Sulaiman, Shah S, Khan S, Bussmann RW, Ali M, Hussain D, Hussain W. 2020. Quantitative ethnobotanical study of indigenous knowledge on medicinal plants used by the tribal communities of Gokand Valley, District Buner, Khyber Pakhtunkhwa, Pakistan. Plants 9(8):1001.

Sadeghi Z, Kuhestani K, Abdollahi V, Mahmood A. 2014. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. Journal of Ethnopharmacology 153(1):111-118.

Sadeghi Z, Mahmood A. 2014. Ethno-gynecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran. Revista Brasileira de Farmacognosia 24:706-715.

Sahu PK. 2011. Plants used by Gond and Baiga women in ethno gynecological disorders in Achanakmar wild life sanctuary, Bilaspur. International Journal of Pharmacy and Life Sciences 2:559-561.

Sarwat SZ, Ahmad N. 2012. Screening of potential medicinal plants from district sawat specific for controlling women diseases. Pakistan Journal of Botany 44(4):1193-8.

Shinwari S, Ahmad M, Zhang G, Jahan S, Sultana S. 2017. Medicinal plant diversity for gynecological disorders among the rural communities of northern Pakistan. Pakistan Journal of Botany 49(5):1787-1799.

Siddique Z, Shad N, Shah GM, Naeem A, Yali L, Hasnain M, Khan I. 2021. Exploration of ethno-gynecological medicinal plants and their practices in human and livestock healthcare in Haripur District, Khyber Pakhtunkhwa, Pakistan. Journal of Ethnobiology and Ethnomedicine 17:1-22.

Schippmann UWE, Leaman D, Cunningham AB. 2006. A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. Frontis 1: 75-95.

Tariq A, Adnan M, Iqbal A, Sadia S, Fan Y, Nazar A, Khan AL. 2018. Ethno-gynecological pharmacology and toxicology of Pakistani medicinal plants used to treat gynecological complaints and sexually transmitted infections. South African Journal of Botany 114:132-149.

Uzun SP, Koca C. 2020. Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş. Plant Diversity 42(6):443-454.

Umair M, Altaf M, Abbasi AM. 2017. An ethnobotanical survey of indigenous medicinal

plants in Hafizabad district, Punjab-Pakistan. PloS one 12(6):e0177912.

Wakdikar S. 2004. Global health care challenge: Indian experiences and new prescriptions. Electronic Journal of Biotechnology 7(3):214-220.

Zereen A, Sardar AA. 2013. Ethno-gynecological botanical studies of wild herbs of central Punjab, Pakistan. Bangladesh Journal of Plant Taxonomy 20(1):67-76.

Zahoor M, Yousaf Z, Aqsa T, Haroon M, Saleh N, Aftab A, Ramazan H. 2017. An ethnopharmacological evaluation of Navapind and Shahpur Virkanin district Sheikupura, Pakistan for their herbal medicines. Journal of Ethnobiology and Ethnomedicine13(1):1-26.

Zareef H, Gul MT, Qureshi R, Aati H, Munazir M. 2023. Application of ethnobotanical indices to document the use of plants in traditional medicines in Rawalpindi district, Punjab-Pakistan. Ethnobotany Research and Applications 25:1-29.