

Ethnomedicinal study of medicinal plants used by the inhabitants of tribal District North Waziristan, Khyber Pakhtunkhwa, Pakistan

Sabith Rehman, Zafar Iqbal, Rahmatullah Qureshi and Muhammad Younas

Correspondence

Sabith Rehman ^{1*}, Zafar Iqbal ¹, Rahmatullah Qureshi ^{2*}, Muhammad Younas ²

¹Department of Botany Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan. ²Department of Botany, PMAS-Arid Agriculture University Murree Road Rawalpindi, Pakistan.

*Corresponding Authors: rahmatullahq@yahoo.com; sabitkhan07@yahoo.com

Ethnobotany Research and Applications 26:68 (2023) - http://dx.doi.org/10.32859/era.26.68.1-32 Manuscript received: 22/07/2023 – Revised manuscript received: 03/12/2023 - Published: 03/12/2023

Research

Abstract

Background: Therapeutic plants are the wealth of any area for disease treatment. The current study was focused on report the traditional knowledge of unexplored areas of District North Waziristan, Pakistan. This was the first quantitative survey for studying the medicinal plants of the study area.

Methods: Ethnomedicinal data was collected from 130 informants through face-to-face interviews as well as semi-structured questionnaires. The collected data was analyzed through quantitative indices viz., Relative frequency of citations (RFC), Use value (UV), Fidelity level (FL), Jaccard index (JI), and Informant Consensus Factor (ICF).

Results: A total of 206 medicinal plant species belonging to 78 families were recorded which are being used by the natives of the área under study. Maximum number of species were reported for the treatment of constipation (36 spp.), followed by blood purification (22 spp.). The most frequently used plant parts were leaves (63 spp.) followed by fruits (49 spp.). In the case of recipe formulation, decoction was the leading method (58 spp.), followed by powder (47 spp.). The highest relative frequency of citation (RFC) was recorded for *Cydonia oblonga* (0.56), followed by *Morus alba* (0.55), *Berberis lycium* (0.54), and *Salvadora oleoides* (0.52). The highest Informant Consensus Factor **(**ICF) value was reported for gastrointestinal disorders (0.91).

Conclusions: The indigenous health professional in North Waziristan have a wealth of knowledge on therapeutic plants and their utilization. Harvesting of whole plants and roots exerted huge pressure on the native flora and there is an urgent need to initiate conservation strategy for the safeguard of medicinally important flora.

Keywords: quantitative study, traditional knowledge, relative frequency of citation, North Waziristan, Pakistan.

Background

For primary healthcare, about 80% of the traditional communities depend upon medicinal plants (Sarma *et al.* 2012; Khan *et al.* 2021). Different communities have widely used plant derived constituent which are used in the preparation of traditional

and herbal remedies (Dugani *et al.* 2018). In the distant study area, most of indigenous people are poor, mostly uneducated, and deprived of primary healthcare system (Khan *et al.* 2021). The indigenous people of the area typically depending on medicinal plants for their everyday life (Kamal *et al.* 2016). The studies contain all types of associations between plants and people, concerning their medicinal, religious beliefs and uses (Panigrahi *et al.* 2021). The plants are commonly used in the production of food, medicines and cosmetics (Petrakoua *et al.* 2020). In rural areas inhabitants use therapeutic plants in the form of herbal medication to cure various ailments due to effectiveness, easy availability, and trust (Hassan *et al.* 2017). Most of the rural areas people still use therapeutic plants as substitute of allopathic medicine (Birjees *et al.* 2021).

Therapeutic plant species contain a variety of bioactive compounds (Akkol *et al.* 2021; Hayat *et al.* 2021), that may help in the healing of different disease in animals and humans (Ahmad *et al.* 2020; Silva *et al.* 2020). The associated indigenous knowledge has been transferred orally from one generation to other generations (Zeleke 2016). Traditional medication is yet practiced in several regions and in developed countries (Marrelli *et al.* 2020). The medicinal plants utilization in modern drug has significantly increased, moreover indigenous knowledge is gradually declining due to reliance of people on modern health care methods, but this folk method yet dominates in the rural communities (Vitalini *et al.* 2013). Traditional knowledge about therapeutic plants is required for the conservation, protection, and herbal drugs development (Mesfin *et al.* 2009; Zahoor *et al.* 2017).

In Pakistan, there are more than 6000 flowering plants, out of which approximately 12% were used in medicines preparation (Bano *et al.* 2014) and used for the treatment of different human ailments (Jima & Megersa 2018). In most areas, few therapeutic plants are thought to be unique for a particular ailment (Hamayun *et al.* 2005). In Pakistan, most of the population is reliant on herbal drugs (Akram *et al.* 2011; Umair *et al.* 2017). Usually, herbs collectors are illiterate (Sodhi *et al.* 2004). In Pakistan, most of the medicinal plants have already become extinct due to overutilization (Rehman *et al.* 2022a). Herbal medications are preferred due to low price, ease of access with no side effects (Ishtiaq *et al.* 2021). Indigenous knowledge is often held by traditional healers and older people, but unfortunately the younger generations are not interested in gaining this precious knowledge from elder (Adnan *et al.* 2014). Furthermore, due to modernization and the lack of interest of the younger generation in traditional knowledge, which is declining rapidly, ethnoecological knowledge may vanish if not properly recorded (Rashid *et al.* 2015). Therefore, if not appropriately documented, ethnoecological knowledge may be diminished (Aziz *et al.* 2018; Rehman *et al.* 2022b). In Pakistan and adjacent area, ethnomedicinal studies have been reported from different regions (Ullah *et al.* 2013; Aziz *et al.* 2016; Hussain *et al.* 2018; Hussain *et al.* 2021; Ishtiaq *et al.* 2021, Hussain *et al.* 2022). To the best of our knowledge, no quantitative ethnomedicinal study has priviously been reported from the study area. Therefore, this study was conducted to document the traditional knowledge about various local plants in Tribal District North Waziristan, KPK, Pakistan.

Materials and Methods

Study area

North Waziristan Tribal District, Khyber Pakhtunkhwa, Pakistan, is a hilly region that lies between 32°35′ and 33°20′ north latitude and 69°25′ and 70°40′ east longitude with an altitude of 2143 to 7717 feet. North Waziristan is bounded on the east by District Bannu and on the west by Afghanistan, on the south by District South Waziristan, on the North by Kurram Agency, Hangu District, and also by Afghanistan, (Fig. 1). The study area falls under Irano-Turanian Region. The area is bounded by mountains which are connected with Koh-e-Sulaiman in the south and Koh-e-Sufaid in the north. The area of North Waziristan under forests is 475000 acres; the North Waziristan area contains 4,707 square kilometers (1,817 sq mi). The study area is cultivable and fertile and is irrigated by three main rivers: Tochi, Kurram, and Katu rivers. Wazir and Dawar are the major tribes in the research area. Pashto is the major language.

Medicinal plants collection

The ethnomedicinal survey was carried out in Tribal District, North Waziristan from April 2018 to October 2020 to document medicinal plants. Field interviews were conducted from indigenous people including herbalist, professional, shepherd, old age people, Hakeems, and farmer. Many of them were over 60 years old (46.92%), 51–60 years old (40.00%), and 35–50 years (13.08%). A total of 130 local informants were interviewed belonging to different age groups. The data were recorded from local respondents by using semi-structured questionnaires as well as through face to face interviews. During the survey age, gender, education, occupation, vernacular names, family name, growth form, folk uses, use parts, mode of preparation, mode of application and route of administration were documented from the local people of the study area.

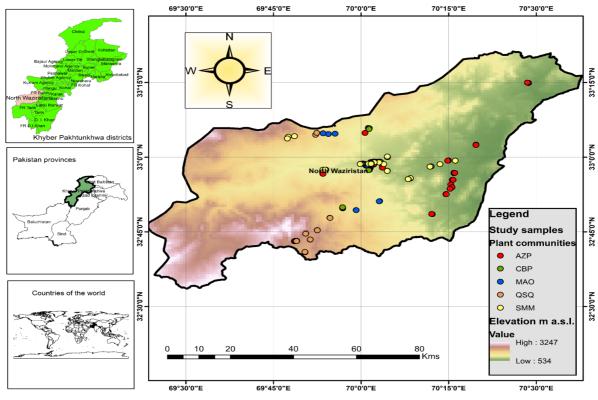


Figure 1. Map of the study area.

Identification and Preservation of Plants

The collected specimens were pressed, dried, poisoned with (1% HgCl₂ solution), and were mounted on standard herbarium sheets. The plants specimens were identified by Prof. Dr. Rahmatullah Qureshi and confirmed by using published literature (Ali and Nasir 1970-2002). A voucher number was assigned to all individual species and the specimens were submitted at the herbarium of Hazara University (HU), Mansehra, Dhudial for future references.

Quantitative data analysis

Indigenous knowledge is quantitatively analyzed using different quantitative indices such as Fidelity Level (FL %), Frequency of citation (FC), Relative Frequency of Citation (RFC), Use Reports (URs), Use Value (UV), Informants Consensus Factor (ICF), and Jaccard index (JI).

Fidelity Level (FL %)

The Fidelity Level (FL) is the percentage of informants who mention the utilization of particular medicinal plant species to cure specific ailments in the study area. The Fidelity Level (FL) is calculated by using the following formula (Yaseen *et al.* 2015; Rehman *et al.* 2023a).

$$FL(\%) = \frac{Np}{N} \ge 100$$

Where "Np" is the particular number of citations for a specific disease and "N" is the total number of respondents citing the plant species for any ailments.

Informants Consensus Factor (ICF)

The informant consensus factor (ICF) was used to seek agreement among the informants on the documented cures for each ailment category (Cerqueira *et al.* 2020). The ICF value ranges from (0 to 1). Thus, the following formula was used.

$$ICF = \frac{Nur - Nt}{Nur - 1}$$

Where "Nur" is the number of use reports in each disease category and "Nt" is the number of taxa used.

Relative Frequency of Citation (RFC)

The RFC value for indigenous therapeutic plant is based on the number of informants for each plant species. Relative frequency of citation (RFC) is obtained by dividing a frequency of citation (FC) by the total number of informants in the survey (N). RFC was calculated by using following formula (Butt *et al.* 2015; Rehman *et al.* 2022c):

$$RFC = \frac{FC}{N} (0 < RFC < 1)$$

Where "FC" is the frequency of citation and "N" is the total number of informants taking part in the survey (N=130).

Use Value (UV)

Use value (UV) of a species was carried out by using the following formula (Savikin et al. 2013; Rehman et al. 2023b).

$$UV = \frac{u}{n}$$

u =Number of use reports documented by the informants for a given medicinal plant. n=Total number of informants interviewed for a specific medicinal plant.

Jaccard index (JI)

This index is used to find out the similarity of traditional knowledge among various ethnic groups; the present study was compared with previously published literature from the adjoining areas by using the Jaccard index (Gonzalez-Tejero *et al.* 2008).

$$JI = \frac{C \times 100}{(a+b) - c}$$

Where 'a' is the recorded number of plants species in the present research area, 'b' is the number of plant species in the adjacent area and 'c' is the number of plant species common in both areas.

Results and Discussion

Demographic description

A total of 130 informants were interviewed. Most informants were male (83.08%) rather than female (16.92%). Similar findings were reported by others (Malik *et al.* 2018; Amjad *et al.* 2020). The prevalence of male informants in the study area was due to that female informants cannot talk with male interviewers out of their families. So participation of females' informants was too less in number in the documentation of data citations. The vast majority of respondents were herbalists (29.23%), followed by professional (21.54%) and shepherd (19.23%). Many of them were over 60 years old (46.92%), 51–60 years old (40.00%), and 35–50 years (13.08%). Due to the lack of some educational facilities in that area, most of the informants were illiterate (46.15%) (Table 1). But some were educated, showing that they had awareness of education (9.23%). Many informants had completed their primary (30.77%), and middle level (13.85%). All the informants spoke Pashto. The majority of information was collected from the rural area informants when compared with urban area informants, similar to other studies compared with urban groups (Giday *et al.* 2009; Salhi *et al.* 2010).

Gender	Number of informants N = 130	Percentages (%)
Male	108	83.08
Female	22	16.92
Age groups		
35-50	17	13.08
51-60	52	40.00
> 60 years	61	46.92
Educational level		· ·
Illiterate	60	46.15
Primary level	40	30.77
Middle level	18	13.85

Table 1. Demographic information of the Informants:

Secondary level	12	9.23
Social livelihoods		
Herbalist	38	29.23
Farmer	12	9.23
Shepherd	25	19.23
Gardeners	17	13.08
Professional	28	21.54
Shopkeeper	6	4.62
Trader	4	3.08

Phytodiversity and Growth forms

All therapeutic plant species along with their botanical names, family name, accession number, parts utilized, mode of preparation, mode of administration, disease treated, and quantitative data analysis are shown in (Table 2). A total of 206 therapeutic plants belonging to 78 families were documented from the research area which has curative uses. Comparing the plant species with the related floras, 158 species (76.70%) were native to the area, followed by cultivated 31 species (15.05%), 11 weed species (5.34%), 5 species (2.43.61%) were naturalized, and1 species (0.49%) were exotic invasive (Table 2). The leading family was Lamiaceae with (18 spp.) followed by family Asteraceae with (16 spp.) and family Rosaceae with (12 spp.) (Table 2). Our findings are similar to the previous research work (Tuasha *et al.* 2018; Aziz *et al.* 2018; Chikowe *et al.* 2020; Rehman *et al.*, 2022a). This is possible due to most of its therapeutic plants being available all over the year and easy adaptation to their environment.

In terms of growth forms, the dominant growth forms was herbs (126 spp.) followed by trees (35 spp.), shrubs (31 spp.), climbers (5 spp.) and ferns (2 spp.) (Fig. 2). Herbs often have a maximum amount of plant derived compounds (Lulekal *et al.* 2013), are easily accessible and have abundant growth in wild environment. Similar to other studies conducted by (Uniyal *et al.* 2013), easy accessibility of herbaceous plants or therapeutic plant species, valuable therapeutic action, and low price of the health care system are the major factors for the choice and advancement of herbal medication in the economically backward rural communities (Konno 2004). The dominant growth form was herbaceous in the study area show similar results reported by Uniyal *et al.* (2006), Kayani *et al.* (2015) and Rehman *et al.* (2022b).

Plant parts used in the preparation of remedies

The most commonly used plant parts were leaves (63 spp.), followed by fruits (49 spp.), shoots (44spp.), whole plant (29 spp.), seeds (27 spp.), roots (15 spp.), bark (8 spp.), aerial parts (7 spp.) and rhizome (6 spp.) in the study area (Fig. 3). Similar results were reported by (Daoudi *et al.* 2016; Jdaidi & Hasnaoui 2016). The collection of leaves and preparations of medication from leaves are so easy as compared to the other plant parts. For this reason, leaves are frequently used in herbal remedies preparation (Telefo *et al.* 2011). The removal of leaves from the medicinal plants can cause less harm as compared to the removal of other parts of the plant (Kadir *et al.* 2013). The high use of leaves in herbal remedies preparation is also reported in previous research work (Akhtar *et al.* 2013; Hachi *et al.* 2015; Shah *et al.* 2016). Leaves show the maximum percentage, because of the reason that is the primary photosynthetic organ that contains a maximum amount of phytochemicals, essential oils and secondary metabolites. These metabolites have been shown to be effective in the cure of a various ailments.

Mode of preparation and administration

The dominant mode of preparation was decoction (58 spp.), followed by powder (47 spp.), raw (40 spp.), juice (31 spp.), paste (17 spp.), poultice (14 spp.), infusion (12 spp.), soaking (10 spp.), latex (9 spp.), herbal tea (8 spp.), oil (7 spp.), and potherb (4 spp.) (Fig. 4). Decoction was the most common medicine preparation technique. A possible argument may be the simplicity of the preparation procedure (Malik *et al.* 2019). Another cause is that boiling of the plant parts in water leads to the extraction and availability of various compounds for the treatment of diseases (Bibi *et al.* 2015). Similarly, decoction and powder were documented as the most frequently used methods for herbal remedies preparation in previous research work (Slimani *et al.* 2016; Shah *et al.* 2020). Also, similar findings were reported by others (Butt *et al.* 2015; Rashid *et al.* 2015; Ijaz *et al.* 2016). In the present study, dominant route of administration is orally advised (175 spp.), followed by topical (65 spp.), drop and inhale (3 spp.) each, and chewing (2 spp.) (Fig. 5). It was thought that the oral route is the most suitable route of administration in the study area for the patient. Similar findings were reported by others (Benarba *et al.* 2014; Chermat & Gharzouli 2015; Mrabti *et al.* 2019; Mir *et al.* 2021; Zatout *et al.* 2021).

Herbal therapies of indigenous plants

Tribal communities have a wide range of information about indigenous medication based on traditional plants for primary medical care (Rekka *et al.* 2013). In all, 145 diseases /ailments were treated by using 206 medicinal plants (Fig.6). A single ailment is treated by many plants as; more than one plant is active for different disorders. The common disease in the research area was constipation that was treated with 36 plant species followed by blood purification (22 spp.), wounds healing (21 spp.), expel intestinal worms (19 spp.), anti-malarial and cough (18 spp.) each, anti-diabetic (17 spp.), and so on. Similar result was reported in other studied areas (Shuaib *et al.* 2014: Ikram *et al.* 2014).

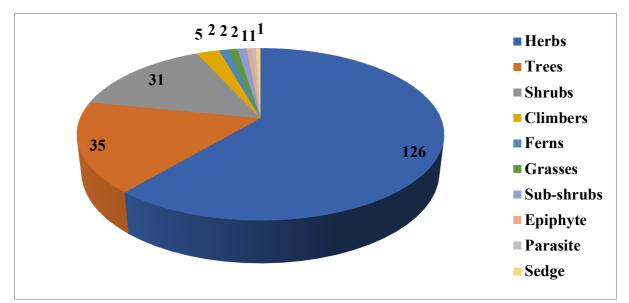


Figure 2. Growth forms of therapeutic plants in District North Waziristan, Pakistan.

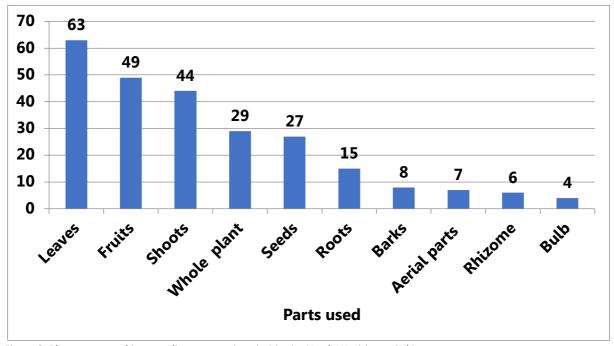


Figure 3. Plant parts used in remedies preparations in District North Waziristan, Pakistan.

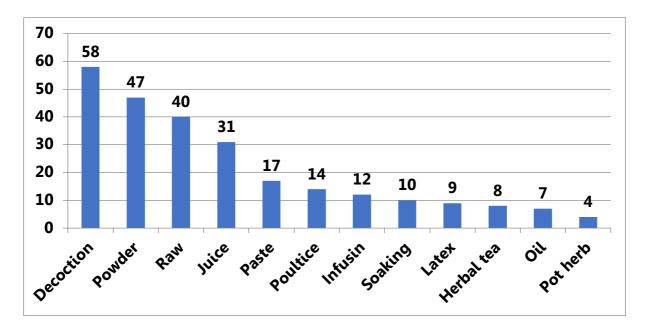


Figure 4. Mode of preparation of remedies in District North Waziristan, Pakistan.

Relative frequency of citation (RFC)

A relative frequency of citation was used to assess the most frequently used therapeutic plants (Mrabti *et al.* 2019) for the treatment of disorders. In the current study, the RFC value ranges from 0.09 to 0.56 (Table 2). The plant species in the study area with a high degree of RFC were *Cydonia oblonga* (0.56), followed by *Morus alba* (0.55), *Berberis lycium* (0.54). The lowest RFC value was recorded for *Erigeron alpine and Galinsoga parviflora* (0.09 each). The relative frequency of citation reveals the tribe's familiarity with the healing properties of specific plants. It also indicates accessibility and efficacy with fewer side effects (Vitalini *et al.* 2013; Kayani *et al.* 2015). Those therapeutic plant species having high RFC value must be further evaluated for pharmaceutical and phytochemical analysis to identify their active component for any medication preparation (Vitalini *et al.* 2013; Yaseen 2019).

Used value (UV)

According to Kayani *et al.* (2014), the use value is a quantitative technique of ethnobotany that associates the significance of medicinal plants among indigenous people with regards to their uses. The use value in our recorded data ranged from 0.07 to 0.21 and the use reports (URs) ranged from 2 to 9 (Table 2). The highest use value was reported for *Ajuga bracteosa* (0.21), followed by *Artemisia martima, Coriandrum sativm* and *Ziziphora tenuier* (0.19) each. The lowest use value (UV) was recorded for *Rumex hastatus* (0.07). It was observed that the highest use value were due to the maximum number of use reports (URs) in the research area. The maximum used values of reported medicinal plants might indicate their local professional expertise, which leads to a preference option for the disorders (Ullah *et al.* 2014). Therapeutic plants with the lowest use value do not mean that they are not therapeutically important, but it is shown that the indigenous knowledge about these therapeutic plant species is limited and / or less availability of the therapeutic plant (Chaudhary *et al.* 2006; Mahmood *et al.* 2013). Medicinal plants for which the use value (UV) is high due to their common distribution in the study area and the local community are familiar for their therapeutic value (Rahman *et al.* 2016; Rehman *et al.* 2023c). The use-value (UV) reveals the relative importance of the utilization of therapeutic plant species in a particular area (Hassan *et al.* 2019). It is recommended that therapeutic plants species with the highest use values (UV) should be further studied for biological and phytochemicals activities (Vitalini *et al.* 2013; Yaseen 2019).

Table 2. Medicinal plants with scientific name, family name, voucher no., local name, part used, mode of preparation, mode of administration, diseases treated and quantitative analysis (FC,
RFC, UV, URs, FL) used among the dwellers of North Waziristan, Pakistan.

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Acanthaceae										
Justicia adhatodaL.	Native	Bikarh	Leaves, roots	Decoction, Powder	Oral	40	0.31	0.15	6	87.50
SR-13233										
Adiantaceae										
Adiantum capillus-veneris L.	Native	Ebe bote	Fronds, rhizome	Infusion, paste,	Oral, topical	13	0.10	0.15	2	76.92
SR-13459				poultices						
Agavaceae										
Agave cantala (Haw.) Roxb. Ex	Naturalized	Shway botay	Whole plant	Juice, poultice	Drop, topical	14	0.11	0.14	2	64.29
Salm-Dyck.										
SR-13460										
Aizoaceae										
Trianthema portulacastrum L. SR-	Weed	Deravenay botay	Shoots, roots	Decoction, powder	Oral	23	0.18	0.09	2	69.57
13339										
Alliaceae										
Allium cepa L. SR-13461	Cultivated	Pyoz	Bulb	Raw, baking	Oral, topical	57	0.44	0.12	7	87.72
Allium sativum L. SR-13462	Cultivated	Yeza	Bulb	Raw	Oral	59	0.45	0.14	8	88.14
Amaranthaceae										
Achyranthesaspera L.	Weed	Ghoshkai	Whole plant	Juice	Oral, topical	43	0.33	0.14	6	90.70
SR-13311										
Aerva javanica (Burm.f.) Juss. Ex	Native	Ghar velanai	Aerial parts	Paste, juice	Oral, topical	17	0.13	0.12	2	70.59
Schult										
SR-13357										
Amaranthus spinosus L.	Native	Ghota surme	Seed, shoot	Poultice, extract	Oral, topical	18	0.14	0.11	2	66.67
SR-13326										
Amaranthus viridis L.	Native	Surmi	Leaves, roots	Juice, paste	Oral, topical	19	0.15	0.16	3	68.42
SR-13341										
Celosia argentea L. SR-13286	Weed	Plash gul	Whole plant	Poultice, Decoction	Oral, topical	14	0.11	0.14	2	71.43
Digera muricata (L.) Mart. SR-	Weed	Soba ghonde	Whole plant	Decoction, infusion	Oral	39	0.3	0.08	3	82.05
13320										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Anacardiaceae										
Pistacia integerrima J. L. Stewart	Native	Shnia	Fruits	Raw	Oral	61	0.47	0.13	8	86.89
ex Brandis.										
SR-13464										
Pistacia vera L. SR-13465	Cultivated	Pesta	Fruits	Raw	Oral	62	0.48	0.11	7	87.10
Apiaceae										
<i>Bunium persicum</i> (Boiss.) Fedtsch. SR-13466	Native	Toora zera	Whole plant	Poultice	Topical	54	0.42	0.15	8	87.04
Bupleurum falcatum L. SR-13443	Native	Pest bote	Leaves, shoots	Decoction	Oral, topical	21	0.16	0.14	3	61.90
Carum carvi L. SR-13467	Native	Zera	Shoots	Decoction	Oral	67	0.52	0.12	8	82.09
Coriandrum sativum L. SR-13468	Cultivated	Dania	Seeds	Powder	Oral	16	0.12	0.19	3	56.25
Daucus carota L. SR-13469	Cultivated	Gajer	Root	Raw	Oral	41	0.32	0.10	4	85.37
<i>Torilis arvensis</i> (Huds.) Link. SR-13445	Weed	Sperkay ghonde	Leaves	Powder	Oral	17	0.13	0.12	2	64.71
<i>Torilis japonica</i> (Houtt.) DC. SR-13470	Weed	Sperkay ghonde	Seeds, root	Powder, Decoction	Oral	15	0.12	0.13	2	60.00
Trachyspermum ammi L. SR-13206	Native	Sperkiye	Seeds	Powder	Oral	67	0.52	0.12	8	100.00
Araceae										
Arisaema flavum (Forsk.) Schott. SR-13268	Native	Varekai mangore boti	Rhizome	Paste	Topical	14	0.11	0.14	2	64.29
Arisaema jacquemontii Blume.	Native	Ghot mangore boti	Rhizome,fruits	Powder	Topical	14	0.11	0.14	2	64.29
SR-13471										
Arecaceae										
Phoenix dactylifera L.	Native	Khajira	Fruit	Soaking	Oral	31	0.24	0.10	3	77.42
SR-13248										
Asclepiadaceae	Ì									
Calotropis Procera (Wild) R.	Native	Spalmai	Fruits, leaves,	Latex	Topical	63	0.48	0.13	8	84.13
Brown.			stem							
SR-13185										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Caralluma tuberculata N.E.	Native	Pamanai	Stem	Raw	Oral	66	0.51	0.12	8	96.97
Brown, Gardn.										
SR-13195										
Periploca Aphylla Dcne.	Native	Barara	Whole plant	Latex, powder	Oral, topical	44	0.34	0.14	6	84.09
SR-13379										
Asphodelaceae										
Aloe vera L.	Naturalized	Zargeya	Leaves	Gel	Topical	16	0.12	0.13	2	81.25
SR-13472										
Asphodelus tenuifolius Cav. SR-	Native	Pyuzgai	Leaves	Raw	Oral, topical	31	0.24	0.13	4	51.61
13436										
Eremurus persicus (Jaub. & Spach)	Native	Gandana	Whole plant	Juice	Oral	25	0.19	0.16	4	60.00
Boiss.										
SR-13174										
Asteraceae										
Artemisia martima L.	Native	Terkha	Aerial parts	Decoction	Oral	36	0.28	0.19	7	80.56
SR-13264										
Calendula arvensis (Vaill.) L.	Native	Zergulay	Leaves	Decoction, poultice	Oral, topical	16	0.12	0.13	2	56.25
SR-13367										
Carthamus oxyacantha Bieb.	Native	Azghechan gul	Flower, leaves,	Powder	Oral	13	0.10	0.15	2	61.54
SR-13138			shoots							
Cichorium intybus L.	Weed	Ghot khatakai	Aerial parts, roots	Decoction	Oral	18	0.14	0.11	2	72.22
SR-13334										
Cnicus benedictus L.	Native	Pest azghi	Aerial parts	Decoction	Oral	14	0.11	0.14	2	71.43
SR-13473										
Erigeron alpines L.	Native	Pest gul	Whole plant	Powder	Oral	12	0.09	0.14	2	58.33
SR-13221										
Galinsoga parviflora Cav.	Native	Pest boti	Shoots	Juice	Oral	12	0.09	0.17	2	66.67
SR-13449										
Heteropapus biennis (Ledeb.)	Native	Pervetia gul	Aerial parts	Decoction	Oral	13	0.1	0.15	2	53.85
Tamamsch.										
SR-13458										
Sonchus arvensis L.	Native	Khatakay	Leaves	Paste	Topical	12	0.09	0.17	2	50.00

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13335										
Sonchus asper L. SR-13228	Native	Azghi khatakai	Leaves	Decoction	Oral	12	0.09	0.17	2	50.00
Sonchus oleraceus L.	Native	Tareza	Shoots, leaves	Decoction	Oral	12	0.09	0.17	2	50.00
SR-13156										
Reichardia tingitana (L.) Roth.	Native	Khataki Gul	Leaves	Infusion, Powder	Drop, oral	15	0.12	0.13	2	53.33
SR-13199										
Senecio chrysanthemoides DC.	Native	Zer ghot gul	Rhizome	Decoction	Oral	16	0.12	0.13	2	56.25
SR-13426										
Tagetes minuta L. SR-13260	Invasive	Zenda gula	Shoots	Infusion	Oral	16	0.12	0.13	2	62.50
Taraxicum officinale F.H.Wigg	Native	Khataki Gul	Root	Decoction	Oral	17	0.13	0.17	2	64.71
SR-13256										
Xanthium strumarium L.	Native	Chechan boti	Leaves	Decoction, paste	Oral, topical	14	0.11	0.14	2	57.14
SR-13238										
Balsaminaceae										
Impatiens glandulifera Royle.	Native	Khr gul	Flower, shoots	Decoction, soaking	Oral	14	0.11	0.14	2	64.29
SR-13263										
Berberidaceae										
Berberis lycium Royle.	Native	Danedar bote	Fruits, bark	Raw, decoction	Oral	70	0.54	0.13	9	95.71
SR-13444										
Bignoniaceae										
<i>Tecomella undulata</i> (Roxb.)	Native	Rawdana	Whole plant	Powder, soaking	Oral	68	0.52	0.12	8	100.00
Seeman.										
SR-13378										
Boraginaceae										
Arnebia hispidissima (Lehm.) A.	Native	Spy gul	Whole plant	Decoction	Oral	17	0.13	0.12	2	64.71
DC.										
SR-13159										
Cordia myxa L. SR-13476	Cultivated	Lawsera	Fruits	Raw	Oral	61	0.47	0.15	9	93.44
Brassicaceae										
Brassica campestris L.	Cultivated	Shershem	Seeds	Oil	Topical	29	0.22	0.10	3	62.07
SR-13218										
Brassica juncea (L.) Czern. Et Coss.	Native	Zangali shershem	Leaves, seeds	Paste	Oral, topical	15	0.12	0.13	2	60.00

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13477										
Capsella bursa-pastoris (L.) Medik	Weed	Avor bote	Whole plant	Decoction, herbal	Oral	33	0.25	0.12	4	69.70
SR-13422				tea						
Eruca sativa Mill. SR-13479	Native	Khatel	Seeds	Oil	Oral	23	0.18	0.17	4	56.52
Lepidium sativum L.	Native	Bashke ghonde	Seeds	Powder	Oral	13	0.10	0.15	2	46.15
SR-13320										
Nasturtium officinale R.Br.	Native	Narm bote	Leaves, seeds,	Herbal tea, oil	Oral, topical	17	0.13	0.12	2	64.71
SR-13317			shoots							
Rephanus sativus L.	Cultivated	Mulai	Root	Raw	Oral	44	0.34	0.09	4	52.27
SR-13480										
Sisymbrium irio L.	Native	Melai ghnde	Leaves, seed,	Decoction, powder	Oral	13	0.10	0.15	2	69.23
SR-13366			shoots							
Cactaceae										
Opuntia dillenii Haw.	Native	Sapare gul	Cladodes, flower,	Infusion, juice, raw	Oral, topical	21	0.16	0.10	2	61.90
SR-13168			fruits							
Opuntiaficus-indica (L) Mill. SR-	Naturalized	Sapare gul	Cladodes, fruits	Juice, decoction	Oral, topical	17	0.13	0.12	2	64.71
13481										
Caesalpiniaceae										
Cassia fistula L. SR-13483	Cultivated	Gernalia	Fruits	Pulp	Oral	53	0.41	0.13	7	88.68
Parkinsonia aculeate L.	Native	Pest kekar	Seed pod	Decoction	Oral	13	0.10	0.15	2	53.85
SR-13141										
Cannabinaceae										
Cannabis sativa L. SR-13324	Native	Banga	Leaves	Infusion, powder,	Oral, inhale	23	0.18	0.17	4	69.57
Capparidaceae				chars						
Capparis decidua (Forssk.) Edge.	Native	Sre dane	Fruits, bark	Dow nowdor	Oral tanical	57	0.44	0.11	6	75.44
SR-13484	Native	Sreudrie	Fruits, Dark	Raw, powder	Oral, topical	57	0.44	0.11	D	75.44
Capparis spinosa L.	Native	Gher Toondah	Whole plant	Decoction	Oral	54	0.42	0.13	7	72.22
SR-13177										
Caryophyllaceae										
Stellaria media (L.) Vill.	Native	Pastekai bote	Whole plant	Poultice, decoction	Oral, topical	14	0.11	0.14	2	57.14
SR-13146										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Celastraceae										
Gymnosporia nemorosa (Eckl. &	Native	Sagher zai	Leaves, bark	Decoction, powder	Oral	29	0.22	0.14	4	62.07
Zeyh.) Szyszyl. SR-13364										
Chenopodiaceae										
Chenopodium album L.	Native	Khre sapaka	Leaves, shoots	Pot herb, juice	Oral	19	0.15	0.16	3	63.16
SR-13227										
Chenopodium ambrosioides L.	Native	Gheta sapaka	Shoot, leaves	Infusion, juice	Oral, topical	14	0.11	0.14	2	64.29
SR-13531										
Chenopodium murale L.	Native		Leaves, shoots	Pot herb	Oral	14	0.11	0.14	2	64.29
SR-13430										
Dysphania botrys L.	Native	Ghar bang	Shoots	Decoction	Oral	13	0.10	0.15	2	61.54
SR-13415										
Spinacia oleracea L.	Weed	Parkhorai	Shoots, leaves	Potherb	Oral	27	0.21	0.11	3	59.26
SR-13231										
Convolvulaceae										
Convolvulus arvensis L.	Native	Purvuthia	Leaves, shoot	Oral	Leaves, shoot	18	0.14	0.11	2	61.11
SR-13215										
Cucurbitaceae										
Citrullus colocynthis (L.) Schrad.	Native	Maraginye	Fruits	Sweet dish	Oral	59	0.45	0.12	7	72.88
SR-13486										
Cucurbita moschata Duchesne.	Cultivated	Halwa kadi	Fruits	Sweet dish	Oral	33	0.25	0.09	3	57.58
SR-13487										
Cucumis melo subsp. Agrestis	Native	Kharbezgai	Fruits, seeds	Powder, rubbing	Oral, topical	38	0.29	0.16	6	57.89
(Naud.) rebensc.										
SR-13251										
Memordica charantia L.	Cultivated	Karela	Fruits	Raw, juice	Oral	43	0.33	0.14	6	72.09
SR-13487										
Cuscutaceae										
Cuscuta reflexa Roxb.	Native	Akash bel	Whole plant	Ash, juice	Oral, topical	13	0.10	0.15	2	38.46
SR-13488										
Cyperaceae										
Cyprus rotundus L.	Native	Deela	Rhizome	Paste, powder	Oral, topical	23	0.18	0.13	3	60.87

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13296										
Ebenaceae										
Diospyrus kaki L.	Cultivated	Sure amlok	Fruit	Raw	Oral	17	0.13	0.12	2	64.71
SR-13489										
Elaeagnaceae										
Elaeagnus hortensis M.Bieb.	Native	Sanzalla	Fruits, bark	Powder	Oral	14	0.11	0.14	2	50.00
SR-13313										
Ephedraceae										
Ephedra procera Fisch. & C. A.	Native	Mowah	Aerial parts	Decoction	Oral, topical	63	0.48	0.11	7	95.24
Mey.										
SR-13444										
Equisetaceae										
Equisetum arvense L.	Native	Bandkai	Shoots	Decoction	Oral	14	0.11	0.14	2	50.00
SR-13216										
Euphorbiaceae										
Euphorbia heleoscopia L.	Native	Selvergotia	Whole plant	Latex	Topical	16	0.12	0.13	2	50.00
SR-13316		_								
Euphorbia prostrataL.	Native	Prata	Whole plant	Infusion	Oral, topical	16	0.12	0.13	2	56.25
SR-13359										
Ricinus communis L.	Native	Rund	Leaves, seeds	Poultice, oil	Topical	38	0.29	0.08	3	73.68
SR-13132										
Fagaceae										
Quercus baloot Griff.	Native	Tora serai	Fruits	Baking	Oral	49	0.38	0.12	6	87.76
SR-13258				_						
Quercus incana Roxb.	Native	Spina serai	Fruits	Powder	Oral	49	0.38	0.12	6	87.76
SR-13491										
Quercus dilatata Royle.	Native	Serai	Bark	Poultice	Topical	49	0.38	0.12	6	87.76
SR-13212										
Fumariaceae										
Fumaria indica (Hausskn.) Pugsley.	Native	Shatra papra	Whole plant	Juice	Oral	13	0.10	0.15	2	53.85
SR-13312	1									

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Gentianaceae										
<i>Gentiana kurreo</i> Royle.	Native	Sheen gul	Root	Decoction	Oral	15	0.12	0.13	2	53.33
SR-13261										
Geraniaceae										
Erodium cicutarium L.	Native	Dhania ghonde	Whole plant	Herbal tea	Oral	17	0.13	0.18	3	64.71
SR-13209										
Geranium willianum D.Don ex	Native	Varekai bote	Whole plant,	Powder, Paste	Oral,	14	0.11	0.14	2	50.00
Sweet.			rhizome		topical					
SR-13389										
Juglandaceae										
Juglans regia L.	Native	Matak	Fruits	Raw	Oral	44	0.34	0.11	5	88.64
SR-13457										
Labiatae										
Ajuga bracteosa Wall.	Native	Ghotakai bote	Whole plant	Powder	Oral	19	0.15	0.21	4	57.89
SR-13425										
<i>Ajuga parviflora</i> Benth.	Native	Beian bote	Whole plant	Decoction	Oral	17	0.13	0.12	2	64.71
SR-13413										
Isodon rogosus (Wall. ex Benth.)	Native	Ghez bee bote	Shoots	Decoction	Drop	38	0.29	0.16	6	81.58
SR-13385										
Lycopus europaeus L.	Native	Ebe bote	Shoots	Decoction	Oral	38	0.29	0.11	4	86.84
SR-13377										
Marrubium vulgareL.	Native	Babar bote	Shoots	Decoction	Oral	14	0.11	0.14	2	50.00
SR-13239										
Mentha spicata L.	Cultivated	Poodina	Shoots, leaves	Powder	Oral	34	0.26	0.15	5	85.29
SR-13283										
Mentha longifolia (L.) Huds. SR-	Native	Velanai	Shoots, root	Juice	Oral	41	0.32	0.17	7	85.37
13331										
Mentha viridisL.	Cultivated	Serkare velnai	Whole plant	Decoction	Oral	29	0.22	0.14	4	79.31
SR-13284										
Nepeta cataria L.	Native	Khez bee boti	Whole plant	Herbal tea	Oral	16	0.12	0.13	2	56.25
SR-13420										
Nepeta laevigata (D. Don) Hand.	Native	Sheen berai	Seeds	Soaking	Oral	19	0.15	0.11	2	73.68

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13259										
Ocimum basilicum L.	Cultivated	Bubrai	Leaves	Decoction	Oral	16	0.12	0.13	2	56.25
SR-13492										
Salvia aegyptiaca L.	Native	Malenga tukhem	Seeds	Soaking	Oral	33	0.25	0.09	3	72.73
SR-13273										
Salvia macrosiphon Boiss.	Native	Der shel	Whole plant	Juice	Oral	47	0.36	0.09	4	74.47
SR-13374										
Salvia moocroftiana Wall.	Native	Ghote pakhe	Leaves, Shoots	Powder, poultice	Oral, topical	21	0.16	0.10	2	61.90
SR-13431										
Salvia nubicola Wall. ex Sweet.	Native	Khez bee bote	Shoots	Juice	Oral	17	0.13	0.12	2	64.71
SR-13394										
Teucrium stocksianum Boiss.	Native	Matokai bote	Shoots	Powder	Oral	52	0.4	0.12	6	44.23
SR-13274										
Thymus linearis Benth.	Native	Prêt bote	Shoots	Decoction	Oral	21	0.16	0.10	2	71.43
SR-13451										
Ziziphora tenuier L.	Native	Khez bee boti	Shoots	Herbal tea	Oral	16	0.12	0.19	3	56.25
SR-13414										
Liliaceae										
Fritillaria imperialis L.	Native	Gigar gul	Bulb	Powder	Oral	16	0.12	0.13	2	50.00
SR-13383										
Tulipa clusiana DC.	Native	Shande Gul	Bulb	Powder	Oral	18	0.14	0.11	2	50.00
SR-13271										
Linaceae										
Linum strictum L.	Native	Sreshan bote	Seed	Oil, juice	Oral,	21	0.16	0.14	3	66.67
SR-13192					topical					
Loranthaceae										
Viscum album L.	Native	Zarkatel bote	Leaves	Paste	Topical	14	0.11	0.14	2	42.86
SR-13244										
Malvaceae										
Abutilon indicum (L.) Sweet.	Native	Zer gulai	Whole plant	Powder, soaking	Oral	22	0.17	0.14	3	57.14
SR-13340										
Hibiscus trionum L.	Native	Bahindai gul	Shoots	Decoction, Powder	Oral	14	0.11	0.14	2	53.85

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13252										
Malva neglecta Wallr.	Native	Spee takalay	Leaves	Decoction	Oral	13	0.10	0.15	2	
SR-13368										
Meliaceae										78.26
Melia azedarach L.	Native	Bakana	Fruits, leaves	Pulp	Oral, topical	23	0.18	0.13	3	
SR-13266										
Menispermaceae										65.22
Cocculus pendulus (J. R. & G.	Native	Matokai	Root, fruits	Decoction	Oral	23	0.18	0.13	3	71.43
Forst.) Diels.										
SR-13573										
Mimosaceae										
Acacia modesta Wall.	Native	Palosa	Bark, seeds	Decoction, Powder	Oral	43	0.33	0.14	6	97.67
SR-13196										
Acacia nilotica (L.) Deliled.	Native	Kikar	Bark	Decoction	Oral	39	0.30	0.10	4	69.23
SR-13448										
Leucaena leucocephala (Lam.) de	Native	Pest kekar	Seeds	Powder	Oral	16	0.12	0.13	2	56.25
Wit.										
SR-13358										
Prosopis glandulosaTorr.	Native	Prêt kekar	Leaves	Juice	Oral,	16	0.12	0.13	2	56.25
SR-13222					topical					
Moraceae										
Ficus carica L.	Native	Inzar	Fruit, leaves	Raw, latex	Oral, topical	42	0.32	0.14	6	80.95
SR-13124										
Ficus palmata Forssk.	Native	Zangali Inzar	Fruits, leaves	Raw, latex	Oral, topical	39	0.30	0.15	6	79.49
SR-13139										
Morus alba L.	Native	Spin Thooth	Fruits	Raw	Oral	71	0.55	0.13	9	98.59
SR-13435										
Morus nigra L.	Native	Tor Thooth	Fruits	Juice	Oral	68	0.52	0.15	9	98.53
SR-13330										
Myrtaceae										
Eucalyptus camaldulensis Dehnh.	Naturalized	Lochai	Leaves	Decoction	Oral	13	0.10	0.15	2	46.15
SR-13498										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Psidium guajava L.	Cultivated	Ambrith	Fruits	Raw	Oral	39	0.30	0.13	5	82.05
SR-13499										
Nyctaginaceae										
Boerhavia diffusa L.	Native	Prêt bote	Shoots, roots	Poultice, powder	Oral, topical	24	0.18	0.13	3	75.00
SR-13373										
Mirabilis jalapa L.	Cultivated	Mazdegar Gul	Root	Powder	Oral	17	0.13	0.12	2	88.24
SR-13500										
Oleaceae										
Olea europaea L.	Cultivated	Zaiton	Fruits, leaves	Raw, chewing	Oral, chewing	27	0.21	0.11	3	77.78
SR-13503										
Olea ferruginea Royle.	Native	Shawan	Fruit, leaves	Raw, chewing	Oral, chewing	27	0.21	0.11	3	77.78
SR-13404										
Oxalidaceae										
Oxalis corniculata L.	Native	Terwekai	Shoots	Paste	Topical	16	0.12	0.13	2	56.25
SR-13254										
Papaveraceae										
Glaucium elegans Fish. & Mey.	Native	Lala gul	Whole plant	Latex	Topical	16	0.12	0.13	2	68.75
SR-13181										
Papaver rhoeas L.	Native	Zagali afeem	Capsule	Latex	Oral, inhale	14	0.11	0.14	2	57.14
SR-13395										
Papaver somniferum L.	Cultivated	Afeem	Capsule	Latex	Oral	46	0.35	0.13	6	84.78
SR-13504										
Papilionaceae										
Argyrolobium roseum (Camb.)	Native	Makhani booti	Leaves	Powder	Oral	34	0.26	0.18	6	79.41
Jaub.										
SR-13390										
Arachis hypogaea L.	Cultivated	Mungphali	Seeds	Raw	Oral	40	0.31	0.10	4	77.50
SR-13539										
Indigofera heterantha Brandis.	Native	Ser gul	Bark, leaves	Decoction, powder	Oral	42	0.32	0.14	6	88.10
SR-13423										
Medicago polymorpha L.	Native	Malkindie	Aerial parts	Decoction	Oral	16	0.12	0.13	2	56.25
SR-13365										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Sophora mollis (Royle) Baker.	Native	Deravenai boti	Leaves, seeds	Powder, paste	Oral, topical	26	0.20	0.08	2	69.23
SR-13249										
Pinaceae										
Cedrus atlantica (Endl.) Manetti	Native	Almanza	Stem	Oil	Topical	26	0.20	0.12	3	73.08
ex Carrière										
SR-13453										
Cedrus deodara (Roxb. ex D. Don)	Native	Almanza	Stem	Oil	Topical	26	0.20	0.12	3	73.08
G. Don.										
SR-13455										
<i>Pinus gerardiana</i> Wall. ex Lamb. SR-13505	Native	Zanrghozai	Seeds	Raw	Oral	51	0.39	0.12	6	88.24
Pinus roxburghii Sargent.	Native	Zanrghozai	Seeds	Raw	Oral	51	0.39	0.12	6	64.71
SR-13438		-								
Plantaginaceae										
Plantago ciliata Desf.	Native	Isobhel	Husk	Soaking	Oral	19	0.15	0.11	2	73.68
SR-13211										
Plantago lanceolata L.	Native	Khatakai	Leaves, seeds	Paste, juice	Oral, topical	23	0.18	0.13	3	69.57
SR-13210										
Plantago major L.	Native	Ghot khatakai	Leaves, seeds	Paste, soaking	Oral, topical	24	0.18	0.13	3	70.83
SR-13308										
Plantago ovata Forssk.	Native	Isobaghel	Husk	Soaking	Oral	57	0.44	0.14	8	100.00
SR-13391										
Veronica anagallis-aquatica L.	Native	Ebe boti	Leaves, shoots	Decoction	Oral	13	0.10	0.15	2	53.85
SR-13290										
Poaceae										
Dactyloctenium aegypticum (L.)	Native	Voshe	Seeds	Decoction	Oral	14	0.11	0.14	2	57.14
Willd.										
SR-13242										
Hordeum murinum L.	Cultivated	Babar voshe	Shoots	Decoction	Oral	25	0.19	0.12	3	52.00
SR-13343										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Polygonaceae										
Persicaria glabra (Wild.) M.	Native	Ebe bote	Leaves	Juice	Oral	17	0.13	0.12	2	64.71
Gomes.										
SR-13208										
Polygonum aviculare L.	Native	Vare pakhe bote	Leaves, shoot	Decoction	Oral	16	0.12	0.13	2	56.25
SR-13450										
Polygonum plebeium R.Br.	Native	Vare pakhe bote	Leaves, shoot	Decoction	Oral	16	0.12	0.13	2	56.25
SR-13428										
Rumex dentatus L.	Native	Zandan	Leaves	Poultice	Topical	17	0.13	0.12	2	64.71
SR-13517										
Rumex hastatus D.Don.	Native	Zandan	Leaves	Juice	Oral	27	0.21	0.07	2	70.37
SR-13518										
Portulacaceae										
Portulaca oleracea L. SR-13169	Weed	Zengali purkhurhai	Shoots, seeds	Juice, soaking,	Oral	23	0.18	0.13	3	60.87
				Potherb						
Portulaca quadrifida L.	Weed	Serkori purkhurhai	Shoots, seeds	Crushing, warmed	Topical	19	0.15	0.11	2	73.68
SR-13519										
Primulaceae										
Anagallis arvensis L.	Native	Push boti	Whole plant	Juice	Topical	21	0.16	0.10	2	61.90
SR-13361										
Androsace rotundifolia Hardwicke.	Native	Ser gulakai	Leaves	Crushing	Oral	14	0.11	0.14	2	57.14
SR-13424										
Punicaceae										
Punica granatum L.	Native	valengai	Fruits	Juice, powder	Oral	56	0.43	0.13	7	94.64
SR-13333										
Ranunculaceae										
Ranunculus muricatus L.	Native	Zer gulai	Shoots	Decoction	Oral	17	0.13	0.12	2	64.71
SR-13322										
Ranunculus sceleratus L.	Native	Zer gulai	Shoot	Juice	Topical	16	0.12	0.13	2	68.75
SR-13135										
Rhamnaceae										
Zizyphus mauritiana Lam.	Native	Bera	Fruits, leaves	Raw, Paste	Oral, topical	43	0.33	0.09	4	86.05

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
SR-13198										
Zizypus nummlaria (Burm.f.) Wight	Native	Karkana	Fruits, leaves	Raw, Paste	Oral, topical	19	0.15	0.11	2	68.42
& Arn. SR-13179										
Rosaceae										
Cydonia oblonga Mill.	Cultivated	Bahi	Fruits	Raw, Jam	Oral	73	0.56	0.12	9	100.00
SR-13520										
Eriobotrya japonica (Thunb.) Lindl.	Cultivated	Aloquat	Fruits	Raw, Juice	Oral	47	0.36	0.15	7	78.72
SR-13521										
Fragaria vesca L.	Cultivated	Strawberry	Fruits	Raw, chewing	Oral, topical	33	0.25	0.09	3	51.52
SR-13522										
Fragaria nubicola (Hook.f.) Lindl.	Native	Zangali strawberry	Fruits	Raw, juice	Oral, topical	13	0.10	0.15	2	69.23
SR-13429										
Malus domestica Borkh.	Cultivated	Manra	Fruit	Raw, Juice	Oral	32	0.25	0.09	3	59.38
SR-13522										
Potentill aerecta (L.) Raeusch.	Native	Zer gulakai	Whole plant	Powder	Oral	13	0.10	0.15	2	61.54
SR.13432										
Potentilla supine L.	Native	Dhania ghonde	Roots	Powder	Topical	14	0.11	0.14	2	64.29
SR-13538										
Prunus armeniaca L.	Cultivated	Mundetha	Flower, fruits	Infusion, raw	Oral	47	0.36	0.17	8	87.23
SR-13125										
Prunus domestica L.	Native	Alucha	Fruits	Raw, juice	Oral	47	0.36	0.15	7	87.23
SR-13521										
Prunus microcarpa C. A. Mey.	Native	Voly	Fruits	Raw	Oral	41	0.32	0.15	6	85.37
SR-13522										
Pyrus communis L.	Cultivated	Nashpati	Fruits	Raw	Oral	33	0.25	0.09	3	63.64
SR-13299										
Rosa indica L.	Native	Gulab	Petal	Gulqand	Oral	31	0.24	0.10	3	74.19
SR-13524										
Rubiaceae										
Galium aparine L.	Native	Chechan boti	Shoots, leaves	Herbal tea, paste	Oral, topical	13	0.10	0.15	2	46.15
SR-13183										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Rutaceae										
Citrus limon (L.) Burm. f.	Cultivated	Nimbo	Fruits	Juice	Oral, topical	41	0.32	0.15	6	80.49
SR-13526										
Citrus sinensis (L.) Osbeck.	Cultivated	Malta	Fruits	Juice	Oral	42	0.32	0.14	6	73.81
SR-13527										
Salvadoraceae										
Salvadora oleoides Decne.	Native	Plawan	Fruits, leaves	Raw, powder	Oral	67	0.52	0.13	9	100.00
SR-13148										
Sapotaceae										
Monotheca buxifolia (Falc) A. DC.	Native	Gurguray	Fruits	Raw	Oral	57	0.44	0.16	9	96.49
SR-13267										
Scrophulariaceae										
Verbascum thapsus L.	Native	Jhngli tambako	Leaves	Powder	Topical	14	0.11	0.14	2	57.14
SR-13158										
Simaroubaceae										
Ailanthus altissima (Mill.) Swingle.	Naturalized	Sarkore bakana	Leaves	Crushing, soaking	Topical	21	0.16	0.14	3	76.19
SR-13134										
Solanaceae										
Lycopersicon esculentum (L.) Mill.	Cultivated	Tamater	Fruit	Juice	Topical	44	0.34	0.09	4	75.00
SR-13534										
Solanum nigrum L.	Native	Gorgore ghonde	Fruits, shoots,	Decoction, poultice,	Oral, topical	36	0.28	0.08	3	86.11
SR-13321			leaves	raw						
Solanum surratense Brum. f.	Native	Marhaghinya	Fruits	Decoction, Powder	Oral	46	0.35	0.09	4	89.13
SR-13396										
Withania coagulans (Stocks.)	Native	Shapyanga	Fruits	Powder	Oral	58	0.45	0.10	6	98.28
Dunal.										
SR-13188										
<i>Withania somnifera</i> (L.) Dunal.	Native	Sredane	Root	Powder	Oral	35	0.27	0.14	2	82.86
SR-13230										
Thymelaeaceae										
Daphne mucronata Royle.	Native	Sre remrakai	Leaves	Poultice	Topical	16	0.12	0.13	2	68.75
SR-13440										

Family and Scientific name/	Status	Local name	Part used	Mode of	Mode of	FC	RFC	UV	URs	FL%
Voucher No.				preparation	administration					
Tiliaceae										
Corchorus olitorius L.	Native	Genjan	Leaves	Pot herb	Oral	33	0.25	0.12	4	69.70
SR-13325										
Urticaceae										
Urtica dioica L.	Native	Seezonkai	Shoots, leaves	Decoction	Oral	13	0.10	0.13	2	61.54
SR-13128										
Verbenaceae										
Phyla nodiflora (L.) Greene.	Native	Ebe bote	Whole plant	Herbal tea	Oral	17	0.13	0.12	2	64.71
SR-13319										
Verbena officinalis L.	Native	Bechawai	Shoots	Decoction	Oral	15	0.12	0.13	2	60.00
SR-13293										
Vitex negundo L.	Native	Marwandai.	Leaves	Herbal tea	Oral	29	0.22	0.10	3	72.41
SR-13171										
Violaceae										
Viola stocksii Boiss. SR-13149	Native	Makhanr booti	Leaves	Powder	Oral	61	0.47	0.15	9	100.00
Vitaceae										
Vitis vinifera L.	Cultivated	Melawa	Fruits, leaves	Raw, wrapping	Oral, topical	56	0.43	0.07	4	76.79
SR-13538					-					
Zygophyllaceae										
Fagonia cretica L.	Native	Spelaghzii	Shoots	Decoction	Oral	64	0.49	0.13	8	98.44
SR-13204										
Peganum harmala L.	Native	Spilanai	Seeds	Smoke	Inhale	19	0.15	0.16	3	89.47
SR-13163										
Tribulus terrestris L.	Native	Kandalai	Seeds	Powder	Oral	39	0.30	0.08	3	94.87
SR-13236										

Key words: SR= Sabith Rehman, RFC=Relative frequency of citation, FC= Frequency of citation, UV= Use value, URs= Used Reports, FL% = fidelity level.

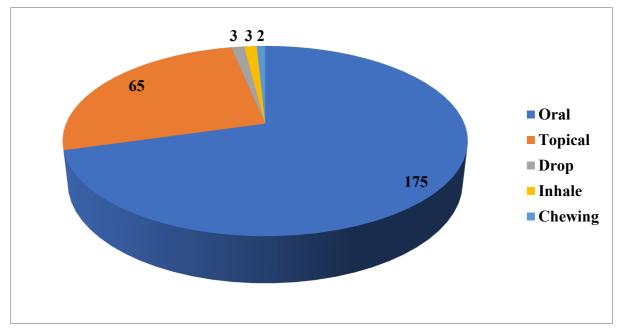


Figure 5. Mode of administration in District North Waziristan, Pakistan

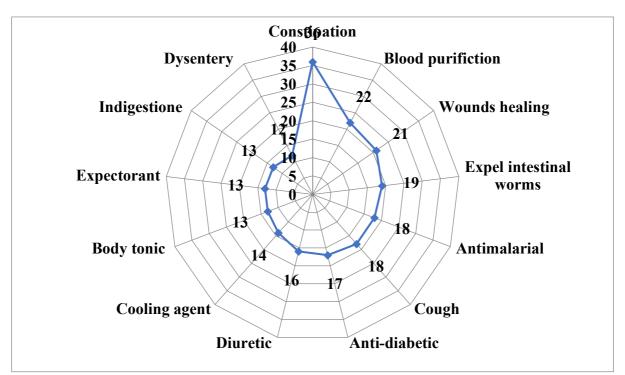


Figure 6. Number of plant species used for the treatment of different diseases in District North Waziristan.

Fidelity level (FL %)

Fidelity level (FL %) is used to identify the medicinal plant species that are most preferred by the indigenous people for the cure of specific diseases (Yaseen *et al.* 2015). The medicinal plants with the highest curing effects have the highest fidelity level of 100%. The therapeutic plants that were reported by a single respondent were not considered for the FL level study. In this study, FL ranged from 38.46% to 100% (Table 2). Six species viz., *Trachyspermum ammi, Tecomella undulata, Plantago ovata, Salvadora oleoides, Cydonia oblonga* and *Viola stocksii* were used with 100% FL against indigestion, hepatitis, constipation, libido enhancer, heart diseases, and libido enhancer, respectively, followed by *Morus alba* (98.59%), while the lowest FL value was recorded in the case of *Cuscuta reflexa* (38.46%) for scabies. The maximum fidelity level (FL) value determines the choice of informants to cure the specific ailment (Bisi-Johnson *et al.* 2010; Karakose 2022). It is a fact that the higher the plant's utilization, the higher will be the FL value (Farnsworth *et al.* 1988; Sahil 2014; Rehman *et al.* 2023d).

Informant consensus factor (ICF)

ICF was used to identify therapeutic plants used by inhabitants of the district of North Waziristan to cure a group of disorders. To determine the informants' consensus factor (ICF), various diseases were grouped into 8 different disease categories based on taxa utilized and use reports (Table 4.). In other words, the ICF value explains the cultural consistency in the use of a group of therapeutic plant species to cure a specific disease (Cerqueira *et al.* 2020). The informant consensus factors (ICF) have been computed for every category. In the present study, the ICF values ranged from 0.69 to 0.91 per use categories. The highest ICF value was reported for gastrointestinal disorders (0.91), followed by skeleto-muscular pain, inflammation, and fever with ICF value (0.90), and the least one (ICF= 0. 69) was reported for Cardio-vascular problems. Similar results were documented by (Shah *et al.* 2020; Birjees *et al.* 2021), who reported the highest ICF value for gastrointestinal disorders. Therapeutic plant species with maximum ICF values indicate that the indigenous person has a well-defined choice criterion and that traditional knowledge is shared among respondents about their effectiveness (Mootoosamy and Mahomoodally 2014). Therefore, medicinal plants with high ICF values are to be preferred for advanced studies on pharmacological and phytochemical basis.

Sr.	Ailment categories	Biomedical term	Nt	Nur	ICF
No.					
1	Gastro intestinal problems	Indigestion, Constipation, diarrhea, flatulence, dysentery, abdominal pain, acidity, intestinal worms	114	1200	0.91
2	Skeleto-muscular pain and inflammation	Headache, muscular pain, joint pain, arthritis, inflammation	40	400	0.90
3	Fever	Typhoid, jaundice, fever	23	231	0.90
4	General disorder	Diabetes, tonic	33	300	0.89
5	Dermatological problems and cosmetics	Athlete foot, wounds, pimples, cut, boils, ringworms, smallpox, dandruff	53	435	0.88
6	Throat, ear, and nose disorder	Cough, sore throat, flu, earache, asthma	51	421	0.88
7	Urinogenital disorder	Aphrodisiac, bladder incontinence, kidneys disorder, sexual debility	29	197	0.86
8	Cardio-vascular problems	Blood pressure	32	100	0.69

	Table 4. Informant consensus factor	r (ICF) for human diseases group	วร
--	-------------------------------------	----------------------------------	----

Legends: Nt= Number of taxa, Nur= Number of use reports, ICF= Informants consensus factor

Jaccard index (JI)

Ethnobotanists use Jaccard similarity index (JI) for making comparisons of reported plants with previously published literature gathered from adjacent areas (Yaseen et al. 2015). A few ethnomedicinal research works were chosen from adjoining areas for review in Jaccard index (JI) (Table 5). The comparative analysis of these 206 plants showed that similarity index ranges from 15.86% to 6.45% and the dissimilarity index ranged from 63.00% to 41.46%. The maximum level of the Jaccard index (JI) was found in the literature with the studies of Hussain et al. (2022), Haq et al. (2022), Ullah et al. (2021), Hussain et al. (2018b) and Aziz et al. (2016) with JI values (24.8, 23.45, 22.8, 21.63 and 19.5% respectively (Table 5). The highest degree of similarity index with Aziz et al. (2016) in the area of South Waziristan agency, Pakistan, revealed similarity in ethnic groups, geography and vegetation in both regions. The minimum level of the Jaccard index (JI) was noted for the work of Murad et al. (2013) with JI value (14.8%) (Table 5). The lowest JI values indicate incomplete cultural exchange between the adjacent areas, which are separated by mountain ranges and other cultural differences. The ecological barriers had an important influence on the flora. The low similarity may be due to variations in the indigenous knowledge among various communities, with difference in their culture and social behaviors (Ullah et al. 2014). The main reasons for the lower similarity index used in a literature study of the adjacent area are cultural adaptations in response to changes in population and habitat, which could be directly observed in the loss of ethnomedicinal, ethnopharmacological and ethnobotanical knowledge in the adjoining areas (Murad et al. 2013). The Jaccard index (JI) shows the results by comparing the similarity of common plant species with similar uses and common plant species with dissimilar uses. Some researchers had thought that the variation in ethnographic information might be due to the impact of environmental conditions on the therapeutic properties of some plant species (Tabuti et al. 2003).

Previous studies	No. of species reported(A)	No. of species in present study area(B)	Plants common in both areas(C)	Species only in aligned areas	% of Similarity	% of Dissimilarity	Species only in studied area	c×100	A+B	(A+B)- C	Jaccard Index (JI)	References
Ladha district South Waziristan agency, Pakistan	82	206	47	35	15.86%	41%	159	4700	288	241	19.5	(Aziz <i>et al.</i> 2016)
Central Kurram, Khyber Pakhtunkhwa North West Pakistan	106	206	62	44	10.38%	48%	144	6200	312	250	24.8	(Hussain <i>et</i> <i>al.</i> 2022)
Koh-e-Safaid Range, northern Pakistani- Afghan borders	92	206	53	39	9.80%	47.80%	153	5300	298	245	21.63	(Hussain <i>et</i> <i>al.</i> 2018b)
District Bannu, Pakistan	85	206	54	31	12.94%	51.00%	152	5400	291	237	22.8	(Ullah <i>et</i> <i>al.</i> 2021)
Banda Daud Shah, District Karak, Pakistan	58	206	34	24	8.62%	50%	172	3400	264	230	14.8	(Murad <i>et</i> <i>al.</i> 2013)
Pashat Valley, Bajaur,along Pakistan– Afghanistan border:	73	206	53	20	9.60%	63.00%	153	5300	279	226	23.45	(Haq <i>et al.</i> 2022)
Lakki Marwat District of Pakistan	62	206	38	24	6.45%	54.80%	168	3800	268	230	16.52	(Ullah et al. 2014)

Table 5. Jaccard index comparison of current study with previous reports.

Some novel ethnomedicinal uses

Compared with the literature from the nearby areas (Ullah *et al.* 2013; Aziz *et al.* 2016; Hussain *et al.* 2022) had comparatively fewer similarities. The comparative survey with previously documented therapeutic plants showed, that 13 plant species viz. *Acacia modesta* (increase libido) (URs=6), *Argyrolobium roseum* (aphrodisiac) (URs=6), *Berberis lyceum* (diabetes) (URs=9), *Corchorus olitorius* (diabetes) (URs=4), *Ephedra procera* (hemoptysis, antiseptic) (URs=7), *Morus alba* (constipation) (URs=9), *Peganum harmala* (antiseptic) (URs=3), *Salvadora oleoides* (enhance libido) (URs=9), *Tecomella undulata* (hepatitis) (URs=8), *Pistacia integerrima* (diabetes) (URs=8), *Prunus armeniaca* (constipation) (URs=8), *Quercus baloot* (diuretic) (URs=6), and *Withania coagulans* (cooling agent) (URs=6) have been documented their specific uses for the first time not being documented in the previous literature.

Conclusion

This study recorded a total of 206 therapeutic plants belonging to 78 families which are being used by the natives in preparing traditional medicines to treat various ailments. Of them, 158 species (76.70%) were native. It is revealed that inhabitants of the study area possess a rich indigenous knowledge inherited from their forefather and records of this important knowledge has provided novel information from the study area. The dominant family was Lamiaceae. The plant part which was commonly used in herbal remedies preparation was leaves. The common disease in the study area was constipation. The highest RFC value was recorded for *Cydonia oblonga* (0.56). The highest use value was calculated for *Ajuga bracteosa* (0.21). The highest ICF value was reported for gastrointestinal disorders (0.91). Although this traditional use of medicinal plants is only restricted to old people whereas younger people is not interested in gaining this traditional knowledge. Those medicinal plants with the highest RFC, UV, and FL values should be exposed to pharmacological and phytochemical analysis to validate their effectiveness and safety for huge utilization.

Declarations

List of abbreviations: Relative Frequency of Citation (RFC), Use Reports (URs); Use Value (UV), Fidelity Level (FL), Jaccard index (JI), and informant consensus factors (ICF).

Ethics statement: Prior to the survey, we obtained oral informed consent from each participant.

Consent for publications: Not applicable.

Funding: Authors have not received any funding during this research.

Conflicts of Interest: The authors declare that there are no conflicts of interest in this article.

Availability of data and materials: The figures and tables supporting the results of this study are included in the article, and the original data sets are available from the first author upon request.

Author's contributions: The manuscript is written by Sabith Rehman. Zafar Iqbal and Rahmatullah Qureshisupervised this work. Muhammad Younas formal analysis. All the authors approved the final manuscript after revision.

Acknowledgements

We are thankful to the local community members of the study area for sharing their valuable information. The manuscript is extracted from the PhD Dissertation of the first author.

Literature cited

Adnan M, Ullah I, Tariq A, Murad W, Azizullah A, Khan AL, Ali N. 2014. Ethnomedicine use in the war affected region of northwest Pakistan. Journal of Ethnobiology and Ethnomedicine 10(1): 1-16.

Ahmad M, Sultana S, Fazl-i-Hadi S, Ben Hadda T, Rashid S, Zafar M.2014. An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat-Pakistan). Journal of Ethnobiology and Ethnomedicine 10(1):1-18.

Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Hussain T. 2020. Modification of miRNA expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. Phytomedicine 1(68):153-168.

Akhtar N, Rashid A, Murad W, Bergmeier E. 2013. Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan. Journal of Ethnobiology and Ethnomedicine 9(1):1-14.

Akkol EK, Tatlı II, Karatoprak GŞ, Ağar OT, Yücel Ç, Sobarzo-Sánchez E, Capasso R. 2021. Is emodin with anticancer effects completely innocent? Two sides of the coin. Cancers 13(11): 2733.

Akram M, Siddiqui MI, Akhter N, Waqas MK, Iqbal Z, Akram M, Khan AA, Madni A, Asif HM. 2011. Ethnobotanical survey of common medicinal plants used by people of district Sargodha, Punjab. Pakistan journal of Medicinal Plants Research 5(30): 7073–7075.

Ali SI, Nasir E. 1970- 2002. Flora of Pakistan, 01-215.

Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SMH, Abbasi AM. 2020. Ethnobotanical survey of the medicinal flora of Harighal, Azad Jammu & Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine 16(1):1-28.

Aziz MA; Adnan M, Khan AH, Rehman AU, Jan R, Khan J. 2016. Ethno-medicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. Journal of Ethnobiology and Ethnomedicine 12(1): 1-14.

Aziz MA, Khan AH, Ullah H, Adnan M, Hashem A, Abd_Allah EF. 2018. Traditional phytomedicines for gynecological problems used by tribal communities of Mohmand Agency near the Pak-Afghan border area. Revista Brasileira de Farmacognosia 28(4): 503-511.

Bano A, Ahmad M, Hadda TB, Saboor A, Sultana S, Zafar M, Zada Khan MP, Arshad M, Ashraf MA. 2014. Quantitative ethnomedicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. Journal of Ethnobiology and Ethnomedicine 10(1):1-18.

Benarba B, Meddah B, Touil A. 2014. Response of bone resorption markers to Aristolochia longa intake by Algerian breast cancer postmenopausal women. Advances in pharmacological sciences 2014.820589-820589.

Bibi T, Ahmad M, Tareen NM, Jabeen R, Sultana S, Zafar M, Zain-Ul-Abidin S. 2015. The endemic medicinal plants of Northern Balochistan, Pakistan and their uses in traditional medicine. Journal of Ethnopharmacology 173:1–10.

Birjees M, Ahmad M, Zafar M, Nawaz S, Jehanzeb S, Ullah F, Zaman W. 2021. Traditional knowledge of wild medicinal plants used by the inhabitants of Garam Chashma valley, district Chitral, Pakistan. Acta Ecologica Sinica 42(2):19-33.

Bisi-Johnson MA, Obi CL, Kambizi L, Nkomo M. 2010. A survey of indigenous herbal diarrhoeal remedies of OR Tambo district, Eastern Cape Province, South Africa. African Journal of Biotechnology 9(8): 1245–1254.

Butt MA, AhmadM, Fatima A, Sultana S, Zafar M, Yaseen G, Ashraf MA, Shinwari ZK, Kayani S. 2015. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. Journal of Ethnopharmacology 168(1): 164-181.

Cerqueira TMG, de Carvalho Correia AC, Dos Santos RV, Lemos RPL, da Silva SAS, Barreto, E. 2020. The use of medicinal plants in Maceió, Northeastern Brazil: an ethnobotanical survey. Medicines 7(2): 7. Chaudhary MI, He Q, Cheng YY, Xiao PG. 2006. Ethnobotany of medicinal plants from tian mu Shan biosphere reserve, Zhejiang-province, China. Asian Journal of Plant Sciences 5: 646–653.

Chermat S, Gharzouli R. 2015. Ethnobotanical Study of Medicinal Flora in the North East of Algeria-An Empirical Knowledge in Djebel Zdimm (Setif). Journal of Materials Science and Engineering A 5(1-2): 50-59.

Chikowe I, Mnyenyembe M, Jere S, Mtewa AG, Mponda J, Lampiao F. 2020. An ethnomedicinal survey of indigenous knowledge on medicinal plants in the traditional authority Chikowi in Zomba, Malawi. Current Traditional Medicine 6(3): 225-241.

Daoudi A, Bammou M, Zarkani S, Slimani I, Ibijbijen J, Nassiri L. 2016. Étude ethnobotanique dela flore médicinale dans la commune rurale d'Aguelmouss province de Khénifra (Maroc). Phytothérapie 14(1): 220-228.

Dugani S, Wasan KM, Kissoon N. 2018. World Health Organization and Essential Medicines. Journal of pharmaceutical sciences 107(5): 1261-1262.

Farnsworth N. 1988. Screening Plants for New Medicines, in" Biodiversity", EO Wilson.

Giday M, Asfaw Z, WolduZ. 2009. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. Journal of Ethnopharmacology 124(3): 513-521.

Gonzalez-Tejero MR, Casares-Porcel M, Sanchez-Rojas CP, Ramiro-Gutierrez JM, Molero-Mesa J, Pieroni ElJohrig S. 2008. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. Journal of Ethnopharmacology 116(2):341-357.

Lulekal E, Asfaw Z, Kelbessa E, Van Damme P. 2013. Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara region, Ethiopia. Journal of Ethnobiology and Ethnomedicine 9(1): 1-13.

Hachi M, Hachi T, Belahbib N, Dahmani J, Zidane L. 2015. Contribution a l'étude floristique et ethnobotanique de la flore médicinale utilisée au niveau de la ville de Khenifra (Maroc)/[contribution to the study and floristic ethnobotany flora medicinal use at the city of Khenifra (Morocco)]. International Journal of Innovation and Applied Studies 11(3): 754-770.

Hamayun M. 2005. Ethnobotanical profile of Utror and Gabral Valleys, District Swat, Pakistan. Ethnobotanical Leaflets 2005(1):9.

Hassan N, Nisar MS, Kakar SUR, Hassan F, Zhiwei Z, Nong L, Khan M, Shuaib M, and Wang D. 2017. Determination of informant consensus factor of medicinal plants used as therapy in district dir lower pakistan. Journal of Medicinal Plants Studies 5(4): 183-188.

Hassan N, Din MU, Shuaib M, Ul-Hassan F, Zhu Y, Chen Y, Nisar M, Iqbal I, Zada P, Iqbal A. 2019.Quantitative analysis of medicinal plants consumption in the highest mountainous region of Bahrain Valley, Northern Pakistan.Ukrainian Journal of Ecology 9(1): 35-49.

Haq A, Badshah L, Ali A, Ullah A, Khan SM, Ullah I. 2022. Ethnobotanical study of medicinal plants of Pashat Valley, Bajaur, along Pakistan–Afghanistan border: a mountainous region of the Hindu Kush Range. Nordic Journal of Botany 2022(11): e03580.

Hayat K, Khan A, Bibi F, Salahuddin Murad W, Fu Y, El-Saber Batiha G, Alqarni M, Khan A, Al-Harrasi, A. 2021. Effect of Cadmium and Copper exposure on growth, physio-chemicals and medicinal properties of Cajanus cajan L. (Pigeon Pea). Metabolites 11(11):769.

Hussain W, Ullah M, Dastagir G, Badshah Lal. 2018a. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna Journal of Phytomedicine 8(4): 313.

Hussain W, Badshah L, Ullah M, Ali M, Ali A, Hussain F. 2018b. Quantitative study of medicinal plants used by the communities residing in Koh-e-Safaid Range, northern Pakistani-Afghan borders. Journal of Ethnobiology and Ethnomedicine 14(1):1-18.

Hussain M, Khalid F, Noreen U, Bano A, Hussain A, Alam S, Habiba U. 2021. An ethno-botanical study of indigenous medicinal plants and their usage in rural valleys of Swabi and Hazara region of Pakistan.Brazilian Journal of Biology 82.e243811.

Hussain S, Hussain W, Nawaz A, Badshah L, Ali A, Ullah S, Bussmann RW. 2022. Quantitative ethnomedicinal study of indigenous knowledge on medicinal plants used by the tribal communities of Central Kurram, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 23(5):1-31.

Ijaz F, Iqbal Z, Rahman IU, Alam J, Khan SM, Shah G, Khan K, Afzal A. 2016. Investigation of traditional medicinal floral knowledge of Sarban Hills, Abbottabad, KP, Pakistan.Journal of Ethnopharmacology179: 208–233.

Ikram S, Bhatti KH, Parvaiz M. 2014. Ethnobotanical studies of aquatic plants of district Sialkot, Punjab (Pakistan). Journal of Medicinal Plants 2(1): 58-63.

Ishtiaq M, Maqbool M, Ajaib M, Ahmed M, Hussain I, Khanam H, Mushtaq W, Hussain T, Azam S, Hayat Bhatti K, Ghani A. 2021.Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Samahni, District Bhimber Azad Jammu and Kashmir, Pakistan. Plos One 16(1):e0243151.

Jima TT, Megersa M. 2018. Ethnobotanical study of medicinal plants used to treat human diseases in Berbere District, Bale Zone of Oromia Regional State, South-East Ethiopia. Evidence-Based Complementary and Alternative Medicine 8602945.

Jdaidi N, Hasnaoui B. 2016. Étude floristique et ethnobotanique des plantes médicinales au nord-ouest de la Tunisie: cas de la communauté d'Ouled Sedra. Journal of Advanced Research in Science and Technology 3(1): 281-291.

Kadir MF, Sayeed MSB, Mia MMK. 2013. Ethnopharmacological survey of medicinal plants used by traditional healers in Bangladesh for gastrointestinal disorders. Journal of Ethnopharmacology 147(1): 148-156.

Kamal M, Adnan M, Murad W, Bibi H, Tariq A, Rahman H, Shinwari ZK. 2016. Anti-rheumatic potential of Pakistani medicinal plants: a review. Pakistan Journal of Botany 48(1):399-413.

Karakose M. 2022. An ethnobotanical study of medicinal plants in Guce district, north-eastern Turkey. Plant Diversity 3:7-10.

Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, Hussain J, Yaseen G. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of Ethnopharmacology 156(1): 47-60.

Kayani S, AhmadM, Sultana S, Shinwari ZK, Zafar M, Yaseen G, Hussain M, Bibi T. 2015. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. Journal of Ethnopharmacology 164(11): 186-202.

Khan A, Ali S, Murad W, Hayat K, Siraj S, Jawad M, Abbas R, Uddin J, Al-Harrasi A, Khan A. 2021. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan. Journal of Ethnopharmacology 281(5):114437.

Konno B. 2004. Integration of traditional medicine with modern medicine. EHNRI, Addis Ababa 3-9.

Lulekal E, Asfaw Z, Kelbessa E, Van Damme P. 2013. Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara region, Ethiopia. Journal of Ethnobiology and Ethnomedicine 9(1): 1-13.

Mahmood A, Mahmood A, Malik RN, Shinwari ZK. 2013. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. Journal of Ethnopharmacology 148(2): 714-723.

Malik K, Ahmad M, Bussmann RW, Tariq A, Ullah R, Alqahtani AS, Sultana S. 2018. Ethnobotany of anti-hypertensive plants used in northern Pakistan. Frontiers in Pharmacology 9(7): 528-528.

Malik K, Ahmad M, Zafar M, Sultana S, Tariq A, Rashid N. 2019. Medicinal plants used for treatment of prevalent diseases in Northern Pakistan of Western Himalayas. In Medicinal Plants-Use in Prevention and Treatment of Diseases; Intech Open: London, UK.

Mesfin F, Demissew S, Teklehaymanot T. 2009. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. Journal of Ethnobiology and Ethnomedicine 5(1): 1–28.

Mrabti HN, Jaradat N, Kachmar MR, Ed-Dra A, Ouahbi A, Cherrah Y, Faouzi MEA. 2019. Integrative herbal treatments of diabetes in Beni Mellal region of Morocco. Journal of integrative medicine 17(2): 93-99.

Marrelli M, Statti G, Conforti F. 2020. A review of biologically active natural products from Mediterranean wild edible plants: Benefits in the treatment of obesity and its related disorders. Molecules 25(9):649.

Mir TA, Jan M, Khare RK, Dhyani S. 2021. Ethno-Survey of Traditional Use of Plants in Lolab Valley, Kashmir Himalaya. Indian Forester 147(3):281-287

Mootoosamy A, Mahomoodally MF. 2014. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. Journal of Ethnopharmacology 151(1): 413-444.

Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, & Ahmad A. 2013. Ethnobotanical assessment of plant resources of Banda Daud Shah, district Karak, Pakistan. Journal of Ethnobiology and Ethnomedicine 9(1): 1-10.

Panigrahi S, Rout S, and Sahoo G. 2021. Ethnobotany: A strategy for conservation of plant. Annals of the Roman. Society for Cell Biology 25(6): 1370-1377.

Petrakoua K, latroub G, Lamari, FN.2020. Ethnopharmacological survey of medicinal plants traded in herbal markets in the Peloponnisos, Greece. Journal of Herbal Medicine 19(1):100305.

Rahman IU, Ijaz F, Iqbal Z, Afzal A, Ali N, Afzal M, Asif M. 2016. A novel survey of the ethno medicinal knowledge of dental problems in Manoor Valley (Northern Himalaya), Pakistan. Journal of Ethnopharmacology 194:877-894.

Rashid S, Ahmad M, Zafar M, Sultana S, Ayub M, Khan MA, Yaseen G. 2015. Ethnobotanical survey of medicinally important shrubs and trees of Himalayan region of Azad Jammu and Kashmir, Pakistan. Journal of Ethnopharmacology166:340–351.

Rehman S, Iqbal Z, Qureshi R, Rahman IU, Ijaz F, Khan MA, Alzahrani Y. 2022a. Ethnic practices in treating skin diseases: Thetraditional dermatologist's role. Clinics in Dermatology doi:10.1016/j.clindermatol.2022.09.005

Rehman S, Iqbal Z, Qureshi R, Ur Rahman I, Khan MA, Elshaer M, Abu Bakr Elsaid N.M. 2022b. Ethnogynecological Knowledge of Traditional Medicinal Plants Used by the Indigenous Communities of North Waziristan, Pakistan. Evidence-Based Complementary and Alternative Medicine, 2022.6528264-6528264.

Rehman S, Iqbal Z, Qureshi R, Rahman IU, Sakhi S, Khan I, Ijaz F. 2022c. Ethnoveterinary practices of Medicinal Plants among Tribes of Tribal district North Waziristan, Khyber Pakhtunkhwa, Pakistan. Frontiers in Veterinary Science 9:815294.

Rehman S, Iqbal Z, Qureshi R, Shah G. M. 2023a. Quantitative ethnobotanical study of medicinal plants used by the indigenous communities of Shawal Valley, District North Waziristan, Pakistan. Ethnobotany Research and Applications 25:1-24.

Rehman S, Iqbal Z, Qureshi R, Shah GM, Irfan M. 2023b. Article Ethnomedicinal plants uses for the treatment of respiratory disorders in tribal District North Waziristan, Khyber Pakhtunkhawa, Pakistan. Ethnobotany Research and Applications 25:1-16.

Rehman S, Iqbal Z, Qureshi R, AlOmar TS, Almasoud N, Younas M, Irfan M. 2023c. Ethno-Dentistry of Medicinal Plants Used in North Waziristan, Pakistan. International Dental Journal, S0020-6539.

Rehman S, Iqbal Z, Qureshi R. 2023d. Ethnomedicinal plants uses for the treatment of gastrointestinal disorders in Tribal District North Waziristan, Khyber Pakhtunkhawa, Pakistan. Ethnobotany Research and Applications 26:1–22.

Rekka R, Murugesh S, Prabakaran R, Tiruchengode ND. 2013. Plants used by malayali tribes in ethnogynecological disorders in yercaud hills, southern eastern ghats, salem district, Tamil nadu. Reporter 3(10: 190-192.

Salhi S, Fadli M, Zidane L, Douira A. 2010. Etudes floristique et ethnobotanique des plantes médicinales de la ville de Kénitra (Maroc). Lazaroa 31(1):133-146.

Sarma H, Deka S, Deka H, Saikia RR. 2012. Accumulation of heavy metals in selected medicinal plants. In Reviews of environmental contamination and toxicology. Springer, New York, NY.17: 63-86.

Savikin K, Zdunic G, Menkovic N, Zivkovic, J, Ćujic N, Terescenko M, Bigovic D. 2013. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. Journal of Ethnopharmacology 146(3):803-810.

Shah SA, Shah NA, Ullah S, Alam MM, Badshah H, Ullah S, Mumtaz AS. 2016. Documenting the indigenous knowledge on medicinal flora from communities residing near Swat River (Suvastu) and in high mountainous areas in Swat-Pakistan. Journal of Ethnopharmacology 100(182): 67-79.

Shah S, Khan S, Bussmann RW, Ali M, Hussain D, Hussain W. 2020. Quantitative ethnobotanical study of Indigenous knowledge on medicinal plants used by the tribal communities of Gokand Valley, District Buner, Khyber Pakhtunkhwa, Pakistan. Plants 9(8): 1001.

Shil S, Choudhury MD, Das S. 2014. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. Journal of Ethnopharmacology 152:135-141.

Shuaib M, Khan I, Sharifullah RK, Hashmatullah SM, Naz R. 2014. Ethnobotanical studies of spring flora of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Pakistan Journal of Weed Science Research 20(1): 37-49.

Slimani I, Najem M, Belaidi R, Bachiri L, Bouiamrine EH, Nassiri L, Ibijbijen J. 2016.Étude ethnobotanique des plantes médicinales utilisées dans la région de Zerhoun-Maroc-[Ethnobotanical Survey of medicinal plants used in Zerhoun region-Morocco-].InternationalJournal of Innovation and Applied Studies 15(4): 846.

Tabuti JR, Lye KA, Dhillion SS. 2003. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. Journal of Ethnopharmacology 88(1): 19-44.

Telefo P, Lienou L, Yemele M, Lemfack M, Mouokeu C, Goka C, Tagne S, Moundipa F. 2011. Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon.Journal of Ethnopharmacology 136(1): 178-187.

Tuasha N, Petros B, Asfaw Z.2018. Medicinal plants used by traditional healers to treat malignancies and other human ailments in Dalle District, Sidama Zone, Ethiopia. Journal of Ethnobiology and Ethnomedicine 14(3): 1-21.

Ullah M, Khan MU, Mahmood A, Malik RN, Hussain M, Wazir SM, Shinwari ZK. 2013. An ethnobotanical survey of indigenous medicinal plants in Wana district South Waziristan agency, Pakistan. Journal of Ethnopharmacology 150(3): 918-924.

Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. 2014. Ethnomedicinal plant use value in the Lakki Marwat District of Pakistan. Journal of Ethnopharmacology 158:412-422.

Ullah I, Ullah I, Ali M, Durrani F, Khan SU, Hussain D, Bussmann RW. 2021. Quantitative study of medicinal plants and biological activities of two common species used by inhabitants of district Bannu, Pakistan. Acta Ecologica Sinica 43(2): 271-287.

Umair M, Altaf M, Abbasi AM. 2017. An ethnobotanical survey of indigenous medicinal plants in Hafizabad District, Punjab-Pakistan. PlosOne 12(6):E0177912.

Uniyal SK, Singh K, Jamwal P, Lal B. 2006. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. Journal of Ethnobiology and Ethnomedicine 2(1): 1-8.

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) — An alpine ethnobotanical study. Journal of Ethnopharmacology 145: 517-529.

Yaseen G, Ahmad M, Sultana S, Alharrasi AS, Hussain J, Zafar M. 2015. Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. Journal of Ethnopharmacology 163(1): 43-59.

Yaseen G. 2019. Ethnobotany and floral diversity of medicinal plants in deserts of Sindh-Pakistan (Doctoral dissertation, Quaid-i-Azam University, Islamabad.)

Zahoor M, Yousaf Z, Aqsa T, Haroon M, Saleh N, Aftab A, Javed S, Qadeer M, Ramazan H. 2017. An ethnopharmacological evaluation of Navapind and Shahpur Virkanin district Sheikupura, Pakistan for their herbal medicines. Journal of Ethnobiology and Ethnomedicine 13(1): 1-26.

Zeleke B. 2016. Human induced threats for Biodiversity Conservation in Maze National Park, SNNPR, Ethiopia. International Journal of Ecology and Development 31(2):60-69.

Zatout F, Benarba B, Bouazza A, Babali B, Bey NN, Morsli A. 2021. Ethnobotanical investigation on medicinal plants used by local populations in Tlemcen National Park (extreme North West Algeria). Mediterranean Botany 42:e69396.