

Assessing the Contribution of Local and Traded Biodiversity in Community Health Care: A case study from Keelakodankulam village, South India

D. Ahino Mary, F. Merlin Franco and Vivek Babu

Research

Abstract

The study aims to assess the contribution of local and traded biodiversity towards community health care. A total of 106 knowledge holders from the Aatha Pallar community were interviewed and medicinal uses for 70 local plants and 28 plant products purchased from the market were recorded. The Pharmacological Ethnobotanical index was found to be low suggesting knowledge erosion. About 13 plant species used by the community show high Use Value Indices. A majority of the plants used in the community's medicinal system come from the immediate locality and only a minor part comes from the market, though ones from the market tend to have high use value indexes. The study illustrates that local medicinal plant diversity is important for community health care, which in turn, ensures conservation of the local medicinal plant diversity.

Introduction

Food, shelter, clothing and medicine are the indispensable basic needs of any human being. All are derived from earth's biodiversity either directly or indirectly. Humans use various forms of knowledge to harvest biodiversity of which traditional knowledge is the most basic and widely employed form. The importance of traditional knowledge is most pronounced when applied to medicinal plant diversity. This specialized knowledge has helped human beings survive and propagate since their origin on earth (Toledo *et al.* 2009). For health care needs, humans are known to exploit local as well as remote biodiversity for therapeutic purposes. Local biodiversity is accessed directly while remote biodiversity is accessed through various agencies, of which trade is most ubiquitous.

Exploiting local biodiversity for therapeutic purposes requires specialized traditional knowledge that is locationspecific; whereas, exploitation of remote biodiversity is enabled by commonly prevailing knowledge from a wide geographic area. For a biological resource to be successfully traded, it has to be sought by a wider population, a demand which would never materialize without the prevalence of common knowledge (pan-community knowledge). Though widely prevalent, this knowledge varies within the system due to the very dynamic nature of non-codified systems. Trade brings biodiversity otherwise inaccessible due to factors such as exoticness, rarity, or physical distance from the user (Bussmann et al. 2007, Revene et al. 2008). However, modified forms of a local biological resource might also be traded. For instance, Zingiber officinale Roscoe (Ginger) is widely cultivated in tropical regions of India, yet local medicinal herb dealers trade dried ginger which is used extensively both in codified and non-codified systems of Indian medicine. Likewise, Azadirachta indica A. Juss. (Neem) is also found naturalized throughout tropical regions of India, yet neem seed oil is widely traded. Mostly, traded plants are collected from their natural habitats, though cultivated species also might be accepted by the consumer (Dold

Correspondence

- D. Ahino Mary, Department of Plant Biology and Biotechnology, St. Xavier's College, Palayamkottai, Tamil Nadu, INDIA.
- ahinomary@yahoo.co.in
- F. Merlin Franco, Resource Centre for Agriculture, Ecology and Community Development, Kaattavilai, Kadayal, Kanniyakumari district, INDIA. tropicalforezt@yahoo.co.in
- Vivek Babu, Swedish University of Agricultural Sciences (SLU), Uppsala, SWEDEN. vivekbabu84@gmail.com

Ethnobotany Research & Applications 9:275-286 (2011)

Published: July 30, 2011

www.ethnobotanyjournal.org/vol9/i1547-3465-09-275.pdf

& Cocks 2002). It is generally believed that commercial plant trade has eroded medicinal plant biodiversity, owing to unsustainable harvest methods employed when collecting plants from the wild (Hoareau & DaSilva 1999).

Localized/specialized traditional knowledge is more prone to loss than common knowledge. Since common knowledge is put into practice by a wider population, it is relatively safer and more stable than knowledge dependent on a smaller population. However, when concerning local/specialized traditional knowledge there is a relationship between the biological resource and the prospector that doesn't exist with common knowledge. While human beings readily test locally available biological resources, testing a traded resource requires external stimulus like endorsements by traders, media, non-government organizations (NGOs) or health workers. The direct relationship between local biological resource and local prospector, a traditional healer for instance, is also mutual. Continuous demand for a resource by a local prospector ensures its use, a factor vital for the survival of the knowledge and the resource (Hamilton 2004). When a community loses knowledge about a local biological resource, the community ceases to be concerned about the existence of that particular resource to the point the resource may become locally extinct without notice (Narasimhan & Franco 2009). Hence, it could be said that localized, traditional knowledge contributes to the conservation of local biological resources.

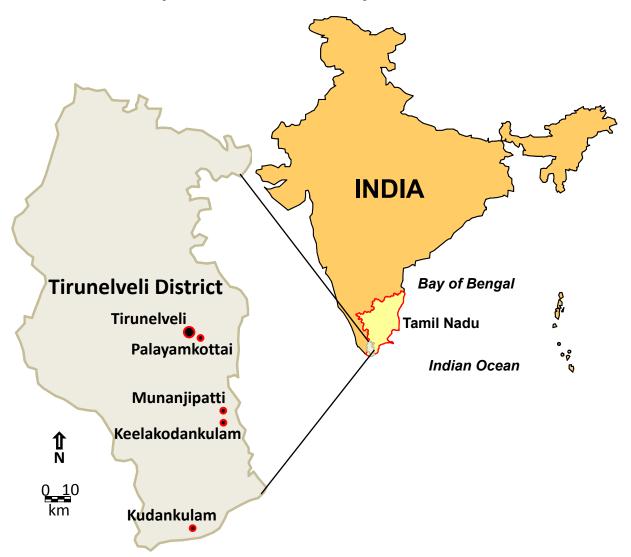
Concerning community health care, both localized and traded biological resources are indispensable. Utilization of remote biodiversity through trade is expensive but a local resource is usually freely available. Moreover, achieving biodiversity through trade is complicated by various external factors such as distance, middle men, accessibility of markets, etc. In contrast, local biological resources are readily available. In fact, any disruption of their supply would greatly affect community health care (Alves & Lerece 2007, Colfer *et al.* 2006, Grogan *et al.* 2009, Shanley & Leda 2003).

Understanding medicinal plant usage patterns at an individual/household level is vital for designing policies on biodiversity conservation (Krog 2006). This study examines contributions of local and traded medicinal plant resources toward health care in an indigenous community classified as Scheduled Caste (SC). Scheduled Castes and tribal communities of India are widely recognized as indigenous. They share similar traditions, histories of descent and marginalization, yet only a few ethnobotanical studies, such as Pushpangadan and Atal (1986), have targeted SCs. Instead, Indian ethnobotanical studies have focused either on tribal communities or knowledge available in codified texts of Vedas, Ayurveda, Sidha, etc.

Methods

The Aatha Pallar community

This study surveyed the Aatha Pallar community of Keelakodankulam village in the Tirunelveli district, Tamil Nadu. Aatha Pallar is considered one among four sub-groups of the Pallar community. The other sub-groups are: Anja Pallar, Aiya Pallar and Amma Pallar. (All four Pallar prefixes are synonyms for mother.) Each community sub-group is further divided into matrilineal clans. Although the traditional occupation of the Aatha Pallar is mat weaving and animal husbandry, they also work as skilled laborers on plantations. The Aatha Pallar, also referred to as Mallar, speak Tamil as their native language (Thurston & Rangachari 1909, Singh 1999). The Indian government identifies the Pallar community as a Scheduled Caste (Constitution of India 1950). Scheduled Caste is a constitutional term collectively applied to indigenous caste groups which were pushed to the lowest status in Indian society by a dominant Hindu culture (Karade 2008, Mendelsohn & Vicziany 1998, Pande 1986). Today, the Indian constitution recognizes these castes as disadvantaged because of their painful pasts and assigns them certain rights and preferential treatment. Owing to the stigma attached to the term Scheduled Caste, these communities prefer to be known by the Marathi term Dalits, meaning crushed or broken to pieces (Mendelsohn & Vicziany 1998, Premsagar 2002).


Study area

This study was conducted in Keelakodankulam, located in the Nanguneri taluk of Tirunelveli district in Tamil Nadu (Figure 1). The village is populated by 88 families, comprised of 183 males and 185 females. The village's main occupation is farming, followed by raising poultry and making mats. Most houses have home gardens in addition to common grazing land and a community pond. Normally, the pond remains dry all year except October-January when the area receives a brief rainfall.

Sampling and data collection

This study's sample was 61 women and 45 men, chosen on the basis of their willingness to participate. Knowledge holders ranged from 21-93 years in age. Data were collected using a semi-structured interview format (Case 1990). Informal discussions and field trips with informants enhanced understanding of indigenous identification, collection and use of medicinal plants in and around the village.

Sample specimens of all medicinal plants were collected and tagged using local names provided by the village knowledge holders. Specimens were deposited in the St. Xavier's College, Palayamkottai, Tamil Nadu herbarium

Ahino *et al.* - Assessing the Contribution of Local and Traded Biodiversity in 277 Community Health Care: A case study from South India

Figure 1. Keelakodankulam village, site of research with Aatha Pallar communities in Tirunelveli District in the state of Tamil Nadu, India.

(XCH), and re-identified using Western standard floras (Gamble 1915-1936, Matthew 1982, 1988, 1991, Nair & Henry 1983). Additionally, samples of all plant products available in local markets were purchased and categorized using the same procedure of dual identification. Prior informed consent was obtained from all participating knowledge holders. The authors are committed towards translating the results of the study into Tamil and sharing it with the community, local government (**panchayat**) and local health workers.

Species inventory

The goal was to inventory every plant species in the village. To that end, specimens were gathered from agricultural areas, road sides, in and around the village pond, home gardens and every house in the village. A total of 347 species were counted. The Porteres Ethnobotanical index was modified to calculate a Pharmacological Ethnobotanical Index (Akerreta *et al.* 2007) that assesses the community's depth of medicinal plant knowledge. This Pharmacological Ethnobotanical Index is defined as the 'ratio between medicinal plants and total flora expressed as a percentage'.

Use Value Index

In order to assess the importance accorded each species in the Aatha Pallar pharmacopeia, use value index was calculated as per the methodology provided by Rossato *et al.* (1999) whereby, Σ

```
Use value, Uv = ΣUi/n
```

Where,

Ui	\rightarrow	the number of uses mentioned by each informant for a given species.
n	\rightarrow	total number of informants.

Results and Discussion

The medicinal plants identified from the Aatha Pallar community in Keelakodankulam village are recorded in Table 1. Some reported medical treatments are unique. For instance, when a child suffers from body pain, *Tamarindus indica* L. (tamarind) leaves are boiled in water later used

Table 1. Plants used by the Aatha Pallar community and their sources in Keelakodankulam village, Tirunelveli District, Tamil Nadu, India. Plant parts of *Azadirachta indica* A. Juss. are harvested from the locality while the seed oil is purchased from the market. Hence it is accounted for twice in the table.

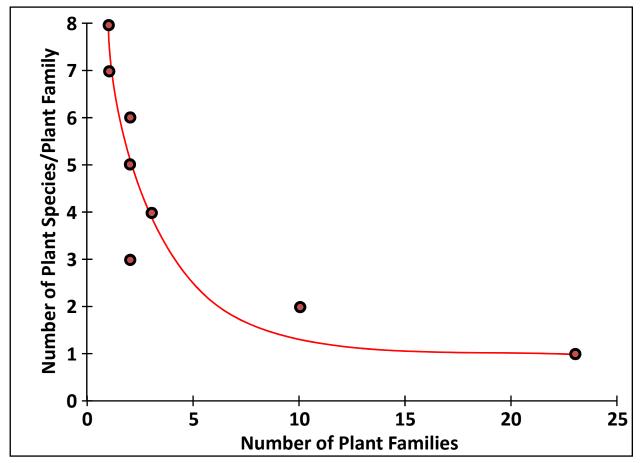
Plant name/plant product name	Family	Local name	Medicinal uses of the plant/ plant product	Source of the raw material
Abutilon indicum (L.) Sweet	Malvaceae	Thuthi	Minor tumor, boils	Homestead
<i>Acacia sinuata</i> (Lour.) Merr.	Fabaceae	Seeyakai	flatulence	Market
Acalypha indica L.	Euphorbiaceae	Kuppaimeni	Cold, scabies, throat pain	Homestead, nearby pond, agricultural field
Achyranthes aspera L.	Amaranthaceae	Naiyuruvi	Piles	Homestead, agricultural field
Acorus calamus L.	Acoraceae	Vasambu	To help children to speak easily	Market
<i>Aerva lanata</i> (L.) Juss. ex Schult.	Amaranthaceae	Pongal poo	Urinary problems	Homegarden
Allium cepa L.	Amaryllidaceae	Vengayam	Cold, nasal congestion, throat pain	Market
Allium sativum L.	Amaryllidaceae	Vellai poondu	Body pain, diarrhea, tonic, cold	Market
<i>Aloe vera</i> (L.) Burm. f.	Xanthorrhoeaceae	Kattralai	To regulate body temperature, ulcer, dandruff	Nearby pond
<i>Alternanthera sessilis</i> (L.) R. Br. ex DC.	Amaranthaceae	Ponnangani- keerai	Iron tonic	Homegarden, agricultural field
Amaranthus caudatus L.	Amaranthaceae	Thandang- keerai	Iron tonic	Homegarden, agricultural field
Amaranthus roxburghianus H.W. Kung	Amaranthaceae	Sirukeerai	Iron tonic	Homegarden, agricultural field
Amaranthus viridis L.	Amaranthaceae	Araikeerai	Iron tonic	Homegarden, agricultural field
Annona squamosa L.	Annonaceae	Seetha	Anti-lice	Homegarden
Azadirachta indica A. Juss.	Meliaceae	Vepilai	Stomach pain, chicken pox, head ache, cold, fever, ulcer	Homegarden, Homestead
<i>Azadirachta indica</i> A. Juss. (oil)	Meliaceae	Veppennai	Cold	Market

Ahino *et al.* - Assessing the Contribution of Local and Traded Biodiversity in 279 Community Health Care: A case study from South India

Plant name/plant product name	Family	Local name	Medicinal uses of the plant/ plant product	Source of the raw material
Borassus flabellifer L.	Arecaceae	Panai	To regulate body temperature, cough, cold	Agricultural field
<i>Brassica juncea</i> (L.) Czern.	Brassicaceae	Kadugu	Body pain, tonic	Market
<i>Calotropis gigantea</i> (L.) W.T. Aiton	Apocynaceae	Erukku	To remove thorns from foot	Homestead
<i>Camellia sinensis</i> (L.) Kuntze	Theaceae	Theyilai	Diarrhea	Market
Carica papaya L.	Caricaceae	Papaya	Eye tonic	Homegarden
Carum carvi L.	Apiaceae	Omam	Body pain, tonic	Market
Cassia auriculata L.	Fabaceae	Aavaram	To regulate body temperature	nearby pond, road side
<i>Catharanthus roseus</i> (L.) G. Don	Apocynaceae	Nithyakalyani	Skin diseases	Homegarden
<i>Ceiba pentandra</i> (L.) Gaertn.	Malvaceae	Ilavam pattai	Cold	Agricultural field
Centella asiatica (L.) Urb.	Apiaceae	Vallarai	Indigestion	Agricultural field
Cissus quadrangularis L.	Vitaceae	Perandai	Low blood pressure	nearby pond
<i>Citrullus colocynthis</i> (L.) Schrad.	Cucurbitaceae	Sirukumidi	Snake poison	Agricultural field
Citrus limon (L.) Osbeck	Rutaceae	Elumichai	Diarrhea	Homegarden
Cleome gynandra L.	Cleomaceae	Thaivalai	Cold	Homestead, agricultural field
Cleome viscosa L.	Cleomaceae	Ekkadu	Head ache	Homegarden
<i>Coccinia grandis</i> (L.) Voigt	Cucurbitaceae	Kovaikai	Ulcer	Homestead, agricultural field
Cocos nucifera L.	Arecaceae	Thennai	To regulate body temperature	Homegarden, agricultural field
Coffea arabica L.	Rubiaceae	Саарі	Wound	Market
Coleus amboinicus Lour.	Lamiaceae	Thalaivali ilai	Head ache	Homegarden
Coriandrum sativum L.	Apiaceae	Kothamalli	Cold	Market
<i>Crateva religiosa</i> G. Forst.	Capparaceae	Mavilanga- pattai	Cold, tiredness	Market
Crocus sativus L.	Iridaceae	Kunkumam	Pregnancy- foetal care	Market
Cucumis sativus L.	Cucurbitaceae	Vellari	To regulate body temperature	Agricultural field
Cuminum cyminum L.	Apiaceae	Seeraham	Diarrhea	Market
Curcuma longa L.	Zingiberaceae	Manjal	Anti-clot	Market
<i>Cynodon dactylon</i> (L.) Pers.	Poaceae	Aruhampull	Diabetes	Agricultural field
Datura metel L.	Solanaceae	Oomathai poo	Ear pain	Agricultural field
Delonix elata (L.) Gamble	Fabaceae	Vathamadaki	rheumatism	Homegarden

Plant name/plant product name	Family	Local name	Medicinal uses of the plant/ plant product	Source of the raw material	
Dodonaea viscosa Jacq.	Sapindaceae	Virali	Anti-clot	nearby pond	
Eclipta prostrata (L.) L.	Asteraceae	Karisalankani	Wound, hair growth	Agricultural field	
<i>Enicostema littorale</i> Blume	Gentianaceae	Vellarugu	Tooth pain, flatulence	Agricultural field	
<i>Eucalyptus globulus</i> Labill.	Myrtaceae	Eucalyptus	Cold, headache	Market	
Ferula assa-foetida L.	Apiaceae	Kayam	tonic	Market	
Hibiscus rosa-sinensis L.	Malvaceae	Chembaruthi	Hair growth, cardio-tonic	Homegarden	
Justicia adhatoda L.	Acanthaceae	Adathoda	Cold	Agricultural field	
<i>Lannea coromandelica</i> (Houtt.) Merr.	Anacardiaceae	Usilam pattai	Cold	Agricultural field	
Lawsonia inermis L.	Lythraceae	Maruthani	To promote hair growth	Homegarden	
<i>Leucas aspera</i> (Willd.) Link	Lamiaceae	Thumbai	Cold	Homestead	
Mentha spicata L.	Lamiaceae	Pudhina	Indigestion	Market	
Momordica charantia L.	Cucurbitaceae	Paharkai	Ulcer	Homegarden	
Morinda pubescens Sm.	Rubiaceae	Manjanathi	Head ache	Agricultural field	
<i>Moringa oleifera</i> Lam.	Moringaceae	Murungai	Eye tonic, cold, fever	Homegarden, agricultural field	
<i>Mukia maderaspatana</i> (L.) M. Roem.	Cucurbitaceae	Mosumosukai	Wound	Agricultural field	
<i>Murraya koenigii</i> (L.) Spreng.	Rutaceae	Karivepilai	To promote hair growth	Homegarden	
Musa acuminata X balbisiana Colla	Musaceae	Vazhai	urinary problems, ulcer	Homegarden, Agricultural field	
Myristica fragrans Houtt.	Myristicaceae	Jathikai	Pimples	Market	
Ocimum basilicum L.	Lamiaceae	Karunthulasi	Cold, fever	Homegarden	
Ocimum gratissimum L.	Lamiaceae	Thulasi	Cough, cold, fever	Homestead, nearby pond, agricultural field	
Ocimum tenuiflorum L.	Lamiaceae	Naithulasi	Cold, fever	Agricultural field	
<i>Opuntia vulgaris</i> Mill.	Cactaceae	Sapathikalli	Boils	Nearby pond	
Oryza sativa L.	Poaceae	Nellu	Anti-clot	Agricultural field	
Papaver somniferum L.	Papaveraceae	Kasakasa	Diarrhea	Market	
<i>Pergularia daemia</i> (Forssk.) Chiov.	Apocynaceae	Veliparuthi	Varma (Tamil system of treatment similar to acupressure)	Homestead, agricultural field	
<i>Phyllanthus amarus</i> Schumach. & Thonn.	Phyllanthaceae	Keezha nelli	Jaundice	Homestead, agricultural field	
Phyllanthus emblica L.	Phyllanthaceae	Muzhuu nelli	Diabetes	Homegarden, agricultural field	
<i>Phyllanthus polyphyllus</i> Dalzell & Gibson	Phyllanthaceae	Arai Nelli	Bleeding gums	Homegarden	

Ahino et al. - Assessing the Contribution of Local and Traded Biodiversity in 281 Community Health Care: A case study from South India


Plant name/plant product name	Family	Local name	Medicinal uses of the plant/ plant product	Source of the raw material
Physalis minima L.	Solanaceae	Kutti thakali	Ulcer	Homegarden
Piper betle L.	Piperaceae	Vetrilai	Cold, diarrhea	Market
Piper longum L.	Piperaceae	Thipili	Cold	Market
Piper nigrum L.	Piperaceae	Milagu	Body pain, antidote for poisons, diarrhea, tonic, cold, throat pain	Market
Psidium guajava L.	Myrtaceae	Коууа	Tonic	Homegarden
Punica granatum L.	Lythraceae	Mathulai	Blood purification	Homegarden
Ricinus communis L.	Euphorbiaceae	Aamanaku	To regulate body temperature	Agricultural field
Santalum album L.	Santalaceae	Santhanam	Pimples, facial cosmetics	Market
Sesamum indicum L.	Pedaliaceae	EII	Menstrual problems	Market
<i>Sesbania grandiflora</i> (L.) Pers.	Fabaceae	Agathi	Ulcer	Agricultural field
<i>Sida acuta</i> Burm. f.	Malvaceae	Arivamanai- poodu	Wound	Road side
Solanum nigrum L.	Solanaceae	Manathakkali	Ulcer	Homegarden
Solanum torvum Sw.	Solanaceae	Sundaikai	Ulcer	Homegarden
Solanum trilobatum L.	Solanaceae	Thoothuvalai	Cold	Relative's home at Munanjipatti
Solanum virginianum L.	Solanaceae	Kandankathri	Cold	Homestead
Syzygium aromaticum (L.) Merr. & L.M. Perry	Myrtaceae	Kirambu	Tooth pain	Market
<i>Syzygium cumini</i> (L.) Skeels	Myrtaceae	Naval	Blood 'purification'	Agricultural field
<i>Tabernaemontana divaricata</i> (L.) R. Br. ex Roem. & Schult.	Apocynaceae	Nanthiyavattai	To 'cool' the eyes	Homegarden
Tamarindus indica L.	Fabaceae	Puli	Body pain in children	Homegarden
<i>Tephrosia purpurea</i> (L.) Pers.	Fabaceae	Kolungi	Cold, diarrhoea	Homestead
Terminalia chebula Retz.	Combretaceae	Kadukai	Rain itch	Market
Trigonella foenum- graecum L.	Fabaceae	Venthayam	To regulate body temperature	Market
<i>Vigna unguiculata</i> (L.) Walp.	Fabaceae	Kaanam	Urinary problems	Agricultural field
Vitex negundo L.	Lamiaceae	Nochi	Anti-clot	Munanjipatti road side, agricultural field
Zingiber officinale Roscoe	Zingiberaceae	Sukku	Body pain, tooth pain, seasonal fever, tonic, throat pain	Market
Ziziphus jujuba Mill.	Rhamnaceae	llanthai	Blood 'purification'	Agricultural field

to bathe the afflicted child. Afterwards, the child is rocked in the **vaeshti** of his/her maternal uncle. (A **vaeshti** is a piece of cloth traditionally worn by the men of South India.) Treatment is completed when **Oram Pottu**; **Oram Pottu** ("Let the ache go away; Let the ache go away!") is chanted thrice. Another example of indigenous medical treatment addresses infants (up to 2 years old) suffering with a cold. In this remedy, *Allium cepa* L. (Shallot) juice is taken and applied to the **pathappukuli** (the whorl on an infant's head) and the cold is alleviated immediately.

People's traditional knowledge of medicinal plant biodiversity

Based on interviews with 106 informants, medicinal uses were recorded for a total of 70 plant species (Table 1) and 28 plant products purchased from the local market. One species, *Azadirachta indica* A. Juss, is harvested by the village but its seed oil extract is purchased from the market and, thus, represented twice in Table 1. Market-based medicinal ingredients are generally bought from traders in nearby Palayamkottai's market. The 97 species used for medicinal purposes by this community belong to 44 different plant families. Most species are from the families Fabaceae (8 species) or Lamiaceae (7 species). Most of the other families are represented by one species each (Figure 2).

Several plant species are used for treating more than one disease. For instance, the facility to treat a common cold is ascribed to 24 plant species. Likewise, fever, ulcer, scabies, diarrhoea etc., are treated with multiple plant species. As illustrated in Table 1, the community uses medicinal plant biodiversity to treat at least 43 ailments. Only

Figure 2. Number of medicinal plant species within each plant family identified at Keelakodankulam village, Tirunelveli District, Tamil Nadu, India. Families with: 8 species (Fabaceae); 7 species (Lamiaceae); 6 species (Amaranthaceae, Solanaceae); 5 species (Apiaceae, Cucurbitaceae); 4 species (Apocynaceae, Malvaceae, Myrtaceae); 3 species (Phyllanthaceae, Piperaceae); 2 species (Amaryllidaceae, Arecaceae, Cleomaceae, Euphorbiaceae, Lythraceae, Meliaceae, Poaceae, Rubiaceae, Rutaceae, Zingiberaceae); and 1 species each (Acanthaceae, Acoraceae, Anacardiaceae, Annonaceae, Asteraceae, Brassicaceae, Cataceae, Capparaceae, Caricaceae, Combretaceae, Gentianaceae, Iridaceae, Moringaceae, Musaceae, Myristicaceae, Papaveraceae, Pedaliaceae, Rhamnaceae, Santalaceae, Sapindaceae, Theaceae, Vitaceae, Xanthorrhoeaceae).

Ahino et al. - Assessing the Contribution of Local and Traded Biodiversity in 283 Community Health Care: A case study from South India

four listed ailments - poisonous bites, diabetes, urinary problems and jaundice - can be considered serious health conditions. This indicates that the community depends on medicinal plants mostly for minor ailments. However, health conditions like fever, hypotension, boils, and urinary troubles can be either minor ailments themselves or symptoms of other major ailments. This suggests that the community depends upon traditional medicine for quick treatments. Thus, local plants provide the community with its most immediate, convenient and inexpensive medicine.

State of medicinal plant knowledge

A total of 347 plant species were inventoried in and around the village. Of that total, 194 species were not associated with any use by the community, 70 species had medicinal purposes and 83 species were accorded ornamental value. The Pharmacological Ethnobotanical Index was calculated as 20.17% which means less than one third of the community's plant species are used for medicinal purposes. According to Mesa-Jiménez (1996), when few plants are considered medicinal, communities ascribe higher rates of validation to those plants. However, when the majority of traditional plant treatments are for minor ailments, the low Pharmacological Ethnobotanical Index indicates a low density of medicinal plant knowledge. This suggests erosion of medicinal plant knowledge and warrants revitalization of the community's traditional medicinal system. Systematic revitalization would ensure constant use of more species which, in turn, would conserve local biodiversity (Narasimhan & Franco 2009).

Contribution of local and traded biodiversity in community health care

Many of the medicinal plants (30 species) used by the community are collected from home gardens nurtured by women. This suggests that women and home gardens serve a vital role in conserving medicinal plants and associated knowledge. Finerman and Sacket (2003) emphasise that threats to home gardens also threaten the very foundation of a community's health system as well as degrade women's authority in the home and community. The pattern of conservation provided by home gardens can be termed as 'conservation through use' (Eyzaquirre & Linares 2001). These facts highlight the need for conserving the home gardens.

After home gardens, agricultural fields are the second best source of medicinal plant species and markets are the third important source (28 species) in the community. Additionally, a few plants are collected from other villages (such as Munanjipatti and Kudankulam), showcasing the **bonhomie** between villages linked by mutual need for traditional medicine. Homesteads, home gardens, agricultural fields and roadsides are sources for most of the community's medicinal plant needs. These locations can

be collectively classified as human managed or disturbed areas. Voek (2004) believes people in disturbed areas tend to use more local medicinal plants due to familiarity or accessibility. This idea is contested by de Albuquerque (2006) whose study in the north eastern region of Brazil showed those people neglected medicinal plants growing near their homes or on local roadsides. Our study's results, however, agree more closely with the findings of Voek (2004).

To investigate the importance of local biodiversity in this community's health care system, use values of various plant species and products were calculated (Table 2). From the Table 2, it is evident that 13 species have high use values of which 8 eight are accessed through markets. Their reliance on markets suggests a pan-community quality and wider knowledge base since markets and trade

Table 2. Use value indices of species used by the community, both from the locality as well as traded in Keelakodankulam village, Tirunelveli District, Tamil Nadu, India.

Plant name/plant	N	Number of		
product name	Uses	Knowledge holders	value index	
Abutilon indicum (L.) Sweet	2	2	1	
<i>Acacia sinuata</i> (Lour.) Merr.	1	1	1	
Acalypha indica L.	26	25	1.04	
Achyranthes aspera L.	1	1	1	
Acorus calamus L.	1	1	1	
<i>Aerva lanata</i> (L.) Juss. ex Schult.	1	1	1	
Allium cepa L.	21	19	1.105	
Allium sativum L.	14	12	1.167	
Aloe vera (L.) Burm. f.	2	2	1	
<i>Alternanthera sessilis</i> (L.) R. Br. ex DC.	1	1	1	
Amaranthus caudatus L.	2	2	1	
<i>Amaranthus roxburghianus</i> H.W. Kung	2	2	1	
Amaranthus viridis L.	1	1	1	
Annona squamosa L.	1	1	1	
Azadirachta indica (oil)	2	2	1	
<i>Azadirachta indica</i> A. Juss.	19	15	1.266	
Borassus flabellifer L.	1	1	1	
<i>Brassica juncea</i> (L.) Czern.	4	3	1.333	

Plant name/plant	Number of		Use	Plant name/plant	Number of		Use
product name	Uses	Knowledge holders	value index	product name	Uses	Knowledge holders	value index
Calotropis gigantea (L.)	1	1	1	Hibiscus rosa-sinensis L.	5	5	1
W.T. Aiton				Justicia adhatoda L.	1	1	1
Camellia sinensis (L.) Kuntze	1	1	1	Lannea coromandelica (Houtt.) Merr.	1	1	1
Carica papaya L.	2	2	1	Lawsonia inermis L.	3	3	1
Carum carvi L.	4	3	1.333	Leucas aspera	18	17	1.058
Cassia auriculata L.	1	1	1	(Willd.) Link			
<i>Catharanthus roseus</i> (L.) G. Don	1	1	1	Mentha spicata L. Momordica charantia L.	1	1	1
<i>Ceiba pentandra</i> (L.) Gaertn.	1	1	1	<i>Morinda pubescens</i> Sm.	1	1	1
Centella asiatica (L.)	2	2	1	Moringa oleifera Lam.	9	7	1.285
Urb.				<i>Mukia maderaspatana</i> (L.) M. Roem.	1	1	1
Cissus quadrangularis L.	1	1	1	Murraya koenigii (L.)	5	4	1.25
<i>Citrullus colocynthis</i> (L.) Schrad.	1	1	1	Spreng. Musa acuminata X	5	5	1
Citrus limon (L.) Osbeck	1	1	1	balbisiana Colla		5	
Cleome gynandra L.	5	5	1	Myristica fragrans Houtt.	1	1	1
Cleome viscosa L.	1	1	1	Ocimum basilicum L.	1	1	1
<i>Coccinia grandis</i> (L.) Voigt	3	3	1	Ocimum gratissimum L.	24	24	1
Cocos nucifera L.	1	1	1	Ocimum tenuiflorum L.	4	4	1
Coffea arabica L.	1	1	1	Opuntia vulgaris Mill.	1	1	1
Coleus amboinicus Lour.	2	2	1	Oryza sativa L.	5	5	1
Coriandrum sativum L.	1	1	1	Papaver somniferum L.	1	1	1
<i>Crateva religiosa</i> G. Forst.	1	1	1	Pergularia daemia (Forssk.) Chiov.	1	1	1
Crocus sativus L.	1	1	1	Phyllanthus amarus Schumach. & Thonn.	7	7	1
Cucumis sativus L.	1	1	1	Phyllanthus emblica L.	1	1	1
Cuminum cyminum L.	4	3	1.333	Phyllanthus polyphyllus	2	2	1
Curcuma longa L.	6	5	1.2	Dalzell & Gibson		2	
Cynodon dactylon (L.)	2	2	1	Physalis minima L.	1	1	1
Pers.				Piper betle L.	17	17	1
Datura metel L.	1	1	1	Piper longum L.	10	10	1
<i>Delonix elata</i> (L.) Gamble	4	4	1	Piper nigrum L.	19	16	1.187
Dodonaea viscosa Jacq.	1	1	1	Psidium guajava L.	1	1	1
Eclipta prostrata (L.) L.	3	3	1	Punica granatum L.	1	1	1
Enicostema littorale	2	2	1	Ricinus communis L.	1	1	1
Blume				Santalum album L.	1	1	1
Eucalyptus globulus	1	1	1	Sesamum indicum L.	1	1	1
Labill. <i>Ferula assa-foetida</i> L.	6	6	1	<i>Sesbania grandiflora</i> (L.) Pers.	1	1	1
				Sida acuta Burm. f.	1	1	1

Ahino et al. - Assessing the Contribution of Local and Traded Biodiversity in 285 Community Health Care: A case study from South India

Plant name/plant	N	Use	
product name	Uses	Knowledge holders	value index
Solanum nigrum L.	1	1	1
Solanum torvum Sw.	2	2	1
Solanum trilobatum L.	3	3	1
Solanum virginianum L.	18	18	1
<i>Syzygium aromaticum</i> (L.) Merr. & L.M. Perry	1	1	1
<i>Syzygium cumini</i> (L.) Skeels	1	1	1
<i>Tabernaemontana divaricata</i> (L.) R. Br. ex Roem. & Schult.	1	1	1
Tamarindus indica L.	1	1	1
<i>Tephrosia purpurea</i> (L.) Pers.	18	18	1
Terminalia chebula Retz.	1	1	1
Trigonella foenum- graecum L.	1	1	1
<i>Vigna unguiculata</i> (L.) Walp.	2	2	1
Vitex negundo L.	3	3	1
Zingiber officinale Roscoe	21	17	1.235
Ziziphus jujuba Mill.	1	1	1

provide only those specialized resources in high demand (Polasky *et al.* 2004). Though plants accessed through trade have high use value, local medicinal plants have greater impact. The fact that markets supply only 28 of the community's 97 medicinal species indicates home gardens, homestead lands and common properties are more than supplementary sources for biodiversity.

Conclusions

This study indicates traditional medicine mostly provides treatments for minor ailments that are immediate, convenient, and relatively cost-free. A majority of medicinal plant biodiversity accessed by the community comes from local surroundings such as home gardens, roadsides and agricultural fields. These sources help make traditional medicines readily available and inexpensive. Traded medicinal plants also contribute significantly towards community health by introducing remote and otherwise unavailable resources. Finally, investing in expanded home garden systems and encouraging wider use of more local species would encourage conservation of local biodiversity while strengthening the community's traditional medicinal system.

Acknowledgements

This study was conducted while the authors AMD and FMF were affiliated to the St. Xavier's college, Palayamkottai. The authors are grateful to the management and faculty of St. Xavier's College, Palayamkottai, South India for providing us with laboratory facilities. We are grateful to the knowledge holders of Keelakodankulam, for participating in this study and for their kind cooperation. We also thank Dr. Rainer W Bussmann for his editing and the reviewers for their kind comments and suggestions.

Literature Cited

Akerreta, S., R.Y. Cavero & M.I. Calvo. 2007. First comprehensive contribution to medical ethnobotany of Western Pyrenees. *Journal of Ethnobiology and Ethnomedicine* 3:26.

Alves, R.R.N. & M.L.R. Lerece. 2007. Biodiversity, traditional medicine and public health: Where do they meet? *Journal of Ethnobiology and Ethnomedicine* 3:14.

Bussmann, R. W., D. Sharon, I. Vandebroek, A. Jones & Z. Revene. 2007. Health for sale: The medicinal plant markets in Trujillo and Chiclayo, Northern Peru. *Journal of Ethnobiology and Ethnomedicine* 3:37.

Case, D.D. 1990. The community's toolbox: The idea, methods and tools for participatory assessment, monitoring and evaluation in community forestry. *Community Forestry Field Manual* 2. Food and Agriculture Organization of the United Nations, Rome.

Colfer, C.J.P., D. Sheil, D. Kaimowitz & M. Kishi. 2006. Forests and human health in the tropics: Some important connections. *Unasylva* 224(57):3-10.

Constitution of India. 1950. *The Constitution (Scheduled Castes) Order*. http://lawmin.nic.in/ld/subord/rule3a.htm.

de Albuquerque, U.P. 2006. Re-examining hypotheses concerning the use and knowledge of medicinal plants: a study in the Caatinga vegetation of NE Brazil. *Journal of Ethnobiology and Ethnomedicine* 2:30.

Dold, A. P. & M.L. Cocks. 2002. The trade in medicinal plants in the Eastern Cape Province, South Africa. *South African Journal of Science* 98:589-597.

Eyzaquirre, P. B. & O.F. Linares. 2001. A new approach to the study and promotion of home gardens. *People and Plants Handbook* 7:30-33.

Finerman, R. & R. Sackett. 2003. Using home gardens to decipher health and healing in the Andes. *Medical Anthropology* 17(4):459-482.

Gamble, J.S. 1915-1936. *Flora of the Presidency of Madras*. Adlard & Son, Itd., London.

Grogan, J., A.G. Blundell, R.M. Landis, A. Youatt, R.E. Gullison, M. Martinez, R. Kómetter, M. Lentini. & R.E. Rice. 2010. Over-harvesting driven by consumer demand leads to population decline: Big-leaf mahogany in South America. *Conservation Letters* 3:12-20.

Hamilton, C. 2004. Medicinal plants, conservation and livelihoods. *Biodiversity and Conservation* 13:1477-1517.

Hoareau, L. & E.J. DaSilva. 1999. Medicinal plants: A reemerging health aid. *EJB Electronic Journal of Biotechnology* 2:2.

Karade, J. 2008. Editor of *Development of Scheduled Castes and Scheduled Tribes in India*. Cambridge Scholars Publishing. Newcastle, United Kingdom.

Krog, M., M.P. Falcao & C.S. Olsen. 2006. Medicinal plant markets and trade in Maputo, Mozam-bique. *Forest & Landscape Working Papers no. 16.* Danish Centre for Forest, Landscape and Planning, Copenhagen, Denmark.

Matthew, K.M. 1982. *Illustrations on the Flora of the Tamil Nadu Carnatic*. The Rapinat Herbarium. St. Joseph's College. Tiruchirappalli, India.

Matthew, K.M. 1988. *Further Illustrations on the Flora of the Tamil Nadu Carnatic*. The Rapinat Herbarium, St. Joseph's College, Tiruchirappalli, India.

Matthew, K.M. 1991. *An Excursion Flora of Central Tamil Nadu, India*. Oxford and IBH Publications, New Delhi, India.

Mendelsohn, O & M. Vicziany 1998. *The Untouchables: Subordination, poverty, and the state in modern India.* Cambridge University Press, Cambridge, United Kingdom.

Mesa-Jiménez, S. 1996. Algunos elementos para el análisis numérico de datos en etnobotánica. *Monografías del Jardín Botánico de Córdoba* 3:69-73.

Nair, N.C. & A.N. Henry. 1983. *Flora of Tamil Nadu, India*. Volume 1. Botanical Survey of India, Coimbatore, India.

Narasimhan, D. & F.M. Franco. 2009. What is traditional knowledge? Pp. 168-172 in *Plant and Fungal Biodiversity and Bioprospecting*. Edited by S. Krishnan & D.J. Bhat. Broadway Book Centre, Goa, India.

Pandey, B. 1986. Educational development among Scheduled Castes. *Social Scientist* 14(2/3)59-68.

Polasky, S., C. Costello & C. McAusland. 2004. On trade, land-use, and biodiversity. *Journal of Environmental Economics and Management* 48(2):911-925.

Premsagar, V. 2002. Interpretive Diary of a Bishop: Indian experience in translation and interpretation of some biblical passages. Christian Literature Society, Chennai, India.

Pushpangadan, P. & C.K. Atal. 1986. Ethnomedical and ethnobotanical investigations among some scheduled caste communities of Travancore, Kerala, India. *Journal of Ethnopharmacology* 16(2/3):175-190.

Revene, Z., R.W. Bussmann & D. Sharon. 2008. From Sierra to Coast: Tracing the supply of medicinal plants in Northern Peru– A plant collector's tale. *Ethnobotany Research and Applications* 6:15-22.

Rossato, S. C., Leitao-filha & A. Bejossi. 1999. Ethnobotany of caicaran of the Atlantic forest Coant (Brazil). *Economic Botany* 53:387-395.

Shanley, P. & L. Leda. 2003. The impacts of forest degradation on medicinal plant use and implications for health care in Eastern Amazonia. *Bioscience* 53:573-584.

Singh, K.S. 1999. *The Scheduled Castes*. Revised edition. Oxford University Press, Delhi, India.

Thurston, E & K. Rangachari 1909. *Castes and Tribes of Southern India*. Government Press, Madras, India.

Toledo, B.A, L. Galetto & S. Colantonio. 2009. Ethnobotanical knowledge in rural communities of Cordoba (Argentina): The importance of cultural and biogeographical factors. *Journal of Ethnobiology and Ethnomedicine* 5:40.

Voeks, R.A. 2004. Disturbance pharmacopoeias: Medicine and myth from the humid tropics. *Annals of the Association of American Geographers* 94:868–888.

286