

Quantitative approach to the ethnomedicinal study of the ethnic communities of Rangia subdivision, Assam, North East India

Sanjib Baruah, Dhritima Basumatary and Priyanka Brahma

Correspondence

Sanjib Baruah*, Dhritima Basumatary Priyanka Brahma

Department of Botany, Bodoland University, Bodoland Territorial Region (BTR) P. O. Box 783370, Assam, India.

*Corresponding Author: sanjibbaruah9@gmail.com

Ethnobotany Research and Application 27:21 (2024) - http://dx.doi.org/10.32859/era.27.21.1-16 Manuscript received: 11/01/2024 – Revised manuscript received: 23/07/2024 - Published: 24/07/2024

Research

Abstract

Background: In developing nations, using plants and plant resources for various ethnobotanical purposes is a prevalent practice. Assam is part of the Indo-Myanmar biodiversity hot spot, one of the 25 mega-diverse regions on planet Earth. Assam is unparalleled, as nature has been uniquely generous in endowing it with varied *ethnic groups*. This study conducted an ethnobotanical survey of plant diversity at Rangia subdivision of Kamrup District, Assam, India.

Methods: Ethnomedicinal information was gathered through carefully planned questionaries and interviews with 43 informants across 11 villages in the Rangia subdivision of Assam. The data was analyzed using various quantitative indices like Use value (UV), Informant Consensus Factor (ICF), and Family Importance Value (FIV).

Results: In the present findings, 60 plant species belonging to 42 families, and 87 genera used by the ethnic people in the study areas have been documented. A total of 43 key informants were interrogated comprising men and women. A quantitative ethnobotany index analysis helps us to identify the utility of various significant species to treat some of the common ailments that are claimed by traditional medicine practitioners

Conclusions: It is important and pertinent for society to look into the traditional knowledge of ethnic groups employing different plants to treat illnesses. In addition to providing important avenues for the promotion of traditional herbal therapeutic practices, more research into the ethnobotanical aspects of the region will also provide scientific validation. Moreover, species with strong UVs could offer helpful leads for pharmacological study in the future.

Keywords: Quantitative ethnobotany, medicinal plants, Use value, traditional knowledge

Background

Assam is a part of the Indo-Myanmar biodiversity hotspot and ranks as one of the world's 25th most biodiverse regions (Myers *et al.* 2000). There are more than 100 different tribes and ethnic groups in Assam, most of which are rural residents who still reside in remote forested areas and who heavily rely on their traditional medical practices (Baruah *et al.* 2021). However, traditional medical knowledge appears to be disappearing as newer generations are not motivated to continue this practice (Baruah *et al.* 2018, Mahesh 2023). Assam is bordered by seven other states - Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Tripura, and West Bengal as well as two foreign nations- Bangladesh and Bhutan. It is also known as the

"Gateway to the North East of India". About 50% of India's biodiversity is found in the northeast of the country, which is also known as a "Biodiversity Hot Spot" due to its proximity to the Indo-Burma and the Himalayas (Mao *et al.* 2009). According to the World Health Organization (WHO), approximately 45,000 plant species in India have therapeutic properties, and 70% of the country's rural population relies on traditional medicine made from biological resources for primary healthcare (Ved & Goraya 2008).

The study of human interactions with plants has been a global concern because of food security, climate change, biodiversity conservation, and human health (Pei *et al.* 2020). It is a fact that ethnobotany provides knowledge on the traditional uses of plants, which can be used towards the development of societies. The ethnobotanical knowledge of plants and their use by indigenous communities are not only essential for the conservation of biodiversity but also for community healthcare practices and the drug development process (Sheng-Ji 2001). About 85% of the world population uses herbal medicines for prevention and treatment of diseases, and the demand is increasing in developed and developing countries (Abera 2014, Tefera *et al.* 2019). Over 80% of people in Africa receive their primary healthcare from traditional medicine (Who 2019). Assam has 31 districts spread across a land area of 78,438 sq. km., and its population was 31.21 million as per the 2011 census. The state is situated between longitudes 89042'E and 96002'E and latitudes 24004'N to 28000'N (Basumatary & Baruah 2023). Due to its ideal geographic location, varied topography, and favourable climatic conditions, Assam has a relatively high biodiversity. Several plants in Assam are utilized medicinally by both contemporary medicine and traditional village healers, Ayurvedic, Unani, and homeopathic medicine (Baruah *et al.* 2013, Baro *et al.* 2015, Daimary *et al.* 2019, Brahma & Baruah 2023). Assam, which is a portion of Indo-Burma and is home to indigenous tribes, offers a wealth of opportunities for ethnobotanical research. Ethnic people only utilize their own herbal treatments and have a strong belief in the traditional medical system.

The present study was taken up to document ethnomedicinal plants commonly used by the ethnic communities of the greater Rangia subdivision, Assam.

Materials and Methods

Description of the study area

The present study was conducted in Rangia Subdivision (Figure 3), which is situated on the northern bank of the river Brahmaputra, 52 km from Guwahati, Assam. Rangia, with its cardinal points at 26.47°N and 91.63°E. According to data from the 2011 census, Rangia subdivision covers a total area of 186 km², including 12.46 km² of urban area and 173.12 km² of rural area. There are 1,55,333 people living in the Rangia subdivision, of which 32,533 are urban residents and 1,22,800 are rural population. Rangia town serves as the administrative centre for the Rangia subdivision of the Kamrup Rural District. Rangia is connected to all of Assam's major cities and the rest of India by NH-31. The name Rangia or Rangiya, according to Assamese folklore, is derived from two terms, "Ran" and "Diya," which indicate "engage in battle," because the area served as a battleground for the Bhutias in the north, the Darrangi kingdom in the east, the Ahoms in the south, and the Mughals in the west. Some academics, however, contend that the name location actually derives from the Assamese word "rang," which means "fun," as they feel that the location was brimming with amusement and mystic delight.

Rangia shares the same hot, humid summer and cool, dry winter climate as the rest of the Brahmaputra valley. The annual maximum and lowest temperatures are 37.5 °C and 8.1 °C, respectively. With an annual rainfall of 1852.20 mm and a relative humidity of 75%, there is enough precipitation in the summer.

Selection of the study area

A total of eleven villages were chosen in the Rangia subdivision: Doloigaon, Gurkuchi, Halikuchi, Jamtola, Kekohati, Balagaon, Bangaon, Benaglikuchi, Bhatkuchi, Bichennala, and Chepti, which are mostly populated by Assamese, Nepali, Bodo, Rajbongshi, Rabha, Sarania Kachari, and Bengali peoples. The communities were chosen because they had a higher population and relied heavily on medicinal plants. Between March 2021 and May 2023, a survey was carried out. Standard procedures and methodologies have been used when gathering data on ethno-medico-botanical features. With the help of a questionnaire, interviews, and talks with a few well-known herbalists and the local healers known as *"Bej"* and "Ojha," ethnobotanical data were gathered. Herbalists were questioned in their localities. Samples of all the therapeutic plants mentioned by the herbalists were collected, identified, and authenticated at Bodoland University, Department of Botany, Kokrajhar, Assam. The data forms were then analysed, compiled, and tabulated to provide the botanical names, common names, families, and plant parts used. Photographs of the plant and its habitats, leaves, and floral parts were taken during the field study.

Figure 1. Gathering information and data collection on ethnobotanical knowledge (A-C), Mode of preparation (D), Glimpses of some plant parts used (E-M), Lataguti (E), Singrimwkhwi (F), Manimuni gidir (G), Jari (H), Haladhi (I), Silikha (J), Pathwi (K), Nwrsingh (L), Tejpat (M).

Demographic data of the participants

A total of 43 informers, including 12 farmers, 2 healers, 29 housewives, and elderly persons were interviewed to gather the information. Among them 5 were less than 20 years, 12 were 21-40 years, 22 were between 41-60, and 4 were under 61-80 years old. All the people belonging to rural areas and they are mainly dependent on agricultural practices. Demographic data of the participants with variables, categories, number of informants and percentage were denoted in Table 1 and Figure 2 respectively.

Variables	Categories	No. of informants	Percentage
Gender ratio	Female	23	53.72
	Male	20	46.28
Age	<20	5	11.07
	21-40	12	27.77
	41-60	22	51.91
	61-80	4	9.26
Educational background	Matric (10 standard)	21	48.09
	Higher Secondary (10+2)	8	18.51
	Housewife's	9	20.33
	Farmer	3	6.44
	Healer	2	4.63
Life type	Rural area		100

Table1. Demographic details of the participants

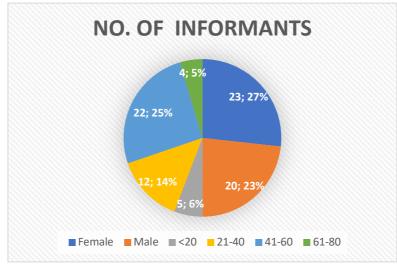
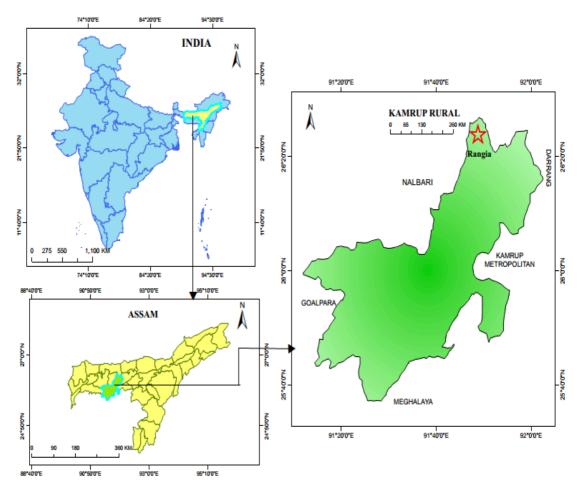



Figure 2. Percentage distribution of the number of informants

STUDY AREA MAP

Figure 3. Map of the study area

Collection, identification and preservation of plants

Plant specimens and their medicinal parts were collected from the study area during the field survey. These samples were tagged with their local names in the field. The plant species were confirmed with the help of the local elders. The scientific names of collected plant specimens were identified following the Flora of Assam (Kanjilal *et al.* 1934-1940). The names were further updated after verification from the online website of World Flora Online (WFO 2023).

Analysis of data

The data collected through questionnaires and personal interviews about respondents and ethnomedicinal plants were analyzed using various quantitative indices like Use value (UV), Informant Consensus Factor (ICF), and Family Importance Value (FIV).

Use Value (UV)

Use value shows the relative importance of plant species by considering the number of use reports mentioned by indigenous inhabitants of the study area. It is calculated using the use-value formula:

UV =UVi/Ni

Where "UVi" is the frequency of citations for species through all respondents and "Ni" number of respondents (Vitalini *et al.* 2013).

Informant Consensus Factor (ICF)

The informant consensus factor was used to evaluate the consent of respondents about the use of plant species for curing various ailment categories.

ICF= Nur-Nt/Nur-1

Nur= number of use reports from informers for a disease category treated by plant species

Nt= total number of plant taxa used for a particular disease category

The ICF value ranges from 0 and 1. Where 1 represents the highest value of respondents and 0 indicates the lowest value (Heinrich *et al.* 1998).

Family Importance Value (FIV)

Family Importance Value (FIV) was used to determine the relative importance of families. It was calculated by taking the percentage of informants mentioning the family.

FIV=FC (family)/N×100

Where, FC is the number of informers revealing the family, while Nis is the total number of informants participated in the research (Heinrich *et al.* 1998).

Results and Discussion

A total of 60 plant species belonging to 42 families are recorded to treat various diseases in the selected study area (Table 2).

Diversity of the Medicinal Flora

A total of 60 medicinal plant species were identified to manage diverse human and livestock ailments in the study area. Leaves were the most common plant part used in remedy preparations, secondly, the fruit was followed by other parts like whole plants, bark, roots, latex, stem, seed, and flowers as shown in (Figure 4). Traditional people have a wealth of traditional knowledge of basic healthcare requirements (Brahma & Baruah 2023). Present study line with earlier ethnobotanical investigations was carried out (Bekele *et al.* 2022, Bhatia *et al.* 2014, Bibi *et al.* 2022, Daimary *et al.* 2019, Das & Saikia 2001, Mao *et al.* 2009).

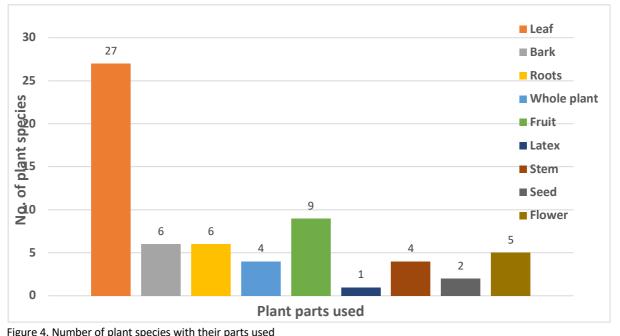
The plant species were documented with their scientific name, voucher number, local name, family, parts used, preparation method, and disease cured are presented. In terms of use value (UV), frequency of citation (FC), and relative frequency of citation (RFC), informant consensus factor (ICF) and family importance value (FIV) analysis are done (Table 3), (Table 4), (Table 5).

Table 2. List of medicinal plants used by the ethnic communities of Rangia, Kamrup, Assam

Species	Family	Local name	Parts used	Preparation method	Disease cured
Justicia adhatoda L.	Acanthaceae	Bahaka-tita (A)	Leaf	The Leaf extract is mixed	Cold, cough
Coll no. 61				with honey	
Acorus calamus L.	Acoraceae	Bosh gos (A)	Roots	Rhizome is crushed and	Irregular menstrual cycle
Coll no. 15				the juice is consumed	
Amaranthus spinosus L.	Amaranthaceae	Kata khutura (A)	Leaf	Leaves are boiled	Jaundice, diarrhea, anemia
Coll no. 8				without salt	
Mangifera indica L.	Anacardiaceae	Aam, taijou (A/B)	Leaf	Juice is prepared from	Gastric problems, ulcers and
Coll no. 77				leaf and consumed	diarrhea
Monoon longifolium (Sonn.) B.Xue &	Annonaceae	Debodaru (A/B)	Bark	Paste of bark	Menstruation discomfort
R.M.K.Saunders					
Coll no. 96					
Centella asiatica (L.) Urb.	Apiaceae	Dangor manimuni (A)	Leaf	Leaf is cooked or the	Stomach pain, digestive
Coll no. 33				fresh leaf are ground	problems
				and taken orally.	
Daucus carota L.	Apiaceae	Gajor (A)	Roots	Peeled roots are applied	Burnt
Coll no. 47				in the infected parts	
Catharanthus roseus L.	Apocynaceae	Nayantora (A)	Leaf	Leaf paste is directly	Headache
Coll no. 31				applied to the forehead	
Colocasia esculenta (L.) Schott.	Araceae	Kosu/thaso (A/B)	Petiole	Petiole is heated and the	Minor cuts
Coll no. 35				juice is given	
Enydra fluctuans Lour.	Asteraceae	Helechi (A)	Leaf	Paste of leaf is	Ringworm
Coll no. 44				consumed	
Spilanthes acmella Wall. ex DC.	Asteraceae	Jari (A)	Flower	The flower is consumed	Tongue disease, toothache
Coll no. 82				raw	
Bombax ceiba L.	Bombacaceae	Simalu (A)	Leaf, flower, seed	Leaf juice is consumed,	Diarrhea, worm, weakness,
Coll no. 3				and the seed is used	liver and stomach troubles
Carica papaya L.	Caricaceae	Omita (A)	Latex	Latex is mixed with khor	Ringworm infection, pimples
Coll no. 9				part, and the fruit is	
				smashed, the prepared	
				paste is applied to the	
				face	
Drymaria cordata (L.)Willd. ex Schult.	Caryophyllaceae	Laijabri (A)	Whole plant	It is cooked and	Insect bites, stomach
Coll no. 60				consumed	problems
Chenopodium album L.	Chenopodiaceae	Buthua (A)	Leaf	Fresh juice of leaf is	Common worm
Coll no. 40				consumed	
<i>Garcinia cowa</i> Roxb.	Clusiaceae	Kujithekera(A)	Fruits	Dried fruits are mixed	Control high blood pressure
Coll no. 50				with water	

<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn. Coll no. 80	Combretaceae	Arjun (A/B)	Bark	Bark is mixed with little milk and boiled	Heart disease
<i>Terminalia chebula</i> Retz. Coll no. 65	Combretaceae	Silikha (B/A)	Fruits	unripe and ripe fruit are eaten raw	Loss of appetite, jaundice
Bryophyllum pinnatum (Lam.) Oken. Coll no. 31	Crassulaceae	Pategoja (A)	Leaf	Leaf extract	Kidney stone and constipation
<i>Momordica charantia</i> L. Coll no. 79	Cucurbitaceae	Titakerela (A)	Leaf	Juice of the leaf	Menstruation irregularities
<i>Dillenia pentagyna</i> Roxb. Coll no. 52	Dilleniaceae	Thaigir,ow tenga (B/A)	Bark, fruit	Barks are extracted and mix with water	Body inflammation
<i>Emblica officinalis</i> Gaertn. Coll no. 43	Euphorbiaceae	Amlokhi (A)	Fruits	Paste is prepared from fruit and applied	Wrinkled skin
Euphorbia milii var. splendens Coll no. 48	Euphorbiaceae	Sijou (B)	Branches	The branches are crushed, and a paste is applied	Boils
<i>Caesalpinia bonduc</i> (L.) Roxb. Coll no. 7	Fabaceae	Letaguti (A)	Fruit	Fruits are grounded and prepared as juice	Pneumonia, Gastritis
Cassia fistula L. Coll no. 23	Fabaceae	Sonaru (A)	Leaf and bark	The paste of the leaves and bark is ground, and both the paste is mixed with oil.	Insect bites, pustules
<i>Clitoria ternatea</i> L. Coll no. 27	Fabaceae	Aparajita (A)	Flower	Flower is boiled and consumed	Improves heart and brain health.
<i>Trigonella foenum-graecum</i> L. Coll no. 55	Fabaceae	Methi guti (A)	Seed	Seed is grinded and mixed with milk	Uterus infection
<i>Hypericum japonicum</i> Thunb. Coll no. 56	Hypericaceae	Sonaphuli (A)	whole shoot	Cooked and consumed	Fever, cough and cold
Clerodendrum infortunatum L. Coll no. 15	Lamiaceae	Lwkhwna,dhopati tita (B/A)	Leaf and roots	Fresh leaf or the extracted juice from roots is consumed directly	Diarrhea
<i>Leucas aspera</i> (willd.) Link Coll no. 68	Lamiaceae	Dharamphul (A)	Flower	Paste of flower is directly mix with water	Stops bleeding in nose
<i>Mentha arvensis</i> L. Coll no. 88	Lamiaceae	Khudwna (B)	Leaf	Leaves are put in water for few hours and the decanted extract is given	Jaundice
<i>Mentha viridis</i> L. Coll no. 85	Lamiaceae	Pudina (B/A)	Leaf, stem	Fresh or dried leaves and stem are consumed	Acidity and stomach problem

<i>Ocimum sanctum</i> L. Coll no. 71	Lamiaceae	Tulshi,Thulumsi (A/B)	Leaf	Leaf juice is mixed with honey	Cough, eye disease
Cinnamomum tamala (BuchHam.) Coll no. 19	Lauraceae	Tejpat (A)	Leaf, bark	Leaf and bark is cooked and consumed	Diarrhea
Allium sativum L. Coll no. 12	Liliaceae	Rasun (A)	Leaf	Bulb paste combined with moderately heated mustard oil	Reduces body ache
<i>Aloe barbadensis</i> Mill. Coll no. 5	Liliaceae	Aloe vera (A/B)	Leaf	The leaves are crushed, and the paste is applied	Pimples
Hibiscus rosa sinensis L. Coll no. 63	Malvaceae	Joba (A)	Flower	The paste of flower is applied on cuts and wounds	Cuts and wounds, irregular menstruation troubles
<i>Melastoma malabathricum</i> L. Coll no.83	Melastomataceae	Thingkhu bergao (B)	Stem	Paste of stem is used	Toothache
<i>Azadirachta indica</i> A. Juss. Coll no. 26	Meliaceae	Neem (A/B)	Leaf, bark	Leaves are cooked or applied directly	chicken pox, skin disease, malaria
<i>Tinospora cordifolia</i> (Willd.) Miers ex Hook.f. & Thomson Coll no. 49	Menispermaceae	Amorlota (A)	Leaf, stem	Leaves and stem are boiled and consumed	Diarrhea, dysentery
Artocarpus heterophyllus Lam. Coll no. 1	Moraceae	Kathal (A)	Bark	Paste of bark	Breast wounds or infection
<i>Moringa oleifera</i> Lam. Coll no. 66	Moringaceae	Sojina (A)	Leaf	Fresh leaves are grounded and prepared as juice	Reduce menstrual pain
<i>Nyctanthes arbor-tristis</i> L. Coll no. 73	Oleaceae	Sewali (A)	Leaf	Leaf paste	Liver, fever
Averrhoa carambola L. Coll no .20	Oxalidaceae	Kordoitenga, Khwrdwi (A/B)	Fruits	Fruits are consumed raw	Dysentery, Diarrhea
<i>Oxalis corniculata</i> L. Coll no. 95	Oxalidaceae	Singrimwkhwi (B)	Leaf	Raw or cooked leaf extract	Dysentery, high blood pressure
<i>Houttuynia cordata</i> Thunb. Coll no. 75	Piperaceae	Machandari(A)	Whole plant	It is mixed with <i>Centella</i> asiatica and a little salt is given	Flatulence, dysentery
Piper betel L. Coll no. 81	Piperaceae	Pan, phathwi (A/B)	Leaf	The leaves are ground and juice obtained by it is applied on head	Head pediculosis
<i>Bambusa balcooa</i> Roxb. Coll no. 4	Poaceae	Bholuka bah (A)	Leaf, stem	The paste of stem and leaf are mixed with honey	Menstruation pain


<i>Cynodon dactylon</i> L. Coll no. 40	Poaceae	Dubori bon (A)	Whole plant	Whole plant is grounded and as a juice it is consumed	To stop excess bleeding during menstruation
<i>Hedyotis corymbosa</i> (L.) Lam. Coll no. 52	Rubiaceae	Bon-jaluk, deushriatheng (A/B)	Leaf	Leaf paste is directly applied on the infected portion	Boils
<i>Paederia foetida</i> L. Coll no. 90	Rubiaceae	Bhedali lota (A)	Leaf	Leaf extract	Diarrhea, dysentery
Aegle marmelos (L.) Cor Coll no. 18	Rutaceae	Bel (A)	Fruit	The leaves and few Piper nigrum fruits are mashed, and the mixture is put on the boils	Piles, boils, stomach problems
<i>Citrus lemon</i> L. Burm. Coll no. 10	Rutaceae	Golnemu (A/B)	Fruits	The juice extract is applied directly	Pimples
<i>Murraya koenigii</i> (L.) Spreng. Coll no. 91	Rutaceae	Narasingha/ Nwrsingh (A/B)	Leaf	Raw or cooked leaf	indigestion
<i>Bacopa monnieri</i> (L.) Wettst. Coll no. 23	Scrophulariaceae	Brahmi (A)	Leaf	Cooked and consumed	Memory enhancer
Datura metel L. Coll no. 41	Solanaceae	Dhatura (A)	Leaf, roots	Leaves are boiled and mixed with coconut oil	Pain and swelling, dandruff problem
<i>Lycopersicon esculentum</i> Mill. Coll no. 59	Solanaceae	Bilahi (A)	Fruits	The extracted juice is combined with coconut oil and applied	Scabies
<i>Aquilaria agallocha</i> Roxb. Coll no. 11	Thymelaeaceae	Agaru (A)	Whole plant	Plant oil extraction is used as ointment	Skin infection
<i>Curcuma longa</i> L. Coll no. 32	Zingiberaceae	Haladhi (A)	Roots	Crushed roots is applied to the infected portion	Ringworm infection
Zingiber officinale Roscoe Coll no. 51	Zingiberaceae	Aada (A/B)	Rhizomes	Rhizome juice mixed with honey	Cough

Abbreviations used: Assamese (A), Bodo (B)

Use Value (UV)

It is found that the use value ranges from 0.56 to 9.98 (Table 3). Use value (UV) is an index widely used to quantify the relative importance of useful plants (Zenderland et al. 2019). Plants with low UVs suggest that the locals are unaware of their benefits (Amjad et al. 2020). A total of 34 medicinal plants viz. Aegle marmelos (L.) Cor, Allium sativum L., Aloe barbadensis Mill., Amaranthus spinosus L., Azadirachta indica A. Juss., Bacopa monnieri L., Bryophyllum pinnatum (Lam.) Oken., Carica papaya L., Catharanthus roseus L., Centella asiatica (L.) Urb., Chenopodium album L., Cinnamomum tamala (Buch.-Ham.), Citrus limon L. Burm., Clitoria ternatea L., Curcuma longa L., Datura metel L., Daucus carota L., Dillenia pentagyna Roxb., Emblica officinalis Gaertn., Garcinia cowa Roxb., Hedyotis corymbosa (L.) Lam., Houttuynia cordata Thunb., Lycopersicon esculentum Mill., Mangifera indica L., Melastoma malabathricum L., Mentha viridis L., Momordica charantia L., Moringa oleifera Lam., Murraya koenigii (L.) Spreng, Nyctanthes arbor-tristis L., Ocimum sanctum L., Oxalis corniculata L., Paederia foetida L., Terminalia chebula Retz., Zingiber officinale Roscoe., have high use value, greater than 0.90. The study proved that out of 60 medicinal plants, 5 plants have the lowest use value of <0.70 viz. Aquilaria agallocha Roxb., Averrhoa carambola L., Bambusa balcoaa Roxb., Bombax ceiba L., Monoon longifolium (Sonn.) B.Xue & R.M.K.Saunders and others have medium use values (Table 3). The UV of a species will may vary according on the usage, accessibility, and knowledge of the informant in a given area (Sukumaran et al. 2021). The low use value of some taxa could be related to their scarcity (Benz et al. 1994).

The medicinal plant species cited by most of the informants are shown in Table 3. From the result, it is denoted that 14 medicinal plant species have been cited by most of the informants. The mostly cited medicinal plants are Allium sativum L., Aloe barbadensis Mill., Azadirachta indica A. Juss., Bacopa monnieri L., Bryophyllum pinnatum (Lam.) Oken., Carica papaya L., Centella asiatica (L.) Urb., Cinnamomum tamala (Buch.-Ham.), Citrus limon L. Burm., Curcuma longa L., Dillenia pentagyna Roxb., Mentha viridis L., Ocimum sanctum L., Terminalia chebula Retz.

Figure 4. Number of	of plant	species wit	th their	parts	used
---------------------	----------	-------------	----------	-------	------

Scientific name	No. of	Frequency of citation	Use value (UV)
	respondent (Ni)	for species (Uvi)	
Acorus calamus L.	26	23	0.88
Aegle marmelos (L.) Cor	17	16	0.94
Allium sativum L.	41	40	0.98
Aloe barbadensis Mill.	43	40	0.93
Amaranthus spinosus L.	35	32	0.91
Aquilaria malaccensis Roxb.	10	6	0.60
Artocarpus heterophyllus Lam.	15	11	0.73
Averrhoa carambola L.	9	5	0.56

Table 3 Use value (UV) of the medicinal flora

Azadirachta indica A. Juss.	43	42	0.98
Bacopa monnieri L.	42	41	0.98
Bambusa balcooa Roxb.	6	4	0.67
Bombax ceiba L.	7	4	0.57
Bryophyllum pinnatum (Lam.) Oken.	43	41	0.95
Caesalpinia bonducella (L.) Flem	12	10	0.83
Carica papaya L.	42	40	0.95
Cassia fistula L.	17	15	0.88
Catharanthus roseus L.	35	33	0.94
Centella asiatica (L.) Urb.	43	41	0.95
Chenopodium album L.	29	26	0.90
Cinnamomum tamala (BuchHam.)	42	41	0.98
Citrus limon (L.) Burm.	43	40	0.93
Clerodendrum infortunatum L.	29	25	0.86
Clitoria ternatea L.	33	30	0.91
Colocasia esculenta (L.) Schott.	30	25	0.83
Curcuma longa L.	43	40	0.93
Cynodon dactylon L.	14	10	0.79
Datura metel L.	10	9	0.90
Daucus carota L.	41	38	0.93
Dillenia pentagyna Roxb.	42	41	0.98
Drymaria cordata (L.) Willd. ex Schult.	15	11	0.73
Emblica officinalis Gaertn.	37	35	0.95
Enydra fluctuans Lour.	33	27	0.82
Euphorbia milii var. splendens	13	11	0.85
Garcinia cowa Roxb.	23	21	0.91
Hedyotis corymbosa (L.) Lam.	39	36	0.92
Hibiscus rosa sinensis L.	31	27	0.87
Houttuynia cordata Thunb.	33	31	0.94
Hypericum japonicum Thunb.	23	18	0.78
Justicia adhatoda L.	22	18	0.82
Leucas aspera (willd.) Link	23	20	0.87
Lycopersicon esculentum Mill.	34	32	0.94
Mangifera indica L.	39	36	0.92
Melastoma malabathricum L.	29	27	0.93
Mentha arvensis L.	24	21	0.88
Mentha viridis L.	43	42	0.98
Momordica charantia L.	34	31	0.91
Monoon longifolium (Sonn.) B.Xue &	5	3	0.60
R.M.K.Saunders	-	-	
Moringa oleifera Lam.	38	35	0.92
Murraya koenigii (L.) Spreng	40	39	0.98
Nyctanthes arbor-tristis L.	37	35	0.95
Ocimum sanctum L.	43	42	0.98
Oxalis corniculata L.	39	36	0.92
Paederia foetida L.	40	36	0.90
Piper betel Blanco.	37	31	0.84
Spilanthes paniculata Wall. ex DC.	9	7	0.78
<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn.	25	22	0.88
Terminalia chebula Retz.	43	42	0.98
Tinopora cordifolia (willd) Miers	22	17	0.58
Trigonella foenum-graecum Linn.	22	17	0.81
Zingiber officinale Roscoe.	42	39	0.93
Lingiber officiate Roscoe.	74	53	0.95

ICF Value

During the current survey, 37 different disorders are reported, and 60 medicinal herbs are used to cure them (Table 4). Results showed that the informant consensus factor (ICF) values ranged from 0.9 to 0.95 for the disease categories (Table 4). Of the categorized diseases, anemia, body aches, body inflammation, headache, boils and burnt, chicken pox, skin disease and pimples, cold, cough and fever, common worm and stomach problem, cuts and wounds, dandruff problem, dysentery, diarrhea and typhoid, digestive problems, kidney stone and constipation, excess menstrual bleeding, irregular menstrual cycle and menstrual pain, eye disease, gastritis ulcers, high blood pressure and piles, insect bites, Jaundice and malaria, nose bleeding, pain and swelling, ringworm infection, tongue disease and toothache out of this boils and burnt, chicken pox, skin disease and pimples, dandruff problem, common worm and stomach problem, cold, cough and fever, body ache, body inflammation and headache has highest ICF value, 0.95, 0.92, 0.92, 0.89, 0.88, 0.84 respectively (Table 4).

Disease categories	Nt (Number of species	Nur (Number of use	ICF (Informant
	used for the ailment)	citations for each ailment)	Consensus Factor)
Anaemia	5	7	0.33
Body ache, body inflammation and	9	53	0.84
headache			
Boils and burnt	4	61	0.95
chicken pox, skin disease and pimples	6	71	0.92
Cold, cough and fever	6	44	0.88
Common worm and stomach problem	8	66	0.89
Cuts and wounds	5	33	0.75
Dandruff problem	3	29	0.92
Dysentery, diarrhea and typhoid	11	19	0.44
Digestive problems, kidney stone and	2	11	0.9
constipation			
Excess menstrual bleeding, Irregular	7	27	0.75
menstrual cycle and menstrual pain			
Eye disease	2	8	0.14
Gastritis ulcers	3	11	0.8
High blood pressure and piles	3	17	0.75
Insect bites	2	31	0.66
Jaundice and malaria	4	39	0.57
Nose bleeding, pain and swelling	2	25	0.33
Ringworm infection	3	23	0.9
Tongue disease and toothache	3	18	0.17

FIV Value

The maximum FIV value is recorded for the family Lamiaceae followed by Zingiberaceae, Araceae, Crassulaceae, Liliaceae, Euphorbiaceae, Cucurbitaceae, and Solanaceae as shown in Table 5 and Figure 5 respectively.

Table 5. Family importance value (FIV) of the medicinal flora

Family name	No. of species	FC (family)	FIV (Family Importance Value)
Acanthaceae	1	7	16.28
Amaranthaceae	1	26	60.47
Anacardiaceae	1	40	93.02
Acoraceae	1	22	51.16
Annonaceae	1	10	23.26
Apiaceae	2	38	88.37
Apocynaceae	1	37	86.05
Araceae	1	42	97.67
Asteraceae	2	39	90.70
Bombacaceae	1	21	48.84

Fabaceae	1	13	30.23
Caricaceae	1	36	83.72
Caryophyllaceae	1	35	81.40
Chenopodiaceae	1	40	93.02
Clusiaceae	1	26	60.47
Combretaceae	2	4	9.30
Crassulaceae	1	42	97.67
Cucurbitaceae	1	41	95.35
Dilleniaceae	1	33	76.74
Euphorbiaceae	2	41	95.35
Fabaceae	2	24	55.81
Hypericaceae	1	21	48.84
Lamiaceae	6	43	100.00
Lauraceae	1	40	93.02
Fabaceae	1	11	25.58
Liliaceae	2	42	97.67
Malvaceae	1	34	79.07
Melastomataceae	1	6	13.95
Meliaceae	1	37	86.05
Menispermaceae	1	16	37.21
Moraceae	1	39	90.70
Moringaceae	1	36	83.72
Oleaceae	1	29	67.44
Oxalidaceae	2	33	76.74
Piperaceae	2	35	81.40
Poaceae	2	27	62.79
Rubiaceae	3	40	93.02
Rutaceae	3	39	90.70
Scrophulariaceae	1	37	86.05
Solanaceae	2	41	95.35
Thymelaeaceae	1	22	51.16
Zingiberaceae	2	43	100.00

Similar medicinal plants are used elsewhere

The literature review of other ethnomedicinal studies revealed that some of the reported medicinal plants (MPs) in this study were also reported in other countries. For instance, *Amaranthus sativum* L. (Hedidi *et al.* 2024) is used by the indigenous people of Algeria for dry hair, eczema, and influenza, respectively. Similarly, *Chenopodium album* L. (Chenopodiaceae) is used as a laxative (Massoudi *et al.* 2018) and *A. spinosus is* used as a woman's menstrual disorder in Iran (Massoudi *et al.* 2018). Other MPs used as anti-constipation in other countries include *Tamarindus indica* L. (Fabaceae) used in Nigeria (Lockett & Grivetti 2000), India (Bhadoriya *et al.* 2011), and Madagascar (Norscia & Borgognini-Tarli 2006), *Zanthoxylum chalybeum* Engl. (Rutaceae) in Nigeria (Okagu *et al.* 2021), and *Solanum incanum* L. (Solanaceae) in Kenya (Mathiu *et al.* 2005). Likewise, *Melastoma malabathricum* (L.) Smith (Melastomataceae) is used in Bangladesh. A fresh leaf juice is used for the ulceration of the mouth reported in Punjab, Pakistan (Ali *et al.* 2020) to manage constipation. Leaves are eaten by hilly people in Assam and Meghalaya (Baruah *et al.* 2013).

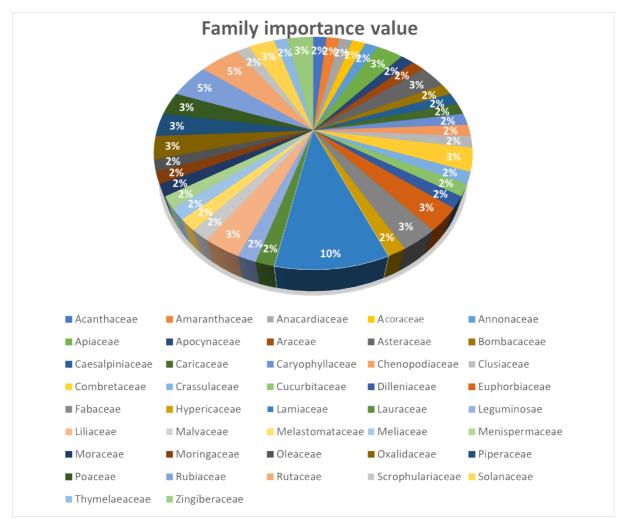


Figure 5. Pie chart representation of FIV (Family Importance Value)

Conclusion

The investigation of the traditional knowledge of ethnic groups using various plants to heal ailments is crucial and relevant at this time for society's long-term welfare. Protection, preservation and production of priceless medicinal plants are now opening up new opportunities in agriculture as well as in the field of ethnobotany. This is the first quantitative approach to the ethnomedicinal study of the ethnic communities of Rangia sub-division, Kamrup, Assam. The present study showed that 60 plant species belonging to 42 families are used to treat various diseases by the local inhabitants in the selected study area. People of that area still rely on medicinal herbs due to their low cost and accessibility. Further research into the ethnobotanical elements of the region will give valuable avenues for the promotion of traditional herbal therapeutic practices as well as scientific confirmation. Furthermore, species with high use values, (UV) may provide useful leads for future pharmaceutical research. This will assure income production, improved livelihoods, and ultimately the conservation of these species.

Declarations

Ethics approval and consent to participate: No informants from either local or indigenous communities were forced to respond without their free consent. All informants who voluntarily refused to participate in the study were excluded. Consent for publication: All people shown in images gave their prior informed consent to have those images published. Availability of data and materials: Not applicable

Competing interests: Not applicable

Funding: Not applicable

Author contributions: SB, PB designed this study; DB, SB collected and analysed data and wrote the initial draft of the manuscript. SB and PB revised and edited the manuscript.

Acknowledgements

The authors are thankful to the local communities and traditional healers of Rangia subdivision for providing necessary information and sharing their knowledge on medicinal plants. We would also like to acknowledge the interviewers for the time they devoted to collecting data.

Literature cited

Ali MZ, Mehmood MH, Saleem M, Gilani A-H. 2020. The use of *Euphorbia hirta* L. (Euphorbiaceae) in diarrhoea and constipation involves calcium antagonism and cholinergic mechanisms. BMC Complementary Medicine and Therapies 20:14.

Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SMH, Abbasi AM. 2020. Ethnobotanical survey of the medicinal flora of Harighal, Azad Jammu & Kashmir, Pakistan. Journal of Ethnobiology Ethnomedicine 16(1):1-28.

Baro D, Baruah S, Borthakur SK. 2015. Documentation on wild vegetables of Baksa District, BTAD (Assam). Archives of Applied Science Research 7(9):19-27.

Baruah S, Barman P, Basumatary S, Birina B. 2021. Diversity and Ethnobotany of genus *Garcinia* L. (Clusiaceae) in Assam, Eastern Himalaya. Ethnobotany Research and Applications 21(33):1-14

Baruah S, Borthakur SK, Gogoi P, Ahmed M. 2013. Studies on ethnomedicinal plants used by *Adi -Minyong* tribe of Arunachal Pradesh, Eastern Himalaya. International Journal of Natural Products and Resources 4(3):278-282.

Baruah S, Brahma D, Upadaya P. 2018. Phytochemical study of some selected medicinal plants and its ethnobotanical importance to the indigenous communities of Assam. Medicinal Plants 10(2):145-150. 10.5958/0975-6892.2018.00023.0

Basumatary S, Baruah S. 2023. *Amblyanthopsis burmanica* (Primulaceae), an addition to the flora of India. *Vegetos*. doi: 10.1007/s42535-023-00785-0

Bekele M, Woldeyes F, Lulekal E, Bekele T, Demissew S. 2022. Ethnobotanical investigation of medicinal plants in Buska Mountain range, Hamar district, Southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine 18(1):1-26.

Benz B, Santana F, Pineda R, Cevallos J, Robles L, de Niz D. 1994. Characterization of Mestizo plant use in the Sierra de Manantlan, Jalisco-Colima, Mexico. Journal of Ethnobiology 14:23-41.

Bhadoriya S, Ganeshpurkar A, Narwaria J, Rai G, Jain A. 2011. *Tamarindus indica*: extent of explored potential. Pharmacognosy Reviews 5:73.

Bhatia H, Sharma YP, Manhas RK, Kumar K. 2014. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. Journal of ethnopharmacology 151(2):1005-1018.

Bibi F, Abbas Z, Harun N, Perveen B, Bussmann RW. 2022. Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan. PloS one 17: e0263604. doi: 10.1371/journal.pone.0263604

Brahma P, Baruah S. 2023. Extended distribution of an endemic variety *Glochidion zeylanicum* var. *paucicarpum* Chakrab. & N.P. Balakr. (Phyllanthaceae) from Assam, India. Vegetos. doi: 10.1007/s42535-023-00650-0

Daimari M, Kumar M, Swargiary A, Baruah S, Basumatary S. 2019. An ethnobotanical survey of antidiabetic medicinal plants used by the *Bodo* tribe of Kokrajhar district, Assam. Indian Journal of Traditional Knowledge 18(3):421-429.

Das AK, Saikia DC. 2001. Indigenous practice of treating human liver disorders in Assam. Ethnobotany 13 1&2:87-90.

Hedidi D, Zemmar N, Belabass M, Hamdani FZ, Belhacini F, Abaidia S. 2024. Valorization of local ethnobotanical knowledge in Ouled Ben Abdelkader region, Northwest of Algeria. Ethnobotany Research and Applications 28:18.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: healers' consensus and cultural importance. Social Science & Medicine 47(11):1859-1871. doi: 10.1016/s0277-9536(98)00181-6

Hossan MS, Hanif A, Khan M, Bari S, Jahan R, Rahmatullah M. 2009. Ethnobotanical survey of the Tripura tribe of Bangladesh. American-Eurasian Journal of Sustainable Agriculture 3(2):253-61.

Kanjilal UN, Kanjilal PC, Dey RN, Das A, Purkayastha C. 1934-1940. Flora of Assam, 1-4 volumes. Govt. of Assam. Shillong.

Lockett C, Grivetti LE. 2000. Food-related behaviors during drought: a study of rural Fulani, northeastern Nigeria. International Journal of Food Sciences and Nutrition 51:91-107.

Mahesh G. 2023. Communication and dissemination of India's traditional knowledge Indian Journal of Traditional Knowledge 22(2):450-457.

Mao AA, Hynniewta TM, Sanjappa M. 2009. Plant wealth of Northeast India with reference to ethnobotany. Indian Journal of Traditional Knowledge 8(1):96-103.

Masoudi M, Yousefi M, Behbahani N. 2018. Hazard assessment of climate changes in South Khorasan Province, Iran. EQA-International Journal of Environmental Quality 29:29-39.

Mathiu M, Mbugua PM, Mugweru J. 2005. Screening for biological activity of *Solanum incanum* and *Conyza sumatresnsis* using the isolated rabbit intestine. Kenya Veterinarian 29:29-32.

Mohammadi T, Moazzeni H, Pirani A, Vaezi J, Motahhari K, Joharchi MR, Bussmann RW. 2023. Ethnobotany of plants used by indigenous communities in Birjand, a dry region with rich local traditional knowledge in eastern Iran. Ethnobotany Research and Applications 26(21):1-40.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858.

Norscia I, Borgognini-Tarli SM. 2006. Ethnobotanical reputation of plant species from two forests of Madagascar: a preliminary investigation. South African Journal of Botany 72:656-660.

Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. 2021. *Zanthoxylum* species: A comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules 26:4023.

Pei S, Alan H, Wang Y. 2020. Vital roles for ethnobotany in conservation and sustainable development. Plant Diversity 42(6):399-400. doi: 10.1016%2Fj.pld.2020.12.001

Ringmichon C, Shimpi SN, Gopalkrishnan B. 2010. Ethnomedicinal investigation on *Melastoma malabathricum* Linn. from Manipur. Journal of Herbal Medicine and Toxicology 4(2):95-98.

Sheng-Ji P. 2001. Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia. Pharmaceutical Biology 39(1):74-79.

Sukumaran S, Sujin RM, Geetha VS, Jeeva S. 2021. Ethnobotanical study of medicinal plants used by the Kani tribes of Pechiparai Hills, Western Ghats, India. Acta Ecologica Sinica 41(5):365-376

Tefera BN, Kim YD, Nigussie Kim YD. 2019. Ethnobotanical study of medicinal plants in the Hawassa Zuria district, Sidama zone, Southern Ethiopia. *Journal of Ethnobiology and Ethnomedicine* 15:25. doi: 10.1186/s13002-019-0302-7.

Ved DK, Goraya GS. 2008. Demand and supply of medicinal plants in India. NMPB, New Delhi & FRLHT, Bangalore, India.

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) --an alpine ethnobotanical study. Journal of Ethnopharmacology 145(2):517-529. doi: 10.1016/j.jep.2012.11.024

WFO. 2023. World Flora Online. Published on the Internet; http://www.worldfloraonline.org. (Accessed 20/12/2021).

World Health Organization. 2019. *Global Report on Traditional and Complementary Medicine*. Geneva, Switzerland: World Health Organization; 2019.

Zenderland J, Hart R, Bussmann RW, Paniagua Zambrana NY, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Khutsishvili M, Batsatsashvili K. 2019. The use of "use value": quantifying importance in ethnobotany. Economic Botany 73:293-303. doi: 10.1007/s12231-019-094801.