

Ethnobotanical study of medicinal plants used in the rural area of the Western High Atlas (Morocco)

Fatima El-Ghazouani, Rachid Boukhanfer, Bouchra Yacoubi and Abderrahmane Zekhnini

Correspondence

Fatima El-Ghazouani¹, Rachid Boukhanfer^{1,2}, Bouchra Yacoubi¹ and Abderrahmane Zekhnini^{1*}

¹Laboratory of Aquatic Systems, Faculty of Sciences, Ibn Zohr University, BP 8016, 80 000 Agadir, Morocco ²National Food Safety Office (ONSSA), 80 000 Agadir, Morocco *Corresponding Author: a.zekhnini@uiz.ac.ma

Ethnobotany Research and Applications 29:15 (2024) - http://dx.doi.org/10.32859/era.29.15.1-26 Manuscript received: 21/03/2024 – Revised manuscript received: 01/06/2024 - Published: 03/06/2024

Research

Abstract

Background: This study aimed to address the lack of comprehensive research on the use of medicinal plants in the Western High Atlas, a landlocked region known for its rich plant biodiversity.

Methods: A survey was conducted among 150 participants, utilizing semi-structured interviews to collect socio-economic data and information on medicinal plants.

Results: Most respondents had limited education (76%). Approximately half of the population reported no income (49%), and a significant proportion lacked medical insurance (84%). The study documented the use of 101 plant species from 54 families. High Use Values were observed for *Argania spinosa, Opuntia ficus-indica, Tetraclinis articulata, Rosmarinus officinalis,* and *Trigonella foenum-graecum* (UVs 3.17 – 3.67). *Thymus broussonetii, Thymus satureoides, T. articulata,* and *Chenopodium ambrosioides* exhibited high Relative Frequencies of Citation (0.23 - 0.47). Notable Fidelity Levels (100%) were observed for *T. satureoides, Allium sativum,* and *Ephorbia officinarum* for respiratory diseases, *T. foenum-graecum* for urinary affections, *C. ambrosioides* for fever, and *Cuminum cyminum* for bloating. Digestive and respiratory disorders were the most treated, with respiratory ailments demonstrating the highest ICF (0.86). The study documented new uses, such *as Ononis natrix* for hepatic disorders, *Ammodaucus leucotrichus* for digestive and respiratory ailments, and *T. articulata* for diarrhea.

Conclusion: One hundred and one medicinal plants were listed. The remedies primarily aimed to treat respiratory, digestive, and urinary diseases that recorded high ICFs. New uses were noted for *O. natrix, A. leucotrichus,* and *T. articulata*.

Keywords: Ethnobotany; High Atlas; Morocco; Traditional Medicine

Background

The global plant diversity comprises approximately 500,000 species, of which 80,000 possess medicinal properties, predominantly utilized in developing nations (Phillips et al. 1994; Tabuti et al. 2003). Factors such as perceived ineffectiveness or toxicity of conventional drugs and cultural preferences contribute to the reliance on medicinal plants (Greenwood 1981, Philips et al. 1994, Tabuti et al. 2003). Furthermore, poverty and limited access to conventional

healthcare, particularly in rural areas lacking medical infrastructure, drive communities to resort to medicinal plants, especially when herbs are readily accessible in their environments (Bodeker & Kronenberg 2006, Brandão et al. 2006).

Among Mediterranean countries, Morocco ranks second in terms of plant biodiversity after Turkey. It hosts over 160 sites of significant biodiversity, integrated into the national strategy for environmental preservation (Fennane 2004). The High Atlas Mountains, characterized by a high rate of endemism with 7 000 species from 130 families, contribute to the country's botanical richness (Taleb & Fennane 2011). However, the occidental High Atlas region faces poverty and subsistence challenges commonly observed among mountainous populations (Crawford 2003, Montanari 2014).

The High Atlas region possesses rich plant biodiversity due to its altitude and the influence of the Atlantic Ocean (Msanda et al. 2021). However, the population of this rural area remains landlocked and primarily resides in small villages called Douars, which lack medical infrastructure (MIDGCL 2019). Development policies in the region have favoured coastal areas along the Atlantic, resulting in neglect of rural zones (Boujrouf et al. 2003). Additionally, economic activities with low added value, primarily based on food agriculture, hinder the population's access to medical facilities located in cities and larger agglomerations (MIDGCL 2019). Consequently, the use of medicinal plants could serve as an alternative to conventional medical care. However, no ethnobotanical study has been conducted to assess the knowledge and usage of medicinal plants among the population of the Western High Atlas. This study aims to inventory the medicinal plants used, the diseases treated, and the preparation methods of remedies, taking into consideration the socio-economic factors such as education, income, and social coverage of the rural population in the study area.

Materials and Methods

Study area

The study was conducted in the Imouzzer District, which is part of the Agadir province (Fig. 1). The province covers an area of 2297 km2 and is bordered by the Essaouira province to the north, Taroudannt province to the east, Inezgane Aït Melloul prefecture to the south, and the Atlantic Ocean to the west. It consists of an urban district (Agadir city) and 12 rural districts (Akesri, Aourir, Taghazout, Tamri, Aziar, Tadrart, Drarga, Amskroud, Idmine, Tiqqi, Imessouane, and Imouzzer). The region's topography is mainly characterized by the dominant western High Atlas massif, which covers approximately 85% of the total surface area and features rugged and diverse terrain. The climate of the region is semi-arid, with abundant sunshine of approximately 300 days per year. The region benefits from a sea breeze that moderates temperatures, while the Anti Atlas in the south acts as a barrier against Saharan winds.

The study area is known for its floristic diversity, encompassing Mediterranean, tropical, and endemic elements. Key species include cedar, argan, holm oak, thyme, or a combination of these species (Msanda *et al.* 2021). It is part of a Biosphere Reserve declared by UNESCO in 1998 to protect the endangered tree species *Argania spinosa*.

Figure 1. Study area

The rural commune of Imouzzer

Data collection

An ethnobotanical survey was conducted in the rural area of the Imouzzer district from May to October 2019. Ethical approval was obtained from the Bioethics Advisory Committee of the Faculty of Sciences of Agadir (approval number AE-2019-0001). Two interviewers were trained to have a good understanding of the research protocol, including study objectives, sampling strategy, interview format and ethical guidelines, through the organization of practice sessions. They were trained to use data collection tools and plant specimens effectively and correctly while respecting participants' cultural norms, beliefs and practices. Throughout the survey, a supervisor ensured consistency of approach during the interviews.

Simple random sampling was used. Participants were contacted at their homes. They are recruited considering the inclusion and exclusion criteria. This method helps to minimize selection and recruitment bias. The inclusion criteria for the study were individuals aged 18 years or older, residing in the study area, and signing the informed consent form. Individuals who did not meet these criteria were excluded from participation. Before commencing the research, an exclusive session was held to explain the ethical considerations to the participants, present the nature and mode of cooperation for the study, and provide them with the option to withdraw from participation at any stage.

A total of 150 respondents were individually interviewed using a semi-structured face-to-face interview approach and a questionnaire form administered through oral questioning in the Amazigh and Arabic languages. Each interview lasted approximately two hours. The questionnaire form consisted of two parts: the first focused on the socio-economic profile of the participants, while the second inquired about the medicinal plants used, diseases treated, and the methods of preparation and administration of remedies.

The taxonomic identification of plant species was conducted using "The traditional Moroccan pharmacopoeia" book (Bellakhdar 1997). Scientific names of plant species were cross-checked and updated using the website "www.catalogueoflife.org". Voucher specimens of each plant species were deposited in the herbarium of the Department of Biology at the Faculty of Sciences of Agadir.

Data processing

The collected data were processed to determine the following parameters: relative frequency of citation (RFC), use value (UV), fidelity level (FL), and informant consensus factor (ICF).

Relative Frequency of Citation

The RFC indicates the local importance of a specific plant species. It is calculated by dividing the number of informants who mentioned the use of the species (FC) by the total number of informants in the survey (N) (Phillips *et al.* 1994).

$$RFC = FC / N$$

If 50 informants are interviewed, and 10 of them mention the use of Plant A, RFC for this plant = 10 / 50 = 0.2.

Use Value

The UV assesses the significance of a plant species in traditional medicine within a particular community. It is calculated using the formula:

$$UV = \Sigma U / N.$$

U represents the number of reports of use mentioned by each informant for a given plant species, and N is the total number of informants interviewed for that plant (Phillips *et al.* 1994).

If Plant B is cited for medicinal, culinary, and ritual purposes by 10, 5, and 2 informants, respectively, UV for this plant = (10 + 5 + 2) / 50 = 17 / 50 = 0.34.

Fidelity Level

The FL indicates the percentage of informants who declared the use of a specific plant species for the same therapeutic objective. This parameter is calculated using the formula:

Informant Consensus Factor

The ICF reflects the degree of agreement among informants regarding ethnobotanical information (Trotter & Logan 1986).

Nur is the number of times an ailment was mentioned, and Nt is the number of plants mentioned to treat that ailment. For example, three plant species (A, B, and C) are used for a particular disease, and these plants are respectively cited 20, 15, and 10 times. The total number of use reports is the sum of all use reports: Nu=20 + 15 + 10 = 45. The number of taxa (*Nt*) used is 3 (A, B, and C). ICF = 45-1/45-3 = 0.95.

Results

Socio-cultural aspects of informants

Table 1 presents the results of the socio-cultural aspects of the informants. The age group with the highest representation was 40-60 years (46%), followed by 20-40 years (42%) and over 60 years (12%). Both women and men participated in the study, but women were more represented, accounting for 85 out of 150 respondents (57%). Most informants were married (64%). In terms of education, the highest percentage was found among individuals with no education (48%), followed by those with primary (28%), secondary (21%), and university education (3%). Regarding income, 49% of informants reported having no income, while 33% had a monthly income of less than \$200, and 18% had a monthly income of more than \$200. Medical insurance coverage was lacking for the majority of informants (84%). Most informants acquired their knowledge of medicinal plants from the experience of others (71%). A smaller percentage relied on personal experience (16%) or obtained information through reading (13%). The primary reasons for using medicinal plants were their perceived effectiveness (32%), easy accessibility (30%), low cost (26%), and lack of side effects (12%).

	20-40	42	Condor	Women	57
Age (years)	41-60	46	Gender	Men	43
	> 60	12	Marital status	Married	64
	Illiterate	48		Single	36
Education	Primary	28		Without	49
Education	Secondary	31	Monthly income	< \$200	33
	University	3		> \$200	18
	Reading	13		No side effects	12
Origin of	Personal	16		Efficacy	32
information	experience		Reason for		
intornation	Experience of	71	choosing herbal	Low cost	26
	others		medicine		
Medical		16		Easy access	30
insurance					

Table 1. General data of the respondents (%)

Medicinal plants

A total of 101 plant species belonging to 54 families and 90 genera were identified in this study (Table 2). The most represented families were Lamiaceae (14 species), Asteraceae (9 species), Apiaceae (7 species), Fabaceae (4 species), and several other families with three species each, including Brassicaceae, Myrtaceae, Anacardiaceae, and Oleaceae (Fig. 2). Among these plants, approximately 59.45% were spontaneous species such as *Argania spinosa, Thymus satureioides, Pistacia lentiscus,* and *Lavandula dentata* (results not shown). Cultivated plants accounted for 29% of the species, including *Coriandrum sativum, Artemisia absinthium,* and *Carum carvi,* while the remaining 11.55% were sourced from other regions or countries, such as *Crocus sativus, Lepidium sativum,* and *Myristica fragrans*.

The highest UVs were recorded for *A. spinosa* (3.67), *Opuntia ficus-indica* (3.57), *Tetraclinis articulata* (3.27), *Rosmarinus officinalis* (3.25), *Trigonella foenum-graecum* (3.17), *Artemisia inculta* (3.15), *Globularia alypum* (3.14), *Thymus satureioides* (3.02), and *Thymus broussonetii* (3.01). Plants with lower UVs were *Pinus halepensis* and *Citrus aurantium* (1.0) (Table 2).

Table 2. Ailments, plant parts used, mode of preparation, Use Value (UV) and Relative Frequency of Citation (RFC)

Family	Species (voucher code)	local name	Ailments	Part used	Preparation	UV	RFC
			Urinary disorders, Respiratory disorders,				
			Intestinal disorders, Kidney disorders,				
	Allium cepa L.	Azalim,	Pharyngitis, Skin affections, Back pain,	Pulb	Poultico Decertion	2.49	0.17
	(Imaac)	Basla	Insect bites, Cosmetic care, Bone	Биір	Poullice, Decoclion	2,40	0,17
			fractures, Fever, Joint disorders,				
Alliaceae			Bloating, Flu.				
			Urinary Disorders, Respiratory				
	Allium	Toumo	Disorders, Intestinal Disorders, Kidney				
	sativum L.	Tickort	Disorders, Dental Ailments, Pharyngitis,	Bulb	Cooked, Decoction	2,81	0,18
	(imaas)	liskert	Skin affections, Back Pain, Cosmetic				
			Care, Hepatic Disorders, Cough, Flu				
Alecasos	Aloe vera (L.) Burm. f.	Alouivoro	Skin affections, Diabetes, Fungal	Acrial part	Infusion Departion	2.50	0.01
Albeaceae	(Imaav)	Alouivera	infections, Cosmetic care	Aeriai part	infusion, Decoction	2,50	0,01
	Pistacia atlantica Desf	lag Lobtom	Digostivo disordors Planting	Leaves,	Powdor	2.00	0.01
	(imipa)	igg, Lebtain	Digestive disorders, bloating	Seeds	FOWDER	2,00	0,01
			Diarrhea, Urinary disorders, Respiratory				
Anacardiaceae	Pistacia lentiscus L.	Ti+b+	disorders, Intestinal disorders, Skin	Leaves,	Decastion Powder	2.80	0.03
Anacarulaceae	(Imapl)	TILKL	affections, Digestive disorders, Nervous	Roots	Decociton, Fowder	2,80	0,03
			disorders, Bone fractures, Sciatica				
	<i>Rhus pentaphylla</i> Jacq	Azad Tazzad	Intestinal disorders, Digestive disorders,	Poots	Decetion	2.50	0.02
	(Imapp)	Azau, Tazzau	Bloating, Diarrhea	ROOLS	Decoclion	2,50	0,03
	Ammodaucus leucotrichus		Bloating, Digestion difficulties, Digestive				
	Coss	Kamoun sofi	disorders, Intestinal disorders,	Seeds	Powder	3,00	0,02
	(imaal)		Respiratory disorders				
	Carum canvi l		Bloating, Digestion difficulties, Large				
Apiaceae	(Imaac)	Karwia	intestine, Digestive disorders, Intestinal	Seeds	Powder	2,00	0,06
	(inidac)		disorders, Respiratory disorders				
	Coriandrum sativum I		Diarrhea, Bloating, Nervous disorders,	Seeds,			
	(imacs)	Lkzbour	Large intestine, Digestive disorders,	Leaves,	Decoction, Infusion	2,38	0,09
	(imacs)		Intestinal disorders, Urinary disorders	Stems			

	Cuminum cyminum L.		Bloating, Appetite, Cough, Digestion				
	(Imacc1)	Lcamon	difficulties, Dizziness, Diabetes,	Seeds	Powder	2,36	0,09
			Digestive disorders, intestinal disorders				
	Econiculum vulgara Mill		Large intesting. Directive disorders,	Soods			
	(imafy)	Nafaa	Nervous disorders, Digestive disorders,	Seeus, Fruits	Infusion, Decoction	1,88	0,05
	(interv)		Bloating	Traits			
			Urinary disorders. Respiratory disorders.				
			Intestinal disorders, Kidney disorders,				
			Dental pain, Back pain, Digestive	_			
	Petroselinum crispum Mill	Maadnous	disorders, Large intestine, Nervous	Leaves,	Decoction	2,47	0,23
	(imapc)		disorders, Fever, Asthma, Prostate, Liver	Stems			
			disorders, Diarrhea, Sexual impotence,				
			Bloating				
	Pimpinella anisum L (imapa	Hbat hlawa	Bloating, Digestion difficulties	Seeds	Powder	2,00	0,01
	Norium olegander I		Nervous disorders, Fatigue, Skin				
Apocynaceae	(imana)	Alili, Dafla	affections, Kidney disorders, Urinary disorders	Leaves	Powder, Infusion	2,00	0,03
	Periploca laevigata Aiton. (imanl)	Aslif	Bone fractures, Joint disorders	Leaves, Boots	Poultice	2,00	0,01
	Chamaerops humilis L		Large intestine. Digestive disorders.	10013			
Arecaceae	(imach)	taznirt Doum	Intestinal disorders, Urinary disorders	Seeds	Powder	2,00	0,01
Aristolochiaceae	<i>Aristolochia baetica</i> L. (imacb)	Azlak	Intestinal disorders, Respiratory disorders, Urinary disorders	Leaves	Decoction,Powder	1,67	0,02
Ascleniadaceae	Ceropegia europaea Guss	lgougan	Influenza, Diabetes, Respiratory	Leaves	Decoction,	2 00	0.02
Astephaaceae	(imace)	19049411	Diseases	Leaves	Powder	2,00	0,02
	Asparagus altissimus Munby	Tikragan	Nervous disorders, Sunstroke, Fatigue,	Leaves	Powder	2,00	0,01
Asparagaceae	(imaci)	•	Headaches				
	Asparagus officinalis L.	Azzwi	Sexual Impotence, Diabetes, Nervous	Leaves,	Infusion, Decoction	2,25	0,03
	(IIIIdae)	SekOum	Disorders, Respiratory Disorders	Stems			
Asphodolacoao	Asphodelus tenuifolius Cav	Lberwag	Respiratory disorders,	Poots	Decetion	2.62	0.05
Asphouelaceae	(imaat)	Iguri	Digestive disorders, John anections,	ROOLS	Decoclion	2,03	0,05
			Digestive distributions, infiniteriza, blodtilig,				

			Diarrhea, Liver disorders, Fungal				
			infections				
	Artemisia absinthium L. (imaaa)	Chiba	Bloating, Nervous disorders, Large intestine, Fatigue, Digestive disorders, Headaches, Intestinal disorders, Urinary disorders	Leaves	Infusion, Decoction	1,80	0,07
	<i>Artemisia inculta</i> Delile (imaai)	lzri Chih	Urinary disorders, Conditions, Various pains, Vertigo, Bone fractures, Digestive and Respiratory disorders, Intestinal disorders, Pharyngitis, Genital disorders, Skin affections, Burns, Diarrhea, Injuries, Bloating.	Leaves	Decoction, Infusion, Powder	3,15	0,18
	Chamaeleon gummifer L. (imacg)	Addad	Urinary disorders, Intestinal disorders, Genital disorders, Skin affections, Burns, Injuries, Digestive disorders, Fungal infections, Large intestine	Roots	Decoction, poultice	1,91	0,07
	<i>Carlina racemosa</i> L. (imacr)	Achekja	Digestive disorders, Skin affections, Respiratory disorders	Leaves, Roots	Decoction, Infusion	3,00	0,03
Asteraceae	<i>Cladanthus mixtus</i> L (imacm).	Babounje	Cosmetic care, Fungal infections, Intestinal disorders, Skin affections, Vertigo, Fatigue, Digestive disorders	flower heads	Infusion, Friction	2,60	0,07
	<i>Dittrichia viscosa</i> L. Greuter (imadv)	Terhala Tin arine	Joint disorders, Bone fractures, Digestive disorders, Injuries, Skin affections, Intestinal disorders	Leaves, Roots	Decoction, Powder	2,40	0,03
	Kleinia anteuphorbium L (imaka)	Achebardau	Liver disorders, Joint disorders, Bone fractures, Injuries, Burns, Skin affections, Respiratory disorders, Urinary disorders	Rods	Powder, Decoction, Poultice	2,86	0,05
	<i>Launaea arborescens</i> Batt (imala)	Iferskel	Diarrhea, Bloating, Urinary disorders, Intestinal disorders, Skin affections, Injuries, Digestive disorders	Roots	Decoction, Infusion	2,60	0,03
	<i>Pulicaria mauritanica</i> Coss (imapm)	Bamghar	Heart failure, Urinary disorders, Intestinal disorders, Digestive disorders, Large intestine, Diarrhea, Bloating, Vertigo	Flowers, Leaves	Powder, Infusion	2,21	0,16

7

	Echium harridum Patt		Prostate, Urinary Disorders, Bone				
Boraginaceae	(impoh)	Tanasat	fractures, Kidney Disorders, Respiratory	Leaves	Decoction	2,67	0,02
	(imberi).		Disorders				
	Brassica rapa L	Tirkmin, Laft	Diabetes, Large intestine, Digestive	Soods	Powdor	1 50	0.02
	(imbbr).	lbaldi	disorders, Ear disorders	Seeus	rowder	1,50	0,03
	Lonidium sativum l		Bloating, Urinary Disorders, Large				
Brassicaceae	(imple)	Hab rchad	Intestine, Digestive Disorders,	Seeds	Powder, Decoction	2,00	0,03
	(initials)		Pharyngitis, Respiratory Disorders				
	Sinapis alba L.	Kalkas	Uripary Disorders, Copital Disorders	Soods	Powdor	1.00	0.01
	(imbsa)	Kaikas	offilary Disorders, Genital Disorders	Seeus	rowder	1,00	0,01
Bursoração	Boswellia sacra Flueck	Salahan	Injuries, Skin affections, Respiratory	Poots	Fumigation, Powder,	1.60	0.02
Buiselaceae	(imbbs)	Salabali	Disorders	ROOLS	Poultice	1,00	0,03
			Diarrhea, Diabetes, Urinary disorders,				
	Opuntia ficus-indica (L.) Mill		Respiratory disorders, Intestinal				
Cactaceae	(imcofi)	Acnari,Karmous	disorders, Skin affections, Injuries,	Aerial part	Decoction, Powder	3,57	0,05
	(incon)		Digestive disorders, Large intestine,				
			Bone fractures				
	Cannaris spinosa l		Joint disorders, Sciatica, Bone fractures,	Leaves			
Capparaceae	(imccs)	Kabbar	Nerve disorders, Skin affections, Urinary	Roots	Decoction, Poultice	2,00	0,05
	(inces)		disorders	Noots			
Caprifoliaceae	Lonicera biflora Desf .	Irifi	Hepatic disorders, Respiratory disorders,	Leaves,	Decoction Infusion	2 67	0.02
	(imclb)		Intestinal disorders, Bloating, Diarrhea	Fruit	Decocition, musion	2,07	0,02
	Herniaria cinerea DC	Tawzrout	Urinary Disorders	Leaves	Decortion	2 00	0.01
	(imghc)	Hrast lhjer	ormary bisoracio	Leaves	Decotion	2,00	0,01
Carvophyllaceae			Diarrhea, Large intestine, Digestive				
	Silene vulgaris Moench	Tighercht	disorders, Injuries, Skin affections,	Roots	Decoction. Infusion	2.60	0.03
	(imcsv)		Genital disorders, Intestinal disorders,			_,	-,
			Respiratory disorders, Urinary disorders				
			Heart failure, Urinary disorders,				
			Respiratory disorders, Intestinal		_		
Chenopodiaceae	Chenopodium ambrosioides L.	Mkhinza	disorders, Skin affections, Headaches,	Leaves,	Infusion, Decoction,	2.89	0.23
	(imcca)		Digestive disorders, Fatigue, Sunstroke,	Stems	Poultice	,	
			Joint disorders, Diarrhea, Bloating,				
			Appetite, Difficulties digestion, Period				

			pain, Various pains, Flu, Disorders				
			nervous, Bone fractures, Fever				
Cistaceae	Cistus creticus L. (imccc)	Irguel	Urinary disorders, Respiratory disorders, Intestinal disorders, Digestive disorders, Large intestine, Dizziness, Appetite, Sexual impotence, Diarrhea, Joint disorders	Seeds, Leaves	Powder, Decoction, Infusion	2,63	0,13
Rutaceae	<i>Citrus aurantium</i> L. (imrca)	Hamed beldi	Flu	Fruits	Juice, Decoction	1,00	0,01
Cucurbitaceae	<i>Citrullus colocynthis</i> L. (imccc)	Hadja Aferziz	Respiratory disorders, Intestinal disorders, Skin affections, Fatigue, Bone fractures, Diabetes, Vertigo, Sciatica, Joint disorders, Diarrhea	Fruits, Pulps	Poultice, Decoction, Infusion	2,75	0,05
	Juniperus oxycedrus L. (imcjo)	Katran	Insect bites, Burns, Skin affections, Kidney disorders	Fruits	Decoction	2,00	0,03
Cupressaceae	<i>Tetraclinis articulata</i> Vahl (imcta)	Azouka Aarar	Diarrhea, Impotence, Bloating, Dizziness, Diabetes, Sunstroke, Digestive disorders, Injuries, Burns, Skin affections, Intestinal disorders, Urinary disorders	Leaves	Powder, Poultice,	3,27	0,27
Euphorbiaceae	Euphorbia officinarum L. (imeeo)	Tikiout Daghmous	Joint disorders, Influenza, Urinary disorders, Respiratory disorders, Kidney disorders, Skin affections, Bone fractures, Diabetes, Asthma	Aerial part	Decoction	2,50	0,09
	Ceratonia siliqua L. (imfcs)	Tikida	Diarrhea, Impotence, Bloating, Digestion difficulties, Diabetes , Nervous disorders, Large intestine, Digestive disorders, Intestinal disorders, Urinary disorders	Seeds, Fruits	Powder, Decoction	2,60	0,13
Fabaceae	<i>Genista ifniensis</i> A. (imfgi)	Azi	Bone fractures, Insect bites, Injuries, Skin affections	Leaves	Powder, poultice	2,33	0,02
	<i>Ononis natrix</i> L. (imfon)	Afezdad	Hepatic disorders, Respiratory disorders, Intestinal disorders, Bloating	Leaves, Roots	Decoction, Infusion	2,25	0,03
	Trigonella foenum- graecum L. (imftfg)	Tifidasse Halba	Heart failure, Joint disorders, Fever, Sexual impotence, Bloating, Urinary	Seeds	Powder, Decoction, Infusion	3,17	0,12

			disorders, Respiratory disorders,				
			Intestinal disorders, Kidney disorders,				
			Various pains, Bone fractures, Large				
			intestine, Digestive disorders, Skin				
			affections				
	Quercus ilex L.	Tassaft	Urinary Disorders, Respiratory	Leaves.			0.02
Fagaceae	(imfgi)	Balout	Disorders, Intestinal Disorders,	Fruit	Decoction, Powder	2,33	-,-
			Difficulties Digestion				
	pelargonium hederaefolium		Sexual impotence, Urinary disorders,				
Geraniaceae	Salisb	Aatercha	Intestinal disorders, Fatigue, Sunstroke,	Leaves	Infusion	2,50	0,04
	(imgph)		Large intestine				
			Urinary disorders, Respiratory disorders,				
			Intestinal disorders, Kidney disorders,				
Iridaceae	Crocus sativus L.	Zaafran	Genital disorders, Digestive disorders,	Stigmas	Infusion. Decoction	3.00	0.1
	(imics)		Fatigue, Heart failure, Large intestine,		····, ·····	-,	-,
			Sexual impotence, Bloating, Prostate,				
			Nervous disorders				
Juncaceae	Juncus rigidus Desf .	Azmav	Nervous disorders, Respiratory	Leaves,	Decoction. Infusion	2.00	0.0
	(imjjr)	,	disorders, Urinary disorders	Stems		_,	-,
	<i>Ajuga iva (</i> L) Shreb	Chendgoura	Intestinal disorders, Skin affections,	Leaves,	Infusion. Powder	2.50	0.03
	(imlai)	enenageara	Bone fractures, Bloating, Diarrhea	Seeds		2,00	0,00
			Fever, Urinary disorders, Respiratory				
	Lavandula dentata L.	Lhalhal	disorders, Intestinal disorders, Diabetes,	Leaves,			
	(imlld)	Igersh	Pharyngitis, Genital disorders, Skin	Stems,	Decoction, Powder	3,00	0,13
		0.	affections, Injuries, Digestive disorders,	Seeds			
			Fatigue, Sunstroke, Nervous disorders				
Lamiaceae			Cosmetic care, Urinary disorders,				
			Respiratory disorders, Intestinal				
	Lavandula maroccana Murb.	Lkhzama	disorders, Genital disorders, Skin	Leaves	Decoction, Infusion	2,00	0.08
	(imllm)		attections, Back pain, Fever, Bloating,	Flowers		-	,
			Hypertension, Digestive disorders,				
			Nervous disorders				
	Marrubium vulgare L.	Merout	Urinary Disorders, Respiratory	Leaves	Infusion, Decoction	2,67	0,08
	(imlmv)	lfzi	Disorders, Intestinal Disorders, Skin		, -	,	,

<i>Mentha pileguin</i> L. (imlmp)	Flio	affections, Burns, Injuries, Bloating, Diarrhea, Hepatic Disorders Respiratory disorders, Intestinal disorders, Pharyngitis, Digestive	Leaves, Stems	Infusion, Decoction	2,50	0,01
<i>Mentha spicata</i> L. (imlms)	Naanaa Liqamt	disorders, Sunstroke Respiratory disorders, Intestinal disorders, Pharyngitis, Backaches, Headaches, Digestive disorders, Fatigue, Sunstroke, Flu, Cough	Leaves, Stems	Infusion	2,53	0,13
<i>Mentha suaveolens</i> Ehrh. (imlms2)	Timija	Respiratory disorders, Intestinal disorders, Burns, Headaches, Digestive disorders, Fatigue, Sunstroke, Nervous disorders, Flu, Bloating	Leaves	Infusion, Decoction	2,67	0,06
<i>Myristica fragrans</i> Houtt. (imlmf)	Gouza	Intestinal disorders	Seeds	Powder	1,00	0,01
Ocimum basilicum L. (imlob)	Hbak	Heart failure, bloating, insect bites, respiratory disorders	Leaves	Infusion, Decoction	2,50	0,01
<i>Rosmarinus officinalis</i> L. (imlro)	Azir	Urinary disorders, Respiratory disorders, Intestinal disorders, Gum disorders, Headaches, Digestive disorders, Fatigue, Large intestine, Nervous disorders, Diabetes, Vertigo, Digestion difficulties, Heart failure, Sexual impotence, Cough,	Leaves, Stems	Infusion	3,25	0,11
Salvia aegyptiaca L. (imlsa)	Iderky	Bloating, Heart failure, Influenza, Intestinal disorders, Respiratory disorders, Urinary disorders	Leaves, Roots	Infusion, Decoction	2,00	0,01
Salvia officinalis L. (imlso)	Salmia	Cough, Hypertension, Influenza, Vertigo, Nervous disorders, Sunstroke, Fatigue, Digestive disorders, Back pain, Intestinal disorders, Respiratory disorders, Urinary disorders	Leaves, Stems	Infusion, Decoction	2,70	0,07
<i>Thymus broussonetii</i> Boiss (imltb)	Zaitra Tazouknit	Urinary disorders, Respiratory disorders, Intestinal disorders, Pharyngitis, Gum disorders, Skin affections, Digestive	Leaves, Stems	Infusion, Decoction	3,01	0,47

11

			disorders, Liver disorders, Heart failure,				
			Diarrhea, Bloating, Digestion difficulties,				
			Flu, Fever, Dizziness, Diabetes, Nervous				
			disorders, Large intestine, Insolation,				
			Fatigue				
	Thymus pallidus Coss.	Aillab	Urinary Disorders, Respiratory	Leaves,	Infusion Desertion	2.00	0.02
	(imltp)	Ajilab	Disorders, Intestinal Disorders	Flowers	initiasion, Decoclion	2,00	0,02
			Urinary Disorders, Respiratory				
			Disorders, Intestinal Disorders, Dental				
	Thymus satureoides Coss.	Zaater	Ailments, Pharyngitis, Gum Disorders,	Leaves,	Infusion Eumigation	2 02	0.20
	(imlts)	Azokni	Skin affections, Injuries, Bloating,	Stems	iniusion, runngation	5,02	0,39
			Sciatica, Influenza, Vertigo, Digestive				
			Disorders				
			Diarrhea, Bloating, Asthma, Nervous				
Lauraceae	Cinnamomum	Ikarfa	disorders, Large intestine, Digestive	rods	Powder Decoction	1 86	0.05
Lauraceae	<i>verum</i> J. (imlcv)	EKdira	disorders, Gum disorders, Intestinal	1003	rowder, Decoclion	1,00	0,05
			disorders, Urinary disorders				
			Joint disorders, Urinary disorders,				
Linaceae	Linum usitatissimum L.	zriaat lktan	Respiratory disorders, Intestinal	Soods	Powder	2.40	0.07
Linaceae	(imllu)		disorders, Digestive disorders, Large	Jeeus	rowder	2,40	0,07
			intestine, Bloating,				
Lythraceae	Lawsonia inermis L.	Henna	Joint disorders, Bone fractures, Skin		Powder poultice	2.40	0.03
Lytinaccac	(imlli)	пстпа	affections	LCaves	rowder, pounice	2,40	0,03
			Urinary disorders, Intestinal disorders,				
Lythraceae	Punica granatum L.	Raman	Digestive disorders, Large intestine,	Fruits,	Powder Decoction	2.40	0.03
Lytindeede	(imlpg)	Naman	Digestion difficulties, Bloating, Fungal	Pulps	rowder, Decoclion	2,40	0,05
			infections				
	Malva parviflora L.	lgoudi	Respiratory Diseases	Leaves,	Decoction	2 00	0.01
Malvaceae	(immmp)	Board		Stems	Decotion	2,00	0,01
marraceae	Malva sylvestris L.	Tibi	Urinary Disorders, Respiratory	Leaves,	Decoction	2.00	0.02
	(immms)		Disorders, Digestive Disorders	Stems	2000000	_,	0,02
	Fucalyptus alobulus I		Nervous disorders, Fatigue, Skin		Fumigation, Decoction		
Myrtaceae	(immeg)	Caliptous	affections, Intestinal disorders,	Leaves	Infusion	2,14	0,05
	(Respiratory disorders		intestori		

	<i>Myrtus communis</i> L. (immmc)	Rayhan	Heart failure, Bloating, Intestinal disorders, Back pain, Injuries, Digestive disorders, Sunstroke,	Leaves	Infusion, Decoction, Poultice	2,17	0,04
	Syzygium aromaticum L. (immsa)	Kronfel	Diabetes, Hypertension Urinary Disorders, Dental Ailments, Gum Disorders, Digestive Disorders	Nail	Decoction, Infusion	3,00	0,01
Nitrariaceae	Peganum harmala L. (imnph)	Harmel	Respiratory disorders, Skin affections, Headaches, Fatigue, Nervous disorders	Seeds	Fumigation	1,83	0,04
	Olea europaea L. (imooe)	Zitoun	Urinary Disorders, Respiratory Disorders, Intestinal Disorders, Kidney Disorders, Gum Disorders, Ear Disorders, Digestive Disorders, Bloating	Leaves	Decoction	2,75	0,05
Oleaceae	<i>Olea europaea</i> subsp <i>Europaea</i> (imooese)	Zebbouj Azemour	Urinary disorders, Respiratory disorders, Intestinal disorders, Kidney disorders, Gum disorders, Injuries, Digestive disorders	Leaves, Fruit	Oil, Decoction, Infusion	2,62	0,09
	Phillyrea angustifolia L. (imopa)	Tamtoula	Nervous disorders, Headaches	Leaves	Decoction	2,00	0,01
Papaveraceae	Papaver rhoeas L. (imppr)	Belaaman	Cough, Respiratory Disorders, Intestinal Disorders, Skin affections, Burns, Wounds	Leaves, Stems	Decoction, Infusion	2,25	0,03
Pinaceae	Pinus halepensis Mill. (impph)	Iguenguem	large intestine	Bark	Decoction	1,00	0,01
Plantaginaceae	Globularia alypum L. (impga)	Tasselgha	Joint disorders, Diarrhea, Prostate, Bone fractures, Urinary disorders, Respiratory disorders, Intestinal disorders, Genital disorders, Digestive disorders, Injuries, Burns, Skin affections	Leaves, Stems	Infusion, Decoction, Powder,	3,14	0,15
	Cymbopogon schoenanthus L. (impcs)	Tibermt	Joint disorders, Kidney disorders, Urinary disorders	Leaves	Infusion	2,00	0,02
Poaceae	Cenchrus americanus L. (impca)	llan	Urinary Disorders, Respiratory Disorders, Large Intestine, Asthma, Digestion Difficulties, Bloating, Joint Disorders	Seeds	Powder, Decoction	2,13	0,05

	Hordeum vulgare L. (imphv)	Tomzine Mrisse	Digestive disorders, Bloating, Intestinal disorders, Difficulties in digestion, Vertigo, Large intestine,	Seeds	Friction	2,67	0,02
Ranunculaceae	<i>Nigella sativa</i> L. (imrns)	Sanouj habba saouda	Urinary disorders, Respiratory disorders, Intestinal disorders, Injuries, Digestive disorders, Large intestine, Asthma, Cough, Heart failure	Seeds	Powder	2,69	0,09
Rhamnaceae	<i>Ziziphus lotus (</i> L) Lam (imrzl)	Sedra Azegar	Digestion difficulties, Urinary disorders, Digestive disorders, Large intestine	Fruit, Leaves	Powder, poultice	2,25	0,03
Rosaceae	<i>Rosa centifolia</i> L. (imrrc)	Ward Tihfert	Bloating, Intestinal disorders, Digestive disorders	Flowers, Leaves	Infusion	2,50	0,01
Rubiaceae	Rubia peregrina L. (imrrp)	Tarouba	Fungal infections, Intestinal disorders, Diarrhea, Large intestine, Digestive disorders	Roots, Leaves	Decoction, Powder	2,14	0,05
Rutaceae	Ruta montana L. (imrrm)	Awermi Lfijel	Respiratory disorders, Digestive disorders, Large intestine, Joint disorders	Aerial part	Infusion	2,00	0,01
Sapotaceae	Argania spinosa (L) Skeels (imsas)	Argan	Urinary disorders, Respiratory disorders, Intestinal disorders, Genital disorders, Skin affections, Digestive disorders, Bone fractures, Bloating, Sexual impotence, Heart failure, Cosmetic care	Seeds, Leaves	Friction, Infusion	3,67	0,10
Urticaceae	<i>Urtica urens</i> L. (imuuu)	Harriga Tazentakt	Urinary disorders, Respiratory Disorders, Skin affections	Leaves	Decoction	1,67	0,02
Verbenaceae	Aloysia citrodora Palau (imvac) Vitex agnus-castus,L. (imvvac)	Louisa Kherwaa	Urinary disorders, Intestinal disorders, Backaches, Headaches, Digestive disorders, Fatigue, Sunstroke, Diarrhea, Nervous disorders, Vertigo, Fever, Bloating, Hypertension, Period pains, Various pains Intestinal disorders, Skin affections, Digestive disorders, Joint disorders	Leaves, Stems Leaves	Infusion Decoction, Powder, Poultice	2,87 1,50	0,21 0,03
Zingiberaceae	<i>Alpinia officinarum</i> Hance (imzao)	Khoudanjal	Joint disorders, Sexual impotence, Bloating, Urinary disorders	Roots	Decoction, Powder	2,00	0,01

	Zingiber officinale Roscoe (imzzo)	Skinjbir	Joint disorders, Appetite, Cough, Digestion disorders, Influenza, Back Pain, Pharyngitis, Intestinal Disorders	Rhizomes	Decoction, Infusion	2,08	0,08
Zygophyllaceae	Fagonia cretica L. (imzfc)	Timchekla	Diarrhea, Respiratory disorders, Intestinal disorders, Digestive disorders, Vertigo	Leaves, Stems	Infusion, Powder	2,25	0,03

Figure 2. Number of species of the most represented families The plant species with the highest RFC values were *Thymus broussonetii* (0.47), *Thymus satureioides* (0.39), *Tetraclinis articulata* (0.27), *Chenopodium ambrosioides* (0.23), *Petroselinum crispum* (0.22), *Artemisia citriodora* (0.21), *Allium sativum*, and *Artemisia inculta* (0.18). Plants with lower RFCs included *Phillyrea angustifolia* and *Citrus aurantium* (0.01).

Table 3 presents the FL values of the most cited plants, with a total of 48 plants. Among them, six plants had a value of 100%: *T. satureioides, Allium sativum*, and *Euphorbia foenum-graecum* for urinary disorders, *C. ambrosioides* for fever, and *Carum cyminum* for bloating. Four plants had a FL of 92%: *Allium cepa* and *Zingiber officinale* for respiratory conditions, *Marrubium vulgare* for digestive disorders, and *Pulicaria mauritanica* for diarrhea.

	Plant species	FL (%)	Diseases	Plant species	FL (%)
	Marrubium vulgare	91.67		Trigonella foenum-graecum	100.00
Digestive disorders	Coriandrum sativum	84.62		Olea europaea	87.50
	Asphodelus tenuifolius	75.00		Crocus sativus	86.96
	Olea europaea	75.00		Petroselinum crispum	85.29
	Artemisia inculta	74.07		Nigella sativa.	84.62
	Cuminum cyminum	71.43		Globularia alypum	81.82
	Rubia peregrina	71.43		Argania spinosa	80.00
	Aloysia citriodora	70.97	Urinary	Lavandula dentata.	73.68
	Foeniculum vulgare	62.50	Disorders	Cistus creticus	68.42
	Linum usitatissimum	60.00		Pelargonium hederfolum	66.67
	Pulicaria mauritanica.	58.33		Allium sativum	62.96
	Cinnamomum verum	57.14		Allium cepa L.	60.00
	Carum carvi	55.56		Opuntia ficus-indica .	57.14
	Ceratonia siliqua	50.00		Olea europaea	53.85
	Myrtus communis	50.00		Artemisia absinthium	50.00
	Lavandula maroccana	50.00		Linum usitatissimum.	50.00
	Foeniculum vulgare	50.00	Skin	Carlina gummifera.	72.73
Respiratory	Allium sativum	100.00	conditions	Globularia alypum	59.09

Diseases	Thymus satureioides.	100.00		Citrullus colocynthis	50.00
	Euphorbia officinarum	100.00	Bloating	Cuminum cyminum	100.00
	Allium cepa	92.00		Cladanthus mixtus	90.00
	Zingiber officinale	91.67		Rosmarinus officinalis	68.75
	Eucalyptus globulus	85.71		Artemisia absinthium	50.00
	Nigella sativa	84.62	Diarrhea	Pulicaria mauritanica.	91.67
	Marrubium vulgare	75.00		Ceratonia siliqua	75.00
	Salvia officinalis	70.00		Opuntia ficus-indica .	71.43
	Lavandula dentata	63.16		Cistus creticus	52.63
	Mentha spicata	63.16	Fatigue	Aloysia citriodora	77.42
	Pennisetum typhoides	62.50		Mentha spicata.	57.89
	Linum usitatissimum	60.00		Rosmarinus officinalis	50.00
	Artemisia inculta	59.26		Salvia officinalis	50.00
	Kleinia anteuphorbium	57.14		Pelargonium hederfolum	50.00
	Mentha suaveolens	55.56	Bone	Kleinia anteuphorbium	85.71
	Petroselinum crispum.	52.94	fractures	Capparis spinosa	57.14
	Peganum harmala	50.00	Sunstroke	Mentha spicata	57.89
Diabetes	Opuntia ficus-indica .	85.71	Nervous disorders	Peganum harmala	66.67
Nervous disorders	Peganum harmala	66.67	Sexual impotence	Pelargonium hederfolum	66.67
Injuries	Globularia alypum	59.09	Cosmetic care	Argania spinosa	60.00
	Myrtus communis	50.00	Sciatica	Citrullus colocynthis	50.00
Kidney diseases	Olea europaea	84.62	Fever	Chenopodium ambrosioides	100

The ICF ranged from 0.13 to 0.86, as shown in Table 4. The highest value (0.86) was recorded for respiratory conditions, indicating a high degree of agreement among informants regarding the use of plants for this purpose. Fever had the second highest ICF value (0.84), followed by intestinal and urinary conditions (0.81), and diarrhea (0.80). On the other hand, cough had the lowest ICF value (0.13), suggesting a lower level of agreement among informants regarding the plants used for treating this ailment.

Table 4. Informant consensus factor for diseases.

Diseases	ICF	Diseases	ICF
Respiratory diseases	0.86	Sciatica	0.67
Fever	0.84	Kidney disorders	0.65
Intestinal disorders	0.81	Cosmetic care	0.65
Urinary disorders	0.81	Fungal infections	0.58
Diarrhea	0.80	Nerve disorders	0.57
Various pains	0.77	Vertigo	0.57
Bloating	0.76	Indigestion	0.56
Fatigue	0.76	Sexual impotence	0.55
Gum disease	0.75	Bone fractures	0.54
Injuries	0.75	Sunstroke	0.54
Prostate	0.75	Headache	0.50
Pharyngitis	0.74	Insect bites	0.50
Digestive disorders	0.74	Diabetes	0.48
Skin conditions	0.73	Large intestine	0.48
Hypertension	0.73	Genital conditions	0.47
Burns	0.72	Heart failure	0.44
Flu	0.71	Joint disorders	0.42
Back pain	0.68	Asthma	0.38
Ear conditions	0.67	Liver disorders	0.33
Period pain	0.67	Cough	0.13

Figure 3 illustrates the used parts of the plants, with leaves being the most used (48%), followed by stems (20%) and seeds (15%). The use of other plant parts, such as roots, fruits, bulbs, stigmata, and flowers, was less frequent (4% each for roots, fruits, and bulbs; 2% for stigmata; 1% for flowers). In terms of preparation methods (Fig. 4), most remedies were prepared as decoctions (36%), followed by infusions (27%) and powders (22%). Other methods, such as fumigation (6%), poultice, and friction (4% each), as well as cooked preparations (1%), were less commonly used. Regarding administration routes, most remedies were taken orally (82%), followed by external applications (15%) and inhalation (3%).

Figure 3. Used parts of medicinal plants

Figure 4. Method of preparation of remedies

Socio-cultural aspects of informants

Characterized by mountainous terrain, the study zone of this work has limited economic activities such as subsistence farming and limited pastoral activity. The lack of adequate infrastructure, including transportation and hotels, has hindered the development of tourism despite the presence of natural attractions. These economic challenges harm the standard of living, education, and employment opportunities in the area. The socio-economic profile of the informants reflects these challenges, with a high unemployment rate (48%), low incomes (82% earning less than \$200 per month), a significant level of illiteracy (48% were illiterate), and a lack of medical insurance (84% had no medical insurance). These factors contribute to the reliance on herbal medicine as a healthcare option. The availability and accessibility of medicinal plants (Msanda et al. 2021), coupled with their affordability, are crucial factors that drive their widespread use in the community. In fact, 30% of respondents reported utilizing medicinal plants due to their easy access, and 26% for their low cost. Indeed, the relationship between the socio-economic context and the use of traditional medicine is complex and multifaceted. According to the WHO (2010), financial barriers significantly hamper access to health care in developing countries. Many people cannot afford to pay expenses related to consultations, medicines and treatments. As a result, they may delay seeking care or opt for cheaper alternative options, such as traditional medicine (Oxfam, 2019). Inadequate health infrastructure, particularly in rural areas, further hampers access to health services (MSF, 2018). Shortages of health facilities, health professionals and essential supplies exacerbate the problem (UNDP, 2015), forcing individuals to travel long distances and incur high transport costs to access care (World Bank, 2017). The fragmentation of healthcare financing systems and the reliance on out-ofpocket payments also pose challenges to access to healthcare (World Bank, 2017). Limited government investment in health care compounds the problem (IMF, 2016), leading to underfunded health systems and high health costs for individuals (WHO, 2010). Cultural beliefs and social norms significantly influence health-seeking behavior (UNDP, 2015). Traditional healing practices may be preferred due to cultural beliefs (MSF, 2018).

Most users of herbal medicine were women. This result agrees with many works carried out in Morocco (Benkhnigue et *al.* 2010, El-Ghazouani *et al.* 2021, Mehdioui & Kahouadji 2007). In fact, women play a central role as holders of medicinal plants knowledge throughout Morocco (El-Hilaly *et al.* 2003, El Rhaffari & Zaid 2002, Fakchich & Elachouri 2014, Merzouki *et al.* 2000), but also in other regions of the world (Begossi *et al.* 2002, Howard 2003, Kainer 1992, Qureshi *et al.* 2009, Razafindraibe *et al.* 2013, Voeks 2007). This has been attributed to gendered work and spatial segregation affecting the harvesting and handling of plant resources (Howard 2003, Montanari 2014, Razafindraibe *et al.* 2013, Voeks 2007), but also to women's responsibility in caring for family members, especially in case of emergency or inaccessibility to health facilities (Howard 2003, Teixidor-Toneu *et al.* 2017, Voeks, 2007, Wayland 2001).

Medicinal plants

To assess plant species' importance, versatility, consistency, and consensus within traditional knowledge systems, RFC, UV, FL, and ICF metrics were used. Understanding these parameters facilitates biodiversity conservation, sustainable resource management, and cultural preservation efforts in ethnobotany. RFC helps to understand the prevalence of plant species mentioned within a community. It highlights the frequently cited species, indicating their importance in local customs, traditions, and practices. High RFC values often signify plants with significant cultural, medicinal, or economic value, guiding efforts for documentation and preservation. UV quantifies the versatility of a plant species by considering the number of distinct uses attributed to it. It reflects the ecological adaptability and cultural significance of plants within a community. UV assists in identifying key species that play diverse roles in traditional practices, such as medicinal, culinary, or ritual uses. Understanding UV informs strategies for sustainable resource management, conservation, and utilization. FL measures the consistency of mentioning a plant for a specific use across informants. It reflects the degree of agreement among individuals regarding the importance of a plant for a particular purpose. A high FL indicates the cultural importance and effectiveness of the plant species for a specific use. Such plants are often targeted for further research to validate traditional knowledge and develop conservation or utilization strategies. ICF assesses the degree of agreement among informants regarding the significance of a plant for specific uses or categories. It provides insights into cultural consensus and shared knowledge within a community. ICF helps to evaluate the reliability and validity of reported plant uses, highlighting areas of consensus or variability in traditional knowledge. It guides the selection of priority species for further investigation and informs the development of culturally appropriate interventions.

The population in the study area relied on medicinal plants primarily from four families: Lamiaceae, Apiaceae, Anacardiaceae, and Fabaceae. These families are commonly found in Morocco and Mediterranean countries, indicating their significance in traditional medicine practices (Abouri *et al.* 2012, Benítez *et al.* 2010). Interestingly, many of the plants used by the population were also spices or food plants, with a total of 36 species falling into this category. This aligns with previous

observations of using food plants for medicinal purposes. Food plants are easily accessible in homes or local markets, making them convenient options for medicinal use (Alqethami *et al.* 2017). Otherwise, the rich and diverse flora of the occidental High Atlas environment facilitated easy access to a wide range of medicinal plants (Msanda *et al.* 2021). This was particularly the case of *A. spinosa* (UV 3.67) which produces argan oil rich in unsaturated fatty acids and antioxidants and used for food and cosmetics (Belcadi-Haloui *et al.* 2018), *O. ficus-indica* (UV 3.57) commonly used for human and animal food (FAO 2018), and *T. articulata* (UV 3.27) widely present in the study area and valued for its quality wood (Msanda *et al.* 2021).

Most of the plant species mentioned by the interviewees were used to treat digestive and respiratory diseases. Many of these herbs have anti-inflammatory and antimicrobial properties, which can help reduce inflammation and combat infections contributing to symptoms. Plant-based digestive preparations operate through multiple mechanisms, including inhibiting *Helicobacter pylori* (bacteria responsible for gastric ulcers), stimulating both mechanical and chemical digestion, promoting smooth and regular bowel movements, enhancing bowel frequency, eliminating toxins, and soothing stomach aches (Chen et al. 2023; Kmail 2024). Regarding respiratory conditions, many herbs possess mucolytic and expectorant properties, which help thin mucus in the airways and facilitate its expulsion (Bone & Mills 2013). Certain compounds like organosulfurs present in garlic possess beneficial effects on health by modulating inflammation and oxidative stress, which are common pathogenic mechanisms in pulmonary diseases (Sánchez-Gloria et al. 2020). Some herbs have antitussive effects, meaning they can help suppress coughing by acting on the cough reflex in the brain or soothing irritated throat tissues (Eccles 2003). Other plant species from the Lamiaceae family have bronchodilator effects, which help relax and widen the airways, making breathing easier (Najem et al. 2021). Herbs from genera like *Ocimum* and *Zingiber* are used for respiratory conditions due to their anti-inflammatory and antimicrobial properties, which help reduce airway inflammation and combat infections that may exacerbate symptoms (Ouled Taarabt et al., 2021).

Among the 101 plants documented, eight species showed high RFC values: *T. broussonetii, T. satureioides, T. articulata, C. ambrosioides, P. crispum, A. citriodora, A. sativum*, and *A. inculta*. These plants have been extensively used in other regions of Morocco as well (Belhaj *et al.* 2020, El Hilaly *et al.* 2003, Fakchich & Elachouri 2014, Naceiri *et al.* 2019). Other plant species are commonly used in various regions of Morocco but are not included in our study site. For instance, *Maerua crassifolia, Rhus tripartita*, and *Adansonia digitata* are utilized in the Tarfaya region (South of Morocco), while *Ammi visnaga* is employed in the Rif Mountain (North of Morocco) for treating digestive diseases (Idm'hand et al., 2020). Additionally, plants such as *Olea europaea* (Fakchich and Elachouri, 2014), *Citrus limon* (Elhilaly et al., 2003), *Cistus albidus, Cistus crispus, Crataegus monogyna*, and *Ceratonia siliqua* (Bouyahya et al., 2017) are cited for their use in treating respiratory diseases in Northern, Northwestern, and Oriental Morocco respectively.

Forty-eight species showed a high level of agreement among informants regarding which plants to use for specific diseases, with a FL above 50. This knowledge was primarily based on the experience of others, indicating the accumulation and improvement of knowledge with age. The mechanisms of this knowledge transmission are numerous and varied. Paniagua-Zambrana et al. (2017) described an inter-generational knowledge transfer that corresponds to the transmission of information from elders to younger generations through storytelling and practical demonstrations. Voeks (2004) reported the transmission of information through community rituals and ceremonies. During these events, community members learn about the medicinal properties of plants through direct participation and observation. According to Berkes et al. (2000), collaborative foraging and harvesting play a crucial role in the transmission of information. As community members work together to identify, harvest, and process plants, consensus builds regarding their medicinal uses, contributing to the transmission of traditional knowledge. The exchange of information within social and family networks likely contributed to the high consensus observed in plant usage elsewhere in Morocco (Merzouki et al 2003, El-Ghazouani et al, 2021) and other countries (Algethami *et al.* 2020).

The remedies prepared by the population in the study area were predominantly in the form of decoctions and infusions using leaves and were primarily administered orally. Infusion remains the most frequently reported method of preparation in Morocco. For example, Mikou et al (2016), Ouhaddou et al (2014) and Rhattas et al (2016) report remedy preparation frequencies by infusion of 44% in the city of Fez, 30.34% in the Western Rif, and 31% in the province of Agadir Ida Ou Tanane. These authors explain this result by the fact that infusion better preserves the active principles that could be transformed or destroyed during preparation. However, decoction was the most common method in other regions of Morocco. Decoction preparation frequencies of 47%, 40.55% and 33% are reported for the Commune of Imi n'Tlit, the High Moulouya and the Daraa Tafilalt region (Benlamdini et al. 2014; Eddouks et al. 2017; Mehdioui and Kahouadji 2007).

The remedies were primarily aimed at treating digestive tract ailments with a high agreement between informants (High ICF). Gastrointestinal disorders are significant health concerns globally, including in Morocco, and traditional medicine is often employed to address these conditions (Heinrich *et al.* 1998, Es-Safi *et al.* 2020). Respiratory diseases were also prevalent and had a high ICF. Similar findings were reported in other regions of Morocco (Bouyahya *et al.* 2017). The prevalence of these conditions may be attributed to the cold and dry climate of the High Atlas region during winter (Garrido *et al.* 2019). Urinary tract diseases also had a high ICF (0.80). Previous studies documented the high ICFs for these ailments in various regions of Morocco, with the use of over 270 plant species throughout the country (Fakchich & Elachouri 2014). *C. ambrosioides,* with a FL value of 100% for fever, appears to be highly effective, which aligns with previous reports (El-Ghazouani *et al.* 2021).

The choice of specific plants for the treatment of gastrointestinal and respiratory conditions is influenced by a combination of traditional beliefs, empirical evidence, and cultural practices. In Moroccan culture, the use of medicinal plants is deeply rooted in historical and spiritual traditions. Many plants are selected based on ancestral knowledge passed down through generations. This knowledge is often intertwined with local beliefs about the healing properties of certain plants. For example, plants like F. vulgare and Mentha spp. are traditionally believed to have digestive benefits and are used to relieve symptoms such as bloating. These beliefs are supported by the long-standing use of these plants in traditional Moroccan medicine (Bellakhdar, 1997). Empirical evidence also plays a significant role in the selection of medicinal plants. Over centuries, practical experience and observation have demonstrated the efficacy of certain plants in treating specific conditions. Studies have supported some of these traditional uses. For instance, Badgujar et al. (2014) reported that fennel has antispasmodic and carminative properties, which help alleviate digestive issues. Similarly, mint was proven to have antimicrobial and anti-inflammatory properties, making it effective in treating both gastrointestinal and respiratory conditions (McKay & Blumberg, 2006). The preparation and administration of these plants are often linked to specific rituals and customs. For example, the use of herbal teas (infusions) is a common practice for treating digestive ailments. Mint tea is not only a daily beverage, but also a remedy for stomach discomfort. The preparation of such teas is often a communal activity, reinforcing social bonds and facilitating the transmission of traditional knowledge (Bellakhdar, 1997). Many of the plants used are locally grown or wild-harvested, making them readily accessible and affordable. This practical aspect ensures that these remedies remain an integral part of local healthcare practices, especially in rural areas where access to modern medical facilities may be limited (Merzouki et al., 2003). In some cases, traditional practices are integrated with modern medical approaches. Health practitioners in Morocco may recommend traditional remedies in conjunction with conventional treatments, recognizing the value of these plants in providing symptomatic relief and improving overall well-being. This integrative approach helps bridge the gap between traditional and modern medicine, ensuring a more holistic approach to healthcare (Fadli et al., 2013).

The flora and the traditional knowledge of herbal medicine also vary across the regions of Morocco. The knowledge reflects a blend of Berber, Arab, African, and Andalusian influences and is deeply integrated into the daily lives and cultural practices of communities. Certain plant species are widely used in Morocco for their medicinal properties. Argan (*A. spinosa*) is native to the south-western regions and appreciated throughout the country for its oil (Charrouf & Guillaume, 2008). Rosemary (*R. officinalis*), found throughout the country, is utilized for digestive and anti-inflammatory purposes, aiding in respiratory issues and improving circulation (Bellakhdar, 1997). Mint (Mentha spp.) is extensively cultivated and used in traditional Moroccan tea for its digestive benefits, such as relieving stomachaches and headaches (Bellakhdar, 1997).

Regional differences highlight the adaptation of herbal medicine to local climates, cultures, and health needs. In northern Morocco, characterized by a Mediterranean climate, plants like sage (*S. officinalis*) and oregano (*Origanum compactum*) are extensively used for their anti-inflammatory and antibacterial properties, commonly treating respiratory and digestive ailments (Bellakhdar, 1997). Inhabitants of the Atlas Mountains rely on endemic plants such as thyme (*T. satureioides*) and wormwood (*A. herba-alba*) for treating digestive issues and respiratory conditions, reflecting the local climate and high-altitude living conditions (Bellakhdar, 1997). The harsh and arid climate of the Sahara Desert requires the use of plants like the date palm (*Phoenix dactylifera*), which serves as a crucial food source and medicinal plant, while herbs like *Peganum harmala* are used for their psychoactive effects (Bellakhdar, 1997). In coastal areas such as Essaouira and Agadir, the use of seaweed and other marine plants is common due to their rich mineral content, and they are used in skin treatments and dietary supplements (Bellakhdar, 1997).

Cultural practices also differ regionally. In northern Morocco, the strong Andalusian cultural influence leads to the use of certain herbs in both medicinal and culinary practices, blending traditional herbal medicine with culinary traditions to enhance health (Bellakhdar, 1997). The Atlas Mountains are dominated by Berber traditions, featuring unique rituals and

ceremonies involving medicinal plants, such as the use of juniper smoke in purification rites, which reflect the integration of spiritual and medicinal plant use (Mehdioui & Kahouadji, 2007). Nomadic tribes in the Sahara Desert have developed distinct practices for preserving and using medicinal plants, often drying and powdering herbs for long-term storage to ensure a stable supply despite the harsh desert conditions (Bellakhdar, 1997).

Many of the plant species identified in this study are also utilized in other regions of Morocco (El Hilaly *et al.* 2003, Fakchich & Elachouri 2014, Naceiri *et al.* 2019, Belhaj *et al.* 2020). However, the rural population of Imouzzer reported some new uses for certain plants, partially confirming previous reports from the nearby city of Agadir (El-Ghazouani *et al.* 2021). For example, *O. natrix* was cited for treating hepatic disorders, *A. leucotrichus* for digestive and respiratory ailments, and *T. articulata* for diarrhea. Nonetheless, further research is necessary to identify the specific compounds responsible for the therapeutic properties of these plants.

This study focused on a specific geographic area, which may limit the generalizability of findings to other regions with different ecological, cultural, and environmental contexts. The applicability of ethnobotanical findings to other regions depends on the similarity of environmental conditions, plant species composition, and cultural practices. Many plant species available in the region of the Western High Atlas may not be present in other rural regions, and cultural practices surrounding plant use may vary significantly between communities. In addition, traditional knowledge about plants and their uses is dynamic and may change over time due to various factors such as cultural assimilation and environmental degradation. Conducting comparative ethnobotanical studies across multiple regions can help identify commonalities and differences in plant use and traditional knowledge across diverse cultural and ecological contexts. Longitudinal ethnobotanical studies are needed to track changes in traditional knowledge over time and understand the factors driving these changes. Long-term monitoring can help identify emerging trends, assess the impact of environmental changes, and inform conservation and management strategies for culturally significant plant species. Collaboration with local communities can facilitate cross-cultural research initiatives that explore plant use patterns and traditional knowledge across different cultural groups and geographic regions. Integrating traditional knowledge with scientific methodologies can enhance the validity and applicability of ethnobotanical research findings. Collaborative research initiatives that involve local communities in data collection, analysis, and interpretation can ensure the relevance and applicability of research outcomes to local contexts.

Conclusion

The occidental High Atlas region, characterized by its rich flora, provides the local population with abundant medicinal plant resources (101 species from 54 families and 90 genera). These plants serve as an alternative healthcare option in the absence of sufficient medical infrastructure in this mountainous area. The remedies prepared through decoction and infusion are predominantly employed to address gastrointestinal, respiratory, and urinary ailments. It is noteworthy that medicinal plant usage is primarily observed among the elderly population, with a particular emphasis on women. These findings align with the societal roles of women in rural Moroccan communities, where they assume responsibilities for household chores, education, and the health of their family members.

Declarations

List of abbreviations:: UV = use value, RFC = relative frequency of citation, FL = fidelity level, ICF = Informant consensus factor

Ethics approval and consent to participate: Ethical approval was obtained from the Bioethics Advisory Committee of the Faculty of Sciences of Agadir (approval number AE-2019-0001).

Consent for publication: Oral permission was taken from all participants

Availability of data and materials: Data are available upon reasonable request

Competing interests: There are no conflicts of interest in this article.

Funding: The authors have not received any funding for this research

Author contributions: : FE: Investigation, Analysis, Writing Original Draft. RB: Investigation, Analysis. BY: Supervision, Analysis. AZ: Conceptualization, Writing - Review & Editing.

Acknowledgements

We thank the informants for their invaluable participation. We would also like to express our gratitude to Prof. F. Msanda for helping to identify the plants collected.

Literature cited

Alqethami A, Aldhebiani AY, Teixidor-Toneu I. 2020. Medicinal plants used in Jeddah, Saudi Arabia: A gender perspective, Journal of Ethnopharmacology 257:112899.

Alqethami A, Hawkins JA, Teixidor-Toneu I. 2017. Medicinal plants used by women in Mecca: Urban, Muslim, and gendered knowledge. Journal of Ethnobiology and Ethnomedicine 13:62-86.

Alonso-Castro AJ, Domínguez F, Zapata-Morales JR, Carranza-Álvarez C, Arellano JI. 2016. Medicinal plants used in the Huasteca Potosina, México. Journal of Ethnopharmacology 189:1-18.

Badgujar S B, Patel V V, Bandivdekar A H. 2014. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Research International 2014: 842674.

Begossi A, Hanazaki N, Tamashiro JY. 2002. Medicinal plants in the Atlantic Forest (Brazil): knowledge, use, and conservation. Human Ecology 30:281-299.

Belcadi-Haloui R, Zekhnini A, El-Alem Y, Hatimi A. 2018. Effects of roasting temperature and time on the chemical composition of argan oil. International Journal of Food Science 7683041. doi: 10.1155/2018/7683041.

Belhaj S, Dahmani J, Belahbib N, Zidane L. 2020. Ethnopharmacological and Ethnobotanical study of Medicinal plants in the High Atlas Central, Morocco. Ethnobotany Research and Applications 18:1-40

Bellakhdar J. 1997. La pharmacopée marocaine traditionnelle. Médicine arabe ancienne et savoirs populaire., Ibis Press, Paris, France.

Benkhnigue O, Zidane L, Fadli M, Elyacoubi H, Rochdi A, Douira A. 2010. Etude ethnobotanique des plantes médicinales dans la région de Mechraâ Bel Ksiri (Région du Gharb du Maroc). Acta Botanica Barcinonensia 53:191-216.

Benlamdini N, Elhafian M, Rochdi A. 2014. Étude floristique et ethnobotanique de la flore médicinale du Haut Atlas oriental (Haute Moulouya). Journal of Applied Biosciences 78:6771-6787.

Berkes F, Colding J, Folke C. 2000. Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications 10:1251–1262.

Bodeker G, Kronenberg A. 2002. Public health agenda for traditional, complementary, and alternative medicine. American Journal of Public Health 92:1582-1591.

Bone K, Mills S. 2013. Principles and Practice of Phytotherapy. Modern Herbal Medicine. Second Edition 2013. Elsevier Ed, Churchill Livingstone.

Boujrouf S. 2003. Tourisme et aménagement du territoire au Maroc: quels agencements? Journal of Tourism Research 24:12-19.

Bouyahya A, Abrini J, Et-Touys A, Bakri Y, Dakka N. 2017. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. European Journal of Integrative Medicine 13:9-25.

Brandão MGL, Acúrcio FA, Montemor RML, Marlière LDP. 2006. Complementary/alternative medicine in Latin America: use of herbal remedies among a Brazilian metropolitan area population. Journal of Complementary and. Integrative Medicine. 3: 1-8.

Charrouf Z, Guillaume D. 2008. Argan oil: Occurrence, composition and impact on human health. European Journal of Lipid Science and Technology 110:632-636.

Chan M K, Parvez Butt A, Marriott A, Ehmke E, Jacobs D, Seghers J, Atienza J, Gowland R, Lawson M, Rhodes F. 2019. Public Good or Private Wealth? Universal health, education and other public services reduce the gap between rich and poor, and between women and men. Oxfamilibrary.

Chen L, Wei S, He Y, Wang X, He T, Zhang A, Jing M, Li H, Wang R, Zhao Y. 2023. Treatment of Chronic Gastritis with Traditional Chinese Medicine: Pharmacological Activities and Mechanisms. Pharmaceuticals 16:1308.

Crawford D. 2010. Arranging the bones: culture, time, and in/equality in Berber labor organization. Journal of Anthropology 68:463-486.

Eccles R. 2003. Menthol: Effects on Nasal Sensation of Airflow and the Drive to Breathe. Current Allergy and Asthma Reports 3:210-214.

El Rhaffari L , Zaid A. 2002. Pratique de la phytothérapie dans le sud-est du Maroc (Tafilalet). Un savoir empirique pour une pharmacopée rénovée. In: Fleurentin, J., M. Pelt, J.G., Mazars (Eds.), Des sources du savoir aux médicaments du futur, IRD Editions, Strasbourg.

El-Ghazouani F, El-Ouahmani N, Teixidor-Toneu I, Yacoubi B, Zekhnini A. 2021. A survey of medicinal plants used in traditional medicine by women and herbalists from the city of Agadir, southwest of Morocco. European Journal of Integrative Medicine.

El-Hilaly J, Hmammouchi M, Lyoussi B. 2003. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). Journal of Ethnopharmacology 86:149-158.

Fadli M, Chebbac K, Hassani L, Satrani B, Aouad L, Benjouad A. 2013. Ethnobotanical and ethnopharmacological study of medicinal plants used in the treatment of respiratory diseases in the Moroccan Rif. Journal of Ethnopharmacology 148:389-402.

Fakchich J, Elachouri M. 2014. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. Journal of Ethnopharmacology 154:76-87.

FAO.2018. Ecologie, culture et utilisation du figuier de barbarie. Rome, 2018.

Fennane M. 2004. Atelier national pour l'identification de Zones Importantes de Plantes (ZIP) au Maroc. Institut Scientifique de Rabat, rabat, Morocco.

Friedman J, Yaniv Z, Dafni A, Palewitch D. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. Journal of Ethnopharmacology 16 : 275-287.

Garrido E, Botella de Maglia J, Castillo O. 2021. Acute, subacute and chronic mountain sickness. Revista Clínica Española 221:481-490.

Greenwood B. 1981. Cold or spirits? Choice and ambiguity in Morocco's pluralistic medical system Social Science & Medicine. Part B: Medical Anthropology 15:219-235. doi: 10.1016/0160-7987(81)90049-1.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Science & Medicine 47:1859-1871.

Howard P. 2003. The major importance of minor resources: Women and plant biodiversity: International Institute for Environment and Development (IIED), Russell Press, Nottingham, UK.

International Monetary Fund. 2016. IMF fiscal monitor: Acting now, acting together.

Kainer KA, Duryea ML. 1992. Tapping women's knowledge: plant resource use in extractive reserves, Acre, Brazil. Economic Botany 46:408-425.

Kmail A. 2024. Mitigating digestive disorders: Action mechanisms of Mediterranean herbal active compounds. Open Life Sciences 19: 20220857.

McKay D L, Blumberg J B. 2006. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research 20:619-633.

Mehdioui R, Kahouadji A. 2007. Etude ethnobotanique auprès de la population riveraine de la forêt d'Amsittène: cas de la Commune d'Imi n'Tlit (Province d'Essaouira). Bulletin de l'Institut Scientifique, Section Sciences de la Vie 29:11-20.

Merzouki A, Ed-derfouri F, Morelo-Mesa J. 2003. Contribution to the knowledge of Rifian traditional medicine. III: Phytotherapy of diabetes in Chefchaouen province (North of Morocco). Ars Pharmaceutica 44:59-67.

Mikou K, Rachiq S, Jarrar Oulidi A. 2016. Étude ethnobotanique des plantes médicinales et aromatiques utilisées dans la ville de Fès au Maroc. Phytothérapie 14:35–43.

MIDGCL (Ministère de l'Intérieur, Direction Générale des Collectivités Locales). 2019. Monographie de la préfecture d'Agadir Ida ou Tanane, Rabat, Morocco.

Montanari B. 2014. Aromatic, medicinal plants and vulnerability of traditional herbal knowledge in a berber community of the high atlas mountains of Morocco. Plant Diversity Resource. 36:388-402.

Msanda F, Mayad EH, Furze JN. 2021. Floristic biodiversity, biogeographical significance, and importance of Morocco's Arganeraie Biosphere Reserve. Environmental Science and Pollution Research 28:64156–64165.

Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Amrati FE, Lyoussi B, Derwich E. 2022. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. Journal of Ethnopharmacology 298:115663.

Naceiri-Mrabti H, Jaradat N, Kachmar MR, Ed-Dra A, Ouahbi A, Cherrah Y. 2019. Integrative herbal treatments of diabetes in Beni Mellal region of Morocco. Journal of Integrative Medicine 17:93–99.

Nair R, Chanda S. 2016. Activity of some medicinal plants against certain pathogens. Indian Journal of Pharmacology 21:1393-1400.

Najem M, Ibijbijen J, Nassiri L. 2021. Ethnobotanical treatment of respiratory diseases in the central Middle Atlas (Morocco): Qualitative and quantitative approach. European Journal of Integrative Medicine 46:101-358.

Ouhaddou H, Boubaker H, Msanda F, El Mousadik A. 2014. An ethnobotanical study of medicinal plants of the Agadir Ida Ou Tanane province (southwest Morocco). Journal of Applied Biosciences 84:7707-7722.

Ouled Taarabt, K, Ouaabou R, Lahlali R, Ennahli S. 2021. Antimicrobial activity and chemical constitution of essential oil from Moroccan thyme (Thymus satureioides C.) on five microbial contaminants. Notulae Scientia Biologicae 13:10975-10975.

Paniagua-Zambrana N Y, Bussmann R W, Macía M J, Tórrez V. 2017. Traditional knowledge of Bolivian medicinal plants: The example of Achyrocline satureioides (Lam.) DC. Journal of Ethnobiology and Ethnomedicine 13:1-12.

Phillips O, Gentry AH, Reynel C, Wilkin P, Gálvez-Durand BC. 1994. Quantitative ethnobotany and Amazonian conservation. Conservation Biology 8:225-248.

Qureshi RA, Ghufran MA, Gilani SA, Yousaf Z, Abbas G, Batool A. 2009. Indigenous medicinal plants used by local women in southern Himalayan regions of Pakistan. Pakistan Journal of Botany 41:19-25.

Rhattas M, Douira A, Zidane L, 2016. Étude ethnobotanique des plantes médicinales dans le Parc National de Talassemtane (Rif occidental du Maroc). Journal of Applied Biosciences 97:9187-9211.

Razafindraibe M, Kuhlman AR, Rabarison H, Rakotoarimanana V, Rajeriarison C, Rakotoarivelo N, Randrianarivony T, Rakotoarivony F, Ludovic R, Randrianasolo A. 2013. Medicinal plants used by women from Agnalazaha littoral forest (Southeastern Madagascar). Journal of Ethnobiology and Ethnomedicine 9:73-86.

Sánchez-Gloria JL, Rada KM, Juárez-Rojas JG, Sánchez-Lozada LG, Rubio-Gayosso I, Sánchez-Muñoz F, Osorio-Alonso H. 2022. Role of Sulfur Compounds in Garlic as Potential Therapeutic Option for Inflammation and Oxidative Stress in Asthma. International Journal of Molecular Sciences 23:15599.

Tabuti JR, Lye KA, Dhillion S. 2003. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. Journal of Ethnopharmacology 88 :19-44.

Tale MS, Fennane M. 2008. Diversité floristique du parc national du Haut atlas oriental et des massifs Ayachi et Maasker (Maroc). Acta Botanica Malacitana 33 :125-145.

Teixidor-Toneu I, Martin GJ, Puri RK, Ouhammou A, Hawkins JA. 2017. Treating infants with frigg: linking disease aetiologies, medicinal plant use and care-seeking behaviour in southern Morocco. Journal of Ethnobiology and Ethnomedicine 13:4-17.

United Nations Development Programme. 2015. Work for human development. Human Development Report.

Vargas P. 2020. The Mediterranean Floristic Region: High Diversity of Plants and Vegetation Types, in Goldstein, M.I., DellaSala, D.A. (Eds), Encyclopedia of the World's Biomes, Elsevier.

Voeks R A. 2004. Disturbance Pharmacopoeias: Medicine and Myth from the Humid Tropics. Annals of the Association of American Geographers 94:868–888.

Voeks RA. 2007. Are women reservoirs of traditional plant knowledge? Gender, ethnobotany and globalization in northeast Brazil. Singapore Journal of Tropical Geography 28:7-20. doi: 10.1111/j.1467-9493.2006.00273.x.

Wayland C. 2001. Gendering local knowledge: medicinal plant use and primary health care in the Amazon. Medical Anthropology Quarterly 15:171-188.

World Health Organization. 2010. Health systems financing: The path to universal coverage.