

Ethnoecological knowledge and conservation status of plant resources in the Himalayan Dry Temperate Forests of Kashmir, India

Mehnaz Aijaz, Rayees Afzal Mir and Eyram Hamid

Correspondence

Mehnaz Aijaz1*, Rayees Afzal Mir1 and Eyram Hamid1

¹School of Life Science, Glocal University Saharanpur-247121 (U.P), India

*Correspondence Author: mehnaza955@gmail.com

Ethnobotany Research and Applications 27:29 (2024)- http://dx.dio.org/10.32859/era.27.29.1-24 Manuscript received: 10/05/2024- Revised manuscript received: 20/08/2024- Published: 21/08/2024

Research

Abstract

Background: Indigenous population has a great deal to offer in the analysis and mitigation of current environmental challenges with their ethnoecological knowledge and experience. Himalayan forests are especially vulnerable to these impacts; hence it is critical that indigenous knowledge be documented at the regional level in order to contribute to forest conservation and restoration.

Methods: The aim of the research was to investigate the ethnoecological knowledge on the wild plant species utilized by the forest fringe populations in the Himalayan dry temperate forest of the Kashmir Himalayas. Ethnobotanical data were collected through semi-structured questionnaire was used to conduct one-on-one interviews and group discussions with selected informants. To measure the significance of species Use value (UV) was used.

Results: A total of 87 plant species from 52 families belonging to different families were reported. Asteraceae, Lamiaceae, Rosaceae and Polygonaceae were the dominant families. The most often utilized plant portion was the roots were the most commonly plant preparation was powder. Gastrointestinal and dermatological disease categories, followed by respiratory and musculoskeletal disease categories were treated by highest number of plant species. The highest UV was reported for *Artemisia absinthium* (0.73), *Aconitum heterophyllum* (0.71), *Arnebia benthamii* (0.69), *Rheum webbianum* (0.70), while as the lowest UV was reported for *Cannabis sativa* (0.17). A total number 17% of species were reported to be exotic while as the remaining 83% of species are native to Asia or the Himalayas.

Conclusions: According to our findings, indigenous ethnoecological knowledge is of emblematic importance in understanding the links between culture and forest diversity, and it has the potential to considerably contribute to forest conservation. This could happen if biocultural conservation efforts to preserve natural ecosystems are integrated with traditional management of local natural resources.

Keywords: Ethno-medicine, Traditional health care, Medicinal plants, Indigenous communities.

Background

Knowledge about forest plants is particularly valuable for small-scale societies that rely heavily on their environment for their livelihoods and are therefore vulnerable to abrupt environmental changes (Diaz *et al.* 2019). Forest resources provide crucial nature's contributions to highland communities, but also to lower land inhabitants (Haq *et al.* 2024). Ethnoecological knowledge is closely related to forestry resources, ethnic identity, and social cohesion. Furthermore, ethnoecological knowledge may be viewed and experienced differently among social groups, as cultures have created distinct cultural and epistemological frameworks for understanding and interacting with the world (Haq *et al.* 2023). Despite their essential contributions, mountain areas are particularly vulnerable due to the combination of direct (e.g., extreme weather events, including a steady increase in precipitation) and indirect (like landslides) environmental crises (Haq *et al.* 2020; Gillani *et al.* 2024). To maintain ecological, economic, and environmental sustainability, it is important to investigate indigenous knowledge (Khoja *et al.* 2024). The utilization of forest resources is crucial to ascertaining the impact of human activities on the ecosystem and formulating effective conservation plans (Haq *et al.* 2023). The community's traditional ecological knowledge (TEK), resource availability, season, and socioeconomic level all influence the harvested methods used during the collection of forest products (Jabeen *et al.* 2024).

Understanding the complex relationships between biological diversity and ethnicity, cultural memory, ecological knowledge, and social values of local and indigenous groups is based on biocultural heritage (Waheed *et al.* 2023a; Haq *et al.* 2023a). Acknowledging the importance of biocultural legacy, it is apparent that nearby people possess priceless traditional knowledge that can support efforts to restore forests as well as social and environmental sustainability (Haq *et al.* 2023b). Indeed, ethnoecological knowledge constitutes a safety net during pandemic by providing alternative sources of food that contribute to enhancing daily diet diversification (Golden *et al.* 2011). Nevertheless, as knowledge differs across and within ethnic groups, gender and age (Porcher *et al.* 2022), it is also important to explore differences in the knowledge held by different sub-groups of the population, as knowledge diversity can contribute to the resilience of the knowledge system (Díaz-Reviriego *et al.* 2016).

Ethnobotanical knowledge, which is mostly possessed by rural populations or practiced in communal contexts, has sadly received little attention despite its importance in advancing forest conservation and restoration as well as social and environmental sustainability (Haq *et al.* 2024). On the other hand, the status of the wild medicinal plant population is decreasing mostly because of overexploitation, habitat degradation, and invasive species (Chen *et al.* 2016; Kunwar *et al.* 2016; Howes *et al.* 2020). Forest resources are under threat from increased resource extraction, habitat degradation and extensive deforestation (Haq *et al.* 2023a). Thus, before these resources are irretrievably lost, it is imperative to swiftly develop appropriate management techniques and feasible programs. The more ethnoecological knowledge is distributed within a population, the more likely it is able to deal with disturbances (Blanco & Carrière 2016).

The forest resources are essential to the people living near the forests in their daily lives. In all developing nations, it is important to implement rigorous and systematic data collection systems for better forest utilization and conservation (Waheed *et al.* 2023). For traditional and indigenous knowledge to be preserved and restored, different ethnic groups must use their ethnoecological expertise to contribute to the conservation of these forest resources (Khoja *et al.* 2022; Haq *et al.* 2024). While biodiversity and corresponding ecological knowledge of Himalayan plant resources have been extensively studied, but ethnoecological knowledge in the Himalayan Dry Temperate Forests has received less attention (Quesada et *al.* 2009).Our primary purpose was (1) to document the forest species used by the indigenous people of the study area. (2) To investigate the ecological characteristics such as life form, growth form, and nativity of the reported forest species. (3) To investigate the traditional use i.e., medicine and food of the forest plant by local communities? Finally, evaluate the conservation of status the documented plant species. By addressing the above questions, we will be able to bridge the information gap on forest plants in the Himalayan Dry Temperate Forests, which will aid in the conservation and restoration of local plant diversity, as well as the preservation of indigenous knowledge.

Materials and Methods

Study area

The current study was conducted in the district Ganderbal of the Union Territory of Jammu and Kashmir. The area is located in Kashmir Province's hilly region, between 34°7' and 34°28' North latitude and 74°42' to 75°26' East longitude. A total of seven villages namely Balthal, Kangan, Hardo-panzin, Nuner, Shalbug, Yarmuqam, and Sonamarg were selected for data collection (Figure 1). Studies sites were chosen based on the presence of various ethnic groups, including Gujjars, Bakarwals, Pahari, and Kashmiri. In their daily lives, all of these ethnic groups make use of a diverse range of therapeutic herbs. The

research region is distinguished by a mountainous topography with an average elevation of 1115 meters. The area is distinguished by dense forests dominated by conifers tree species (*Pinus wallichiana*) and falls under the Himalayan Dry-Temperate Forest type (Haq *et al.* 2020). Numerous ethnic groups call it home, including the Kashmiri community which is primarily found in the main valleys and the Gujjars and Phari, who live in the low to high-altitude regions of Ganderbal (Haq *et al.* 2023).

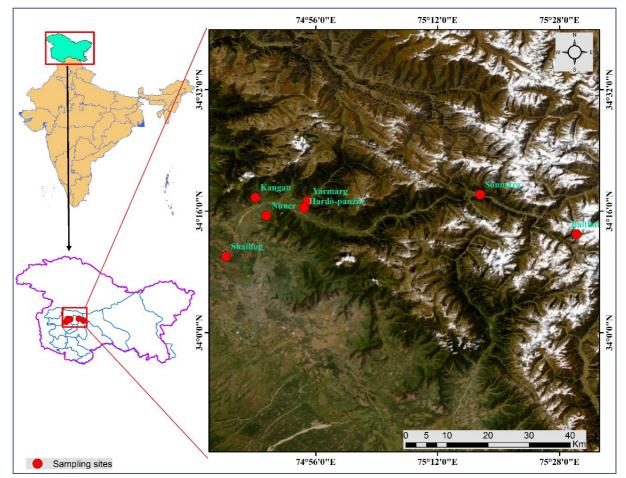


Figure 1. Map of the study area showing studied sites.

Data collection

In order to gather medicinally significant plants and the associated traditional knowledge, extensive surveys were carried out within the study region between March 2019 and August 2021. Semi-structured interviews were employed in conjunction with group discussions as a means of simple stratified sampling (Waheed et al. 2022). According to (Haq et al. 2024a), snowball sampling method was used to select informants. Information was gathered by group discussions (N-13) and open-ended and closed-ended semi-structured interviews (N-45) (Haq et al. 2023c). A questionnaire was developed in order to collect data about the traditional ethnobotanical uses of plant taxa. In order to guarantee precise data gathering, we hired a translator to help us communicate with the people living in the chosen villages, which are mostly home to the Gujjar, Phari and Kashmiri communities. We verified the gathered data by cross-referencing it with pertinent literature sources (Forman and Bridson 1989; Khoja et al. 2022a; Hag et al. 2023). Verbal prior informed consent was obtained from all the informants before conducting the interviews. Additionally, for each indigenous community, we selected an individual who was well-respected and knowledgeable about the traditions and norms of their respective community to guide us during the field surveys. To gather information regarding the traditional ethnobotanical uses of plant resources, including medicines, and their significance, a questionnaire was created. Furthermore, the focus of interviews and discussions was the ethnobotanical applications of local plant resources, including food, medicine, fuelwood, fodder, flavorings, and harvesting season information. The questions during the interview were: (1) Participants were asked about their demography details which include age, gender, ethnic group, occupation, etc. (2) What are the benefits you get from the forest? (3) Common name of the plants used? (4) Name commonly used medicinal plants? (5) Which plant part is used as medicinal plants? (6) How you prepare these medicinal plants? (7) What are the other uses of these medicinal plants? Before beginning any

interview, verbal informed agreement was sought, and the International Society of Ethnobiology (ISE) Code of Ethics (2006, available at https://www.ethnobiology.net) was adhered to. In accordance with the terms of the Nagoya Protocol, participant ethnicity and language information are kept confidential, as agreed upon by local participants. During our field studies, we collected detailed data on each plant specimen, including relevant taxonomic information. To identify the plants, we referred to taxonomic literature (https://eforaindia.bsi.gov.in/eFlora/eFloraHomePage.action). We updated the nomenclature using the Plants of the World Online (POWO) taxonomic database (https://powo.science.kew.org).

Data Analysis

A Principal Component Analysis (PCA) was conducted to visualise the utilization of provisioning services and plant components. The function of fact was extra and used to illustrate the PCA biplot, contribution plot, and even values corresponding to the variance described by each principal component. To show the relation between medicinal preparation, plant part used and plant preparations of plant species, a chord diagram was prepared in Origin Pro software (version 9.95) (Haq *et al.* 2023d). The Sorensen's similarity coefficient, based on presence/absence data, was used to identify significant differences among plant part used across different age groups (Sajad *et al.* 2021). The use value (UV) index was used to calculate the relative value of each medicinal plant species used by the local population. Plants that receive highest use reports have the highest use-value, while those that have received the least use reports have the lowest use-value.

Use Value (UV)

It is an index proposed by Philips and Gentry in 1993 to quantify the importance of species, UV is calculated according to the formula reported by (Albuquerque *et al.* 2006).

UV =Ui/N

Where Ui is the number of uses mentioned by each informant, and N is the total number of informants.

Results and Discussion

Demography of informants

A total of 112 respondents in all were chosen for interviews; because of cultural constraints, most of the informants were men 68 and 44 were women (Table 1). Women may be restricted to their houses due to cultural restrictions, which may account for the decreased proportion of female informants (Khoja *et al.* 2022b).To secure the cooperation of the local people, the study conducted several visits prior to documenting. We interviewed people of different ages, genders, and occupational categories using semi-structured questionnaires (Waheed *et al.* 2022a). Questions on species were posed to the participants, including details about the species' local name, parts used, methods/techniques utilized in the preparation, and application for curing that specific diseases treated. The majority of the study population (52.68%) had a formal education, and we discovered that those without a formal education knew less about ethnomedicine (47.32%). It was noted that the illiterate population had more knowledge of traditional medicine, which may be explained by the fact that educated participants are expected to have exposure to the developed world and mostly rely on current medications rather than alternative one. Herders (33.94%) made up the majority of those who held traditional knowledge followed by Cultivator/agricultural labourer (20.54%), traditional healers (17.86%), skilled/semi-skilled workers (13.04%), shopkeepers (8.93%), and government employees (5.36%). The majority of the time that herders spend in the forests with their cattle and without access to medical services explains why they had the greatest levels of traditional knowledge. Every informant in our research adhered to Islam.

Variable	Categories	Number of Persons	Percentage
Informant category	Traditional healer	20	17.86
	Other local participants	92	82.14
Gender	Male	68	60.71
	Female	44	39.29
Age group	20-40 years	19	16.96
	41-60 years	40	35.71
	61-90 years	53	47.32
Education Level	Illiterate	53	47.32
	Primary education	29	25.89
	Secondary education	19	16.96

Table 1. Demographic status of the respondents from the Himalayan Dry Temperate Forests of Kashmir, India.

	Higher education	11	9.82
Profession	Cultivator/agricultural laborer	23	20.54
	Govt. Employees	6	5.36
	Herders	38	33.94
	Shopkeepers	10	8.93
	Skilled/semi-skilled worker	15	13.4
	Traditional healers	20	17.86
Religion	Islam	112	100

Plant composition and distribution patterns

In the current investigation a total number of 87 species plants from 52 families were reported. Comparable to previous ethnobotanical studies carried out in other Himalayan regions, the number of plant species discovered in the research area is higher. For instance, 53 plant species were reported by (Barreda *et al.* 2015) from the Monpa tribe in the Eastern Himalayas; 67 plant species were reported by (Khoja *et al.* 2022a) from various ethnic groups in Kupwara, Kashmir Himalayas; 29 species were reported by (Asif *et al.* 2021) from various ethnic groups in a remote tehsil (Karnah); and 53 plants were reported by (Sher *et al.* 2020) from District Swat, Pakistan. The way a species is used greatly depends on the socioeconomic conditions in the area, and distribution patterns might vary from location to location. Families' contributions to different usage categories differed widely. The fact that several groups use forest resources shows how important these species are to the survival of the local community. The research revealed a notable dependence on a range of forest resources for medicinal applications.

Species family relationship of documented forest plants

In the current study family Asteraceae was found to have the most plant species (N-10), followed by Lamiaceae (N-9), Rosaceae (N-4), Polygonaceae (N-3), Araceae, Apiaceae, Asparagaceae, Boraginaceae, Berberidaceae, Caryophyaceae, Euphorbiaceae, Geraniaceae, Gentianaceae, Pinaceae, Plantaginaceae, and Malvaceae (2 species each), while as (N-36) are the monotypic plant families (Figure 2). Members of Asteraceae can adapt to arid and dry settings with ease because of their broad range of ecological amplitudes. The plants of family Asteraceae are used to treat a range of ailments. Numerous forest areas showed the dominance of Asteraceae, especially in open habitat environments (Khoja *et al.* 2022a). According to a number of studies (Waheed *et al.* 2023c: Mohammad *et al.* 2021; Awan *et al.* 2021) the Asteraceae was also the most significant family in the regions surrounding the Himalayan regions of Pakistan and Kashmir. Similarly, Asteraceae was noted by (Tenzin *et al.* 2017) as the dominant family in the Bhutanese Highlands of Gasa District.

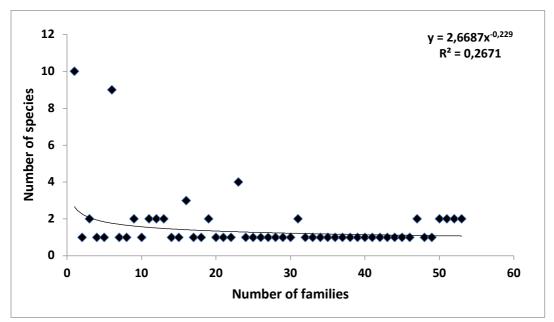


Figure 2. Species family relationship of the documented forest plants in the Himalayan Dry Temperate Forests of Kashmir, India.

Life form

Herbs accounted for the greatest number of plant species (N-69, 80%), with trees (N-8, 9), shrubs (N-6, 7), ferns (N-2, 3), and fungus (N-1, 1) following (Table 2). Herbs are abundant in nature and are particularly common in natural forests, along roadsides, and in-home gardens. The study demonstrates that medicinal plants have a significant role in the health care of populations living near forest areas, particularly during the winter when access to the area is restricted for prolonged periods of time. Most extremely valuable plant species were collected at high altitudes, primarily in herbaceous form, and were used for medicinal purposes. In addition, herbaceous species account for the majority of plant diversity in the Himalayan region's forests. It could be another reason that the majority of species identified for ethnobotanical usage came from the herb life form. Herbs are used because they contain a high concentration of bioactive chemicals (Waheed *et al.* 2023d, 2023b) and because they have a more potent medicinal impact than other plant forms (Adnan *et al.* 2014). Similar results were reported by (Haq *et al.* 2024; Khoja *et al.* 2024; Waheed *et al.* 2023; Bhat *et al.* 2021) from their study area.

Plant part used

The study's findings indicate that the most often used plant parts for medicinal purposes are roots (N-36, 34%), followed by leaves (N-23, 24%), whole plants (N-16,17%), seeds and fruits (N-5, 5% each), resin (N-4, 4%), whole frond and stem (N-2, 2% each), bark, bulb, twigs, fruiting body and flowers (N-1, 1% each) (Figure. 3). Maximum number of responders believes that to obtain the extracts in the form of powder, decoction and infusion from wild medicinal herbs is easy as compared to shrubs and trees. For therapeutic purposes, plant roots are often used or exchanged for goods by native pastoralists, herbalists, those involved in the herbal medicine trade, and people belonging to various ethnic groups. This tendency emphasizes how important the medicinal qualities of these plant-based ingredients are in conventional medical procedures. However, it is important to discourage the overharvesting of underground parts or entire plants particularly for vulnerable species, as this practice can lead to their eradication and decline in the wild (Haq *et al.* 2023a). The results of this study are in line with the research conducted by (Aziz *et al.* 2018: Bhat *et al.* 2021). When using medication given for a specific condition, people used to take the guidance of traditional Hakims or local healers. As per the findings of (Waheed *et al.* 2022b, 2023; Haq *et al.* 2023d), the prevalent methods for extracting active substances in main regions of the world include grinding, boiling, and smashing. According to (Aziz *et al.* 2021) roots are known for having a high concentration of bioactive compounds.

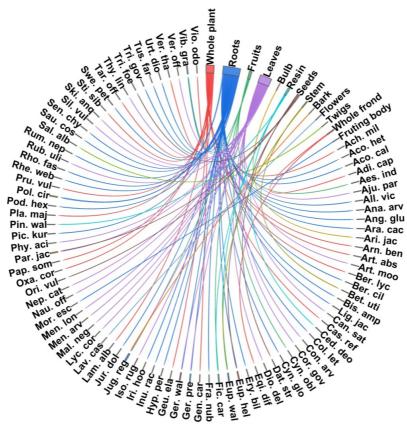


Figure 3. Species distribution according to plant part used in Himalayan Dry Temperate Forests of Kashmir, India. The direction of the lines shows which species are associated with which types of habitat and the thickness of each bar shows the number of species in each habitat category. The complete name of the species is shown in Table 2.

Relationship between age of informants and plant part used

A total of 112 participants (44 women, 68 men) participated in semi-structured interviews for the current investigation, they are distributed into three age groups I.e. younger age group (20-40 years), middle age (41-60 years) and older aged group (61-90 years). In the current study old age group used most of the plant species. The dendrogram showed two distinctly separated clusters based on the degree of intensity of plant part usage by different age groups, in which old aged formed one cluster and while as younger and middle aged formed second cluster (figure 4). The reason behind the younger generation has shown less plant part usage is because in the study area that modernizations, including improved and increased road connectivity and improvements of rural infrastructure, has contributed a lot to the decrease of traditional knowledge. This implies that the rural population is more connected to forest resources as compared to the urban population, elderly were the major caretakers of traditional knowledge, and if a structure is not put in place to ensure apprenticeship, the knowledge gap between the elderly and the young generation becomes a serious concern. In the current study, the link between locals and forest resources demonstrates the depth of indigenous knowledge on the various facets of plants used in the corridor. People's reliance on forest resources ranges from commonly utilized eating plants and medication to highly preferred fermentable plants.

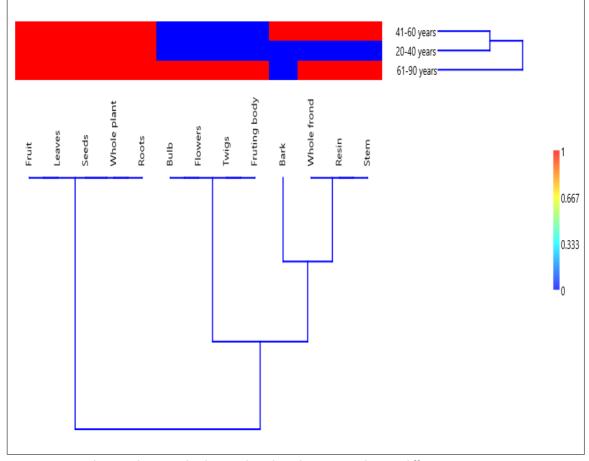


Figure 4. Heat map showing clustering dendrogram based on plant part used across different age groups.

Plant preparations

In the current study most number of plant taxa were used in powder form (N-30, 36%) following decoction (N-15, 18%), raw and paste (N-11, 13% each), infusion (N-9, 11%), herbal tea (N-6, 7%), cooked (N-2, 2%) were the most common ways that the plants described by the respondents were used (Figure 5). The majority of plant species are harvested in the autumn and the people who live in forests are aware of the best times to collect different plant species as well as their methods and frequency of collection, depending on what is available. The collected plants parts were dried, crushed into powder is the most common technique used by the informants in the study area. Plant taxa prepared in the form of powder is stored in cotton clothes or airtight glass bottles, in order to use them in harsh winter and is also preserved for longer period of time. In other regions of the world, powder and decoction are the commonly used techniques for preparing medicinal herbs (Rokaya *et al.* 2010; Uprety *et al.* 2010). According to ethnobotanical studies, decoction is the most popular way of preparing

Decoction /io. odo Merbal tea Infusion Ski ang De, cal Sil. Vuj Sib Sen. chy cap ind Sau. cos par Sal. alb Rum. nep vic Ana. arv Rub. uli-Ang. glu Rho. fas-Ara. cac Rhe. web-Ari. jac Pru. vul Arn. ben Pol. cir-Art. abs Pod. hex-Art. moo Pla. mai Ber. lyc Pin. wal-Ber. cil Pic. kur Bet. uti Phy. aci-Bis. amp Par. jac Lig. jac Pap. som Can. sat Oxa. cor Cas. ref Ori. vut Ced. deo Vep. cat Col. let off Con. arv esc Men.lon Cor. gov Nen. arv Cyn. Nal neg 200°. °6/ car. alle ule 9% Jur. dot Jug. reg. EN. EUP. Iso. rug-Iri. hoo-Fic. car 8 Inu. rac-EP -Gen. car Gen. pre -Ger. wal -Ger. wal 0 Ø, ne wal

herbal treatments; it involves extracting the remedies using water and other liquids, such as olive oil and honey (Altaf *et al.* 2018). The primary method of administration for more than half of herbal treatments is oral ingestion.

Figure 5. Species distribution according to the medicinal preparations in the Himalayan Dry Temperate Forests of Kashmir, India. The direction of the lines shows which species are associated with which types of medicinal preparations and the thickness of each bar shows the number of species in each habitat category. The complete name of the species is shown in Table 2.

Ailments addressed

Plants were used to treat 41 different ailments. Of these, the majority of species (N-46, 34%) were used to treat gastrointestinal, followed by dermatological (N-17, 23%) and musculoskeletal (N-13, 9%) (Figure. 6, Table 2). The reason behind the widespread occurrence of gastrointestinal disorders in the region is as a result of poor sanitation, starvation, and a shortage of clean water. The dermatological disorders may arise due to unhygienic living conditions, UV exposure, sharing rooms with family members and contaminated food. While as the musculoskeletal disorders may rise due to heavy work, common injuries that occur in the fields and poor rest. The respiratory disorders mostly cough and cold may arise due to harsh winter conditions like snowfall and frosting, increased moisture in higher altitudes and sudden variations in weather. It is noteworthy that elevated dosages of therapeutic plants might occasionally result in severe side effects, for this reason, consumption of these therapeutic herbs at home requires caution. Similar results were obtained by researchers from different ethnic groups in Pakistan (Tariq *et al.* 2015), Northern Nigeria (Rahman 2021), Pakistan (Wali *et al.* 2021), and the Northern Himalaya (Farooq *et al.* 2019). Plants are widely used in medicine for the treatment of digestive diseases (Simsek *et al.* 2004).

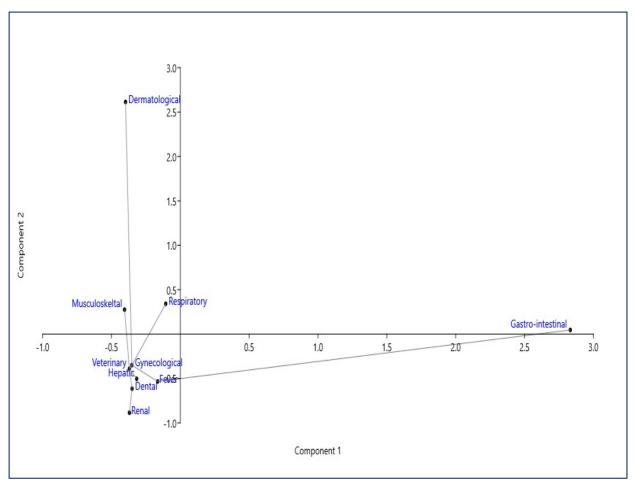


Figure 6. Principal Component Analysis (PCA) illustrating the relationship the disease categories in the Himalayan Dry Temperate Forests of Kashmir, India.

Ethnoecological usage

The majority of plant species were used for medicinal purpose (53%) followed by food (22%), firewood (10%) fodder (9%), herbal tea (4%), and timber and black magic (1% each) (Table 2). This shows the importance of medicinal plant resources in all facets of life for those who reside in remote areas, particularly when it comes to meeting the basic needs for food, shelter, livelihoods and healthcare. Some of the commonly used wild leafy vegetables growing around populated areas are *Allium victorials, Nasturtium officinales, Prunella vulgaris, Rumex nepalensis, Rheum webbianum, Silene vulgaris*, herbal tea is made from *Bistorta amplexicaulis, Bergenia ciliata, Betula utilis, Fragaria nubicola, Geranium wallichianum, Geranium pratense,* and *Hypericum perforatum*. Some of the plants having religious uses like those that were used in religious gatherings were *Jurinea dolomiaea* and *Podophyllum hexandrum*. Several other studies also reported similar results from other Himalayan regions like (Haq *et al.* 2020a) from District Reasi, Northwestern Himalaya, (Khoja *et al.* 2024; Haq *et al.* 2023c) from Kashmir Himalayas. Due to its accessibility, low cost, perceived adverse effects, ease of use, and expanding significance of medicinal plants were frequently prefer in traditional medicine (Haq *et al.* 2024).

Use Value (UV)

The species examined in this study had UV indices ranging from 0.20 to 0.65 (Table 2). Artemisia absinthium (0.73) Arnebia benthamii (0.69), Rheum webbianum (0.70), Aconitum heterophyllum (0.71), Artemisia moorcroftiana (0.67) and Ficus carica (0.68), and had the greatest UV indexes, while Cannabis sativa (0.17) had the lowest UV indexes (Figure 7). The computation of use value can provide insight into the utilization of a species. Because they are thought to be natural remedies with fewer side effects, species with greater UV levels are typically well-known and favored (Ojha *et al.* 2020). According to (Farooq *et al.* 2019), the medicinal plants in the study area with high UV levels were generally well-known in the area. The main phytochemicals reported from these species are lactones and terpenoids, which include trans-thujone, terpinene, 1,4-terpeniol, myrcene, bornyl acetate, cadinene camphene, trans-sabinyl acetate, guaiazulene, chamazulene, camphor, and linalool were reported in Artemisia absinthium (Haq *et al.* 2022b). Aconitum heterophyllum is useful in treating a variety of gastrointestinal disorders since its roots contain flavonoids and diterpene alkaloids (Khoja *et al.* 2023).

Table 2. List of medicinal plant species used by the indigenous tribes in the temperate forests of Kashmir Himalayas.

Botanical name/ Family	Common	Part used	Preparation	Application	Disease treated	Ethno-ecological	Use	Use value	Nativity
	name					usage	reports		
Achillea millefolium L.	Pahalgasseh	Whole	Dried roots are	The mixture is	Toothache, diuretic,	Aerial part is used	32	0.28	Native
Asteraceae		plant	crushed into	used both	jaundice.	as fodder			
(Ach. mil)			powder	externally as					
				well as orally					
				depending					
				upon the					
				condition.					
Aconitum heterophyllum	Patris	Roots	Roots are dried are	The mixture is	Abdominal pain,		80	0.71	Native
Wall. ex. Royle			crushed into	taken orally at	intestinal worms.				
Ranunculaceae			powder	least twice					
(Aco. het)				usually early in					
				the morning.					
Acorus calamus L.	Vai gander	Roots	Dried roots are	The mixture is	Stomachache,		71	0.63	Native
Araceae			eaten raw	taken orally	abdominal pain,				
(Aco. cal)				usually early in	and diarrhea				
				the morning					
				for 2-4 days.					
Adinatum capillus-veneris L.	Gev-theer	Whole	Whole plant is	The mixture is	Cough, jaundice,	Rachis is used as	43	0.38	Native
Pteridaceae		frond	crushed along with	taken orally for	stomachache.	toothpick			
(Adi. cap)			water to make	5 days.					
			decoction						
Aesculus indica (Wall.ex.	Handoon	Fruit	Fruits are crushed	The mixture is	Dandruff.	Leaves are used as	59	0.52	Exotic
Cambess.) Hook.			into powder	applied		fodder, whole			
Sapindaceae				externally at		plant is used as			
(Aes. ind)				least for 3 days.		firewood			
<i>Ajuga parviflora</i> Benth.	Jain adam	Leaves	Leaves are crushed	The mixture is	Stomachache,	Aerial part is used	61	0.54	Native
Lamiaceae			along with water	taken early in	diuretic.	as fodder			
(Aju. par)			to make decoction	the morning					
				for at least 3					
				days.					
Allium victorials L.	Jungle rohan	Roots	Dried roots are	The mixture is	Joint pain.	Tinder leaves are	49	0.43	Native
Amaryllidaceae			crushed into	taken orally for		cooked as			
(All. vic)			powder	2 days.		vegetable		1	
Anagallis arvensis L.	Danddawa	Roots	Raw roots are used	Dried root is	Toothache.	Aerial part is used	44	0.39	Native
Primulaceae				applied		as fodder			
(Ana. arv)				externally.					

<i>Angelica glauca</i> Edgew. Apiaceae (Ang. gla)	Chour	Roots	Dried roots are crushed into powder	The mixture is taken orally usually 3 or 4 times.	Stomachache, bloat.	Roots are used as flavorings agent	71	0.63	Native
Aralia cachemirica Decne Araliaceae (Ara. cac)	Khoree	Roots	Dried roots are grinded into powder	The mixture is taken orally twice a day.	Joint pain.		35	0.31	Native
Arisaema jacquemontii Blume Araceae (Ari. jac)	Hapatgogaj	Bulb	Dried bulb is crushed into powder & mixed with sugar	The mixture is taken orally at bedtime.	Helminthic infestation.	Bulb are used to make pickles	44	0.39	Native
Arnebia benthamii (Wall. ex. G. Don) Boraginaceae (Arn. ben)	Kahzaban	Whole plant	Leaves are boiled in water to make infusion	The mixture is taken orally	Enhances lactation, cough &cold.	Leaves are used to make herbal tea	78	0.69	Native
Artemisia absinthium L. Asteraceae (Art. abs)	Tethwan	Areal part	Areal part is sun dried and crushed with water to make decoction	The mixture is taken orally mostly during morning time.	Abdominal pain, intestinal worms, indigestion.		82	0.73	Native
<i>Artemisia moorcroftiana</i> Wall. ex DC. Asteraceae (Art. moo)	Jungliteathw an	Leaves	Dried leaves are boiled in the water to make decoction	The mixture is taken orally early in the morning for 1-3 days	Acidity.		76	0.67	Native
<i>Berberis lycium</i> Royle Berberidaceae (Ber. lyc)	Kawdach	Whole plant	Whole shrub is crushed into powder	The mixture is taken orally.	Cholera, respiratory disorders.	Fruits are eaten fresh, whole plant is used as firewood	37	0.33	Native
Bergenia ciliata (Haw.) Sternb. Saxifragaceae (Ber. cil)	Zakhmihayat	Roots	Roots are crushed into powder	The mixture is taken orally as well as externally.	Joint pain, wounds, liver diseases & asthma.	Roots are used to make herbal tea	33	0.29	Native
Betula utilis D.Don Betulaceae (Bet. uti)	Burz	Wood	Dried Wood is used to make glass	The water is taken orally.	Asthma.	Whole plant is used as firewood	36	0.32	Native
Bistorta amplexicaulis (D.Don) Greene Polygonaceae (Bis. amp)	Masloom	Roots	Dried roots are used to make tea	The mixture is taken orally for 3-5 days usually twice a day.	Hay fever, whitening of tongue & stomachache.	Roots are used to make herbal tea	44	0.39	Native

<i>Cannabis sativa</i> L. Cannabinaceae (Can. sat)	Bhang	Leaves	Dried leaf powder is mixed with oil to make paste	The mixture is applied externally.	Earache, Skin diseases.		20	0.17	Exotic
Cascuta reflexa Roxb. Cuscutaceae (Cas. ref)	Kukli port	Whole plant	Whole herb is crushed into powder	The mixture is applied externally usually for 2-3 days.	Wounds, swelling of testicles, hair fall.		24	0.21	Native
<i>Cedrus deodara</i> (Roxb.) G.Don Pinaceae (Ced. deo)	Deodar	Resin	Dried wood is kept in the utensil and around it fire is given to extract the oil	The mixture is applied externally special care is taken while applying it should not be licked by cattle which may lead to death.	Lice killing, foot& mouth disease.	Whole plant is used as firewood and timber	48	0.42	Native
<i>Colchicum luteum</i> Baker Colchicaceae (Col. lut)	Virkumpoash	Roots	Dried roots are crushed into powder. Water is added to the obtained powder	Mixture is taken orally early in the morning.	Constipation.		39	0.34	Native
Convolvulus arvensis L. Convolvulaceae (Con. arv)	Threed	Leaves	Leaves are soaked in water overnight to make infusion	The mixture is taken orally	Constipation.	Aerial part is used as fodder	51	0.45	Native
<i>Corydalis govianiana</i> Wall. Fumariaceae (Cor. gov)	Sang herbi	Leaves	Leaves are crushed into paste	The mixture is taken orally.	Respiratory disorders, whooping cough, asthma.	Aerial part is used as fodder	42	0.37	Native
Cyndonia oblonga Mill. Rosaceae (Cyn. obl)	Bomb choat	Fruit	Fruit is taken raw	Fruits are taken orally mostly in winters.	Constipation.	Fruits are eaten fresh, whole plant is used as firewood	60	0.53	Exotic

<i>Cynoglossum glochidiatum</i> Wall. ex Benth. Boraginaceae (Cyn. glo)	Nil tooth	Roots	Roots are crushed into paste	The mixture is applied externally.	Skin diseases.	Aerial part is used as fodder	30	0.26	Native
Datura stramonium L. Solanaceae (Dat. str)	Datur	Seeds	Dried seeds are crushed, and infusion is made	The mixture is taken orally with water.	Asthma, diarrhea, and anti- inflammatory		58	0.51	Exotic
<i>Dioscorea deltoidea</i> Wall. ex. Kunth Dioscoreaceae (Dio. del)	Krech	Leaves	Decoction is made from the leaves.	The mixture is taken orally for 3 days.	Urinary tract infections.		56	0.5	Native
<i>Equistem diffusum</i> D.Don Equisetiaceae (Equ. dif)	Gandamgud	Whole frond	Whole frond is crushed along with water to make decoction	The mixture is taken orally empty stomach.	Kidney stones, stomachache	Rachis is used to clean teeth	47	0.41	Native
<i>Eryngium billardieri</i> Delar. Apiaceae (Ery. bil)	Dawamool	Roots	Dried roots are eaten raw	Roots are taken orally especially in the morning.	Jaundice, diuretic.	Aerial part is used as fodder	44	0.39	Native
Euphorbia helioscopa L. Euphorbiaceae (Eup. hel)	Gueursochal	Seeds Roots resin	Dried seeds and roots are eaten raw Resin is applied topically	The mixture is taken orally.	Ring worm		28	0.25	Exotic
<i>Euphorbia wallichii</i> Hook. F Euphorbiaceae (Eup. wal)	Guri-dud	Stem, resin&seed s	Stem extract & Seeds are crushed along with piper to make paste	The mixture is applied externally as well as orally.	Skin diseases, cholera.		24	0.21	Exotic
<i>Ficus carica</i> L. Moraceae (Fic. car)	Anjeer	Fruit, stem &resin	Fruits are boiled and resin is applied topically	The mixture is applied externally as well as orally.	Skin diseases, throat infection, cough.	Fruits are eaten fresh	77	0.68	Exotic
<i>Fragaria nubicola</i> Lindl. ex Lacaita Rosaceae (Fra. nub)	Ringrish	Roots	Dried roots are used to make tea	The mixture is taken orally usually twice or thrice a day.	Fever, tonsillitis, joint pain.	Fruits are eaten fresh; roots are used to make herbal tea	40	0.35	Native
<i>Gentiana carinata</i> (D.Don) Griseb Gentianaceae (Gen. car)	Pangri	Whole plant	Whole plant is boiled in the water to make infusion	The mixture is taken orally early in the morning.	Abdominal pain.		51	0.45	Native

<i>Geranium pratensis</i> L. Geraniaceae (Ger. pra)	Ratanjote	Roots & Leaves	Dried roots are crushed into powder	The mixture is taken orally twice a day for 2-4 days.	Joint pain, diarrhea.	Roots are used to make herbal tea	46	0.41	Native
<i>Geranium wallichianum</i> Oliv. Geraniaceae (Ger. wal)	Ratanjote	Roots & Leaves	Roots are dried under shade & are crushed into powder	The mixture is taken orally twice a day for 2-4 days.	Joint pain, general weakness, acidity.	Roots are used to make herbal tea	42	0.37	Native
<i>Geum elatum</i> Wall. ex G. Don Rosaceae (Geu. ela)	Shah buti	Whole plant	Whole plant is grinded and made into decoction	The mixture is taken orally for 2- 3 days.	Constipation Helminthic infestation	Aerial part is used as fodder	33	0.29	Native
<i>Hypericum perforatum</i> L. Hypericaceae (Hyp. per)	Chai kul	Roots	Dried roots are crushed into powder	The mixture is taken orally usually early in the morning.	Diarrhea.	Aerial part is used as fodder, roots are used to make herbal tea	55	0.49	Native
Inula racemosa Hook.F. Asteraceae (Inu. rac)	Poshkar	Roots	Dried roots are powdered and mixed with cow milk	The mixture is taken orally.	Bronchial asthma, Anthelmintic in children, antiseptic, and diuretic.	Aerial part is used as fodder	42	0.37	Native
<i>Iris hookeriana</i> Foster Iridaceae (Iri. hoo)	Mazarmundh	Roots	The roots are dried & crushed into powder	The mixture is taken orally.	Swelling in throat		37	0.33	Native
<i>Isodon rugosus</i> (Wall. ex Bentha) Lamiaceae (Iso. rug)	Shulekhat	Leaves	Dried leaves are boiled in water	The mixture is applied orally as well as externally.	Foot fever, stomachache, and diarrhea.	Whole plant is used as firewood	49	0.43	Native
Juglans regia L. Juglandaceae (jug. reg)	Doon	Fruit / leaves and bark	Young fruits & leaves are crushed into paste	The mixture is applied externally.	Foot and mouth diseases of cattle,rheumatism and toothache.	Fruits are eaten fresh	59	0.52	Native
<i>Jurinea dolomiaea</i> Boiss, Asteraceae (Jur. dol)	Doop/ gogle doup	Roots	Dried roots are crushed into powder and mixed with mustard oil	The mixture is applied externally for 2 days.	Skin diseases and wound healing.	Roots are used against black magic	75	0.66	Native
<i>Lamium alba</i> L. Lamiaceae (Lam. alb)	Zakhmedawa	Whole plant	Whole plant is crushed to make paste	The mixture is applied externally.	Wound healing.	Aerial part is used as fodder	47	0.41	Native

Lavatera cashmeriana Camb. Malvaceae (Lav. cas)	Jungle souchal	Flowers	Flowers are used to make decoction	The mixture is taken orally twice a day.	Cough & cold.	Flowers are used to make jam	54	0.48	Native
Ligularia jacquemontiana (Badecne.) Asteraceae (Lig. Jac)	Hapatkuth	Roots	Dried roots are taken as raw	Dried roots are taken orally early in the morning.	Intestinal worms & Abdominal pain	Aerial part is used as fodder	52	0.46	Native
<i>Lychnis coronaria</i> Desr. Caryophyaceae (Lyc. cor)	Chock dawa	Leaves	Leaves are boiled in water	Leaves are applied externally for 2-3 days.	Burns.		31	0.27	Native
<i>Malva neglecta</i> Wallr. Malvaceae (Mal. neg)	Souchal	Leaves	Leaves are crushed to make small balls	The mixture is given orally twice a day.	Constipation, stomach cramps.	Aerial part is used as fodder	58	0.51	Native
Mentha arvensis L. Lamiaceae (Men. arv)	Pudine	Leaves	Leaves are crushed into powder	The mixture is taken orally twice a day.	Asthma, cough &cold, diarrhea.	Leaves are used as salad	62	0.55	Native
Mentha longifolia (L.) Lamiaceae (Men. lon)	Guddpudine	Leaves	Dried leaves are used to make tea	The mixture is taken orally twice a day.	Abdominal pain, tonsillitis.		55	0.49	Exotic
Morchella esculenta Fr. Morchellaceae (Mor. esc)	Kanighitch	Fruiting body	Fruiting body is dried in open sun & crushed into powder	The mixture is applied orally as well as externally.	Wound healing & cough.	Fruiting body is cooked as vegetable	67	0.59	Native
Nasturtium officinale W.T.Aiton Brassicaceae (Nas. off)	Nag souchal	Leaves	Dried leaves are crushed into powder	The mixture is taken orally for 2-3 days.	Mumps & stomach cramps.	Tinder leaves are cooked as vegetable	30	0.26	Native
<i>Nepeta cataria</i> L. Lamiaceae (Nep. cat)	Gandsoi	Leaves	Leaves are used to make herbal tea	The mixture is taken orally.	Colic, urine disorders, skin infection.	Aerial part is used as fodder	39	0.34	Native
Origanum vulgare L. Lamiaceae (Ori. vul)	Baber	Seeds	Seeds are sundried & crushed into fine powder	The mixture is taken orally usually for 4 days.	Dry throat & diuretic	seeds are as flavorings agent	49	0.43	Exotic
<i>Oxalis corniculata</i> L. Oxalidaceae (Oxa. cor)	Tsok-tsen	Whole plant	Whole plant is dried & is used to make tea	The mixture is taken orally.	Diarrhea, abdominal pain, tonic.	Aerial part is eaten fresh	22	0.19	Exotic

Papaver somniferum L. Papaveraceae (Pap. som)	Kashkash	Whole plant	Whole plant is crushed into powder and is taken along with salt and water	Taken orally for 2 days.	Diarrhea.	Seeds are used as flavorings agent	58	0.51	Exotic
Parrotiopsis jacquemontiana (Decne) Rehder Hamamelidaceae (Par. jac)	Posh, Pohu	Stem and leaves	Leaves are crushed and oil is extracted from the stem	The mixture is applied externally.	Antimicrobial.	Whole plant is used as firewood	33	0.29	Native
Phytolacca acinosa Roxb. Phytolaccaceae (Phy. aci)	Hapat brand/ brand	Leaves	Leaves are crushed into paste	The mixture is applied externally.	Foot and mouth disease.	Tinder leaves are cooked as vegetable	41	0.36	Native
<i>Picrorhiza kurroa</i> Royale ex. Benth Plantaginaceae (Pic. kur)	Kod	Roots	Dried roots are grinded into powder & boiled in water to make infusion	The mixture is taken orally.	Abdominal pain		45	0.4	Native
<i>Pinus wallichiana</i> A. B.Jacks. Pinaceae (Pin. wal)	Kayur	Resin	Resin collected from tree is used raw	The mixture is applied externally.	Wound healing & skin problems.	Whole plant is used as firewood and timber	59	0.52	Native
Plantago major L. Plantaginaceae (Pla. maj)	Bead gul	Whole plant	Dried roots are eaten raw	Dried roots are eaten Orally mostly in the morning.	Abdominal bloating, dysentery.	Aerial part is used as fodder	40	0.35	Native
Podophyllum hexandrum (Royle) T.S Ying Berberidaceae (Pod. hex)	Wanwagun	Roots	Dried roots are crushed into powder	The mixture is taken orally for 2 days.	Diarrhea, constipation.	Fruits are eaten fresh	52	0.46	Native
Polygonatum cirrhifolium (Wall.) Royle Asparagaceae (Pol. cir)	Salapmesri	Roots	Dried roots are crushed into powder	The mixture is taken orally for 2-5 days.	Albuminuria.	Roots are eaten as fresh	37	0.33	Native
Polygonatum verticillatum (L.) All. Asparagaceae (Pol. ver)	Salamesri	Roots	Dried roots are crushed into powder	The mixture is taken orally for 2-5 days.	Albuminuria.	Roots are eaten fresh	48	0.42	Native

Prunella vulgaris L. Lamiaceae (Pru. vul)	Kalwauth	Whole plant	Whole plant is boiled in water	The mixture is taken orally as well as externally for 3 days.	Foot fever, constipation, sore throat.	Tinder leaves are cooked as vegetable	53	0.47	Native
<i>Rheum webbianum</i> Royle Polygonaceae (Rhe. web)	Pambchalan	Roots	Roots are sundried & grinded into powder	The mixture is taken orally as well as externally.	Joint pain, wound healing, skin burns.	Tinder leaves are cooked as vegetable	79	0.7	Native
<i>Rhodoila fastigiata</i> (Hk. f. et Thoms.) Crassulaceae (Rho. fas)	Hisbe di jaldi	Roots	Roots are dried in shade & crushed into powder	The mixture is taken orally thrice a day.	Diarrhea.		27	0.24	Native
Rubus ulmifolius Schott. Rosaceae (Rub. fas)	Gounch	Leaves	Green leaves are soaked into water to make infusion	The mixture is taken orally.	Digestive problems.	Fruits are eaten fresh, whole plant is used as firewood	65	0.58	Exotic
Rumex nepalensis Spreng. Polygonaceae (Rum. nep)	Abij	Roots	Dried roots are semi crushed and boiled in water.	The mixture is applied externally.	Arthritis and rheumatic pain, Skin scars.	Tinder leaves are cooked as vegetable	61	0.54	Native
Salix alba L. Salicaceae (Sal. alb)	Bot-vir	Twigs	Fresh twigs are used	Chewed	Stomachache	Aerial part is used as fodder, whole plant is used as firewood	39	0.34	Exotic
Saussurea costa (Falc.) Lipsch. Asteraceae (Sau. cos)	Kouth	Roots	Roots are crushed into fine powder	The mixture is taken orally twice a day special care is taken after eating this boiled water is taken for 3 days.	Joint problems	Tinder leaves are cooked as vegetable	67	0.59	Native
Senecio chrysanthemoides DC. Asteraceae (Sen. chr)	Boug	Roots	Roots are crushed along with water to make infusion	The mixture is taken orally.	Fever, kidney diseases.	Aerial part is used as fodder	34	0.3	Native

Silene vulgaris (Moench) Garcke Caryophyllaceae (Sil. vul)	Watkram	Leaves	Leaves are cooked as vegetable	Taken orally.	Indigestion.	Tinder leaves are cooked as vegetable	54	0.48	Native
<i>Skimmia anquetillia</i> N.P. Taylor & Airy Shaw Rutaceae (Ski. ang)	Nair pan	Leaves	Dried leaves are boiled in water to make decoction	The mixture is taken orally.	Digestive problems.	Whole plant is used as firewood	37	0.33	Native
Stipa sibirica L. Poaceae (Sti. sib)	Guddgass	Whole plant	Areal part is boiled in water	The mixture is applied externally.	Mastitis.		51	0.45	Native
<i>Swertia petiolata Royle</i> . ex D. Don Gentianaceae (Swe. pet)	Moomrum	Roots	Roots are taken raw	Dried roots are taken orally.	Abdominal pain.	Aerial part is used as fodder	46	0.41	Native
<i>Taraxicum officinale</i> (L.) Weber ex F.H. Wigg Asteraceae (Tar. off)	Handh	Whole plant	Whole plant especially leaves are cooked as vegetable	The vegetable is taken orally along with rice.	Stomach cramps.	Tinder leaves are cooked as vegetable	70	0.62	Native
<i>Thymus linearis</i> Benth Lamiaceae (Thy. lin)	Javind	Leaves	Tea made from the dried leaves is taken against stomachache & stomach cramps.	The mixture is taken orally early in the morning.	Stomachache, stomach cramps.		42	0.37	Native
<i>Trigonella foenum-graecum</i> L. Fabaceae (Tri. foe)	Meath	Seeds	Dried seeds are crushed into fine powder	The mixture is applied externally.	Factures.	Seeds are used as flavorings agent	55	0.49	Exotic
<i>Trillium govanianum</i> Wall. ex D.Don Melanthiaceae (Tri. gov)	Trupatri	Roots	Roots are dried in shade & grinded into powder	The mixture is used both externally as well as orally.	Boils, intestinal worms	Tinder leaves are cooked as vegetable, roots are used against black magic	36	0.32	Native
<i>Tussilago farfara</i> L. Asteraceae (Tus. far)	Wattpan	Roots	Dried roots are crushed into powder	The mixture is given orally twice a day.	Abdominal pain.		50	0.44	Native
Urtica dioica L. Urtiaceae (Urt. dio)	Soi	Roots	Roots are sun dried & crushed into powder	The mixture is taken orally for at least a week	Rheumatism, urine infection.	Tinder leaves are cooked as vegetable	40	0.35	Native

Verbascum thapsus L. Scrophulariaceae (Ver. tha)	SarfeMakai	Areal part	Areal part is crushed into powder	The mixture is applied externally as well as given orally.	Bloat, burns.	Whole plant is used as firewood	53	0.47	Native
<i>Verbena officinalis</i> L. Verbenaceae (Ver. off)	Hatmool	Leaves	Green leaves are soaked in water to make infusion	The mixture is taken orally.	Indigestion	Aerial part is used as fodder	48	0.42	Native
Viburnum grandiflorum Wall. ex DC Viburnaceae (Vib. gra)	Kilmish	Fruits& roots	Fruits are eaten raw while roots are boiled in water upon cooling it's taken against cough & stomachache.	The mixture is taken orally.	Cough & stomachache.	Fruits are eaten fresh, whole plant is used as firewood	32	0.28	Native
<i>Viola odorata</i> L. Violaceae (Vio. odo)	Banafsha	Whole plant	Whole plant is used raw	The mixture is taken orally twice a day.	Cough & cold & foot fever.	Tinder leaves are cooked as vegetable	55	0.49	Exotic

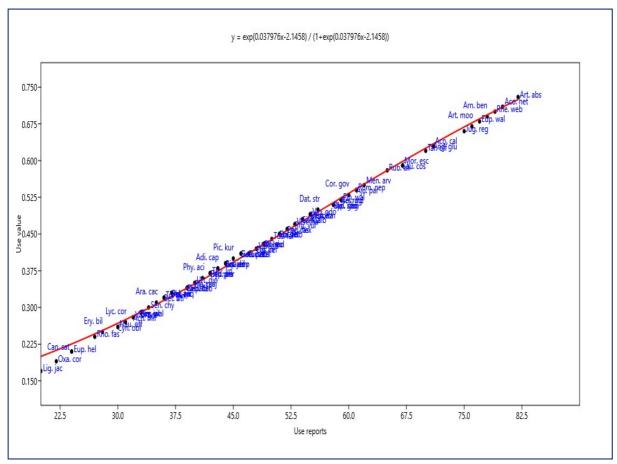


Figure 7. Relationship between use value (UV) and frequency of citation (FC). The full plant names are presented in Table 2.

Nativity status of medicinal plants

Our results showed that 17% of plant species were considered alien, suggesting that a significant number of non-native plants have made their way into the remote and inhospitable Himalaya region. We found that a significant number of exotic species were found in disturbed forest habitats, such as roadsides, including *Aesculus indica, Cannabis sativa, Datura stramonium, Euphorbia helioscopa, Mentha longifolia, Rubus ulmifolius,* and *Viola odorata*. Based on these findings, we suggest that tunnels, not roads, are the best indicators of connectivity in fragile mountain ecosystems. Reducing the factors that endanger biodiversity is necessary to maintain ecosystems and its inhabitants.

Conservation status

Plant taxa are categorized under both the International Union for Conservation of Nature's (IUCN) Red List and the Convention on International Trade in Endangered Species of Wild Fauna and Flora's (CITES) Appendix II (Table 3). In this study, a total of thirteen plant taxa are reported in IUCN Red List and four plant taxa by the CITES (Table 3). Seventy-three percent of the informants stated that unsustainable harvesting, particularly early collecting to meet commercial demand, was the main cause of the fall in wildlife populations. Aconitum heterophyllum, Angelica glauca, Arnebia benthamii, Inula racemosa, Saussurea costa, and Trillium govanianum are a few plant taxa that fall into this group. The destruction of habitat, especially deforestation and habitat fragmentation was the second major factor contributing to decrease in the wild population of medicinal plants. In addition, overexploitation, a rise in harvesters, indiscriminate gathering, unmanaged deforestation, and habitat destruction pose threats to the Kashmir Himalayas. Various biological properties of plants, such as habitat specificity, growth rate, species variety, population size, reproductive system, and range of distribution, all have a significant impact on their availability (Wagh & Jain 2013; Chen et al. 2016). Due to their importance to the plant life cycle, excessive harvesting of roots, leaves, and tubers should be avoided. Because of their great diversity, protecting medicinal plants also means protecting plant biodiversity (Hamilton 2004). As a result, the decisions and plans should be made appropriately. To boost the number of these endangered species in the study area, we advise giving human assistance in natural regeneration efforts top priority. Lastly, in light of impending climate change, management might be directed by the knowledge currently available about risks to the forest flora.

Table 3. Medicinal plants included in International Union for Conservation of Nature (IUCN) and International Trade in Endangered Species of Wild Fauna and Flora (CITES).

Botanical name	IUCN status	CITES
Aconitum heterophyllum Wall. ex. Royle	Endangered	Appendix II
Acorus calamus L.	Vulnerable	
Allium victorials L.	Endangered	
Angelica glauca Edgew.	Endangered	
Arnebia benthamii (Wall. ex. G. Don)	Endangered	
Betula utilis D.Don	Vulnerable	
Colchicum luteum Baker		Appendix II
Dioscorea deltoidea Wall. ex. Kunth		Appendix II
Inula racemosa Hook. F.	Critically endangered	
Jurinea dolomiaea Boiss.	Endangered	
Picrorhiza kurroa Royale ex. Benth	Endangered	
Podophyllum hexandrum (Royle) T.S Ying	Endangered	
Rheum webbianum Royle	Vulnerable	
Saussurea costa (Falc.) Lipsch.	Critically endangered	Appendix II
Trillium govanianum Wall. ex D.Don	Endangered	

Conclusion

The plant taxa in the temperate forests of Kashmir Himalayas are gathered by the locals for therapeutic uses in order to meet their basic medical needs. The wild plant species that are taken from these forests provide a low-cost and effective means of treating a range of ailments. In the current study a total number of 87 plant species from 52 families, are used to treat a variety of disorders. Urgent action is required to encourage the transmission of traditional knowledge. In order to maintain functioning ecosystems and the health of its inhabitants, it is necessary to reduce the factors that endanger biodiversity. Forest management strategies need to ensure that prospective threats (such as forest fragmentation and the invasion of exotic species) are dealt with before they become issues. The genders did not affect medicinal plants' knowledge, but age had a significant correlation. Most of the informants agreed that medicinal plants are under pressure due to overharvesting and lack of proper forest management practices. The number of medicinal plants reported from the study area indicates that the people in the study area possess rich traditional knowledge, and the vegetation of the temperate forests of Kashmir Himalayas constitutes rich diversity of medicinal plants. Overall, our study shows that local and indigenous forest knowledge and practices offer valuable insights and also a few possible solutions for addressing contemporary conservation and ecological challenges. Integrating these traditional perspectives with scientific knowledge can lead to more comprehensive and effective strategies for forest conservation and ecological transition.

Declarations

Author contributions: M.A. designed and supervised the entire study, M.A, conducted field surveys and collected data. M.A. R.A.M. and E.H. contributed in data arrangement, presentation and analysis. M.A. and E.H. played role in statistical interpretation of data and also wrote the first draft of the manuscript along with M.A., Later R.A.M. incorporated scientific input revised the manuscript.

Ethics approval and consent to participate: The ethical guidelines for the survey of rural and indigenous communities provided by International Society of Ethnobiology (available online: www.ethnobiology.net/whatwe-do/coreprograms/iseethics-program/code-of-ethics) were carefully followed. Prior to interviews, formal verbal consent (regarding data collection and publication) of each participant was taken. The PRA (Participatory rural appraisal) approach mentioned in the Kyoto Protocol (2017) was applied with the consent of the informant.

Consent for publication: Not applicable. Availability of data and materials: All data generated or analyzed during this study are included in this published article.

Availability of data and materials: The authors have no relevant financial or non-financial interests to disclose. **Funding:** No funding has been received for the study. Authors utilized their own resources for the completion of the study.

Competing interests: Not applicable

Funding: Not applicable

Acknowledgements

We acknowledge the cooperation of local councils for their immense support in data collection. In addition, we are thankful to all informants who contributed and shared their valuable traditional knowledge.

Literature cited

Abdulrahman M. 2021. Ethnobotany of medicinal plants with antidiabetic potentials in Northern Nigeria. Eurasian Journal of Science Engineering 7(1):46-58.

Albuquerque UP, Lucena RFP, Monteiro JM, Florentino ATN, Almeida CFCBR. 2006. Evaluating two quantative ethnobotanical techniques. Ethnobotany Research & Applications 4:51-60.

Altaf M, Umair M, Abbasi AR, Muhammad N, Abbasi AM. 2018. Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan. Journal of Ethnobiology Ethnomedicine 14(1):1-25.

Arshad M, Ahmed M, Ahmed E, Saboor A, Abbas A, Sadiq S. 2014. An ethnobiological study in Kala Chitta hills of Pothwar region, Pakistan: multinomial log it specification. Journal of Ethnobiology Ethnomedicine 10:13.

Asif M, Haq SM, Yaqoob U, Hassan M, Jan HA. 2021. A preliminary study on the ethno-traditional medicinal plant usage in tehsil "Karnah" of District Kupwara (Jammu and Kashmir) India. Ethnobotany Research and Applications 21:1-14.

Awan AA, Akhtar T, Ahmed MJ, Murtaza G. 2021. Quantitative ethnobotany of medicinal plants uses in the Jhelum valley, Azad Kashmir, Pakistan. Acta Ecologica Sinica 41(2):88-96.

Aziz MA, Ullah Z, Al-Fatimi M, De Chiara M, Sõukand R, Pieroni A. 2021. On the trail of an ancient Middle Eastern ethnobotany: traditional wild food plants gathered by Ormuri speakers in Kaniguram, NW Pakistan. Biology 10(4):302.

Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R. 2018. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. Journal of Ethnobiology and Ethnomedicine 14:1-16.

Bhat MN, Singh B, Surmal O, Singh B, Shivgotra V, Musarella CM. 2021. Ethnobotany of the Himalayas: safeguarding medical practices and traditional uses of Kashmir regions. Biology 10(9):851.

Blanco J, Carrière SM. 2016. Sharing local ecological knowledge as a human adaptation strategy to arid environments: Evidence from an ethnobotany survey in Morocco. Journal of Arid Environments 127:30-43.

Barreda VD, Palazzesi L, Tellería MC, Olivero EB, Raine JI, Forest F. 2015. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proceedings of the National Academy of Science 112(35):10989-94.

Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine 11:1-10.

Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Zayas CN. 2019. Pervasive human-driven decline of life on Earth points to the need for transformatve change. Science 366(6471):eaax3100.

Díaz-Reviriego I, Fernández-Llamazares A, Salpeteur M, Howard PL, Reyes-García V. 2016.Gendered medicinal plant knowledge contributions to adaptive capacity and health sovereignty in Amazonia. Ambio 45(3):263-275.

Farooq A, Amjad MS, Ahmad K, Altaf M, Umair M, Abbasi AM. 2019. Ethnomedicinal knowledge of the rural communities of Dhirkot, Azad Jammu and Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine 15(1):1-30.

Forman L, Bridson D. 1989. The herbarium handbook. Kew: Royal Botanic Gardens. 214

Gillani SW, Ahmad M, Zafar M, Haq SM, Waheed M, Manzoor M, Shaheen H, Sultana S, Rehman FU. Makhkamov T. 2024. An Insight into Indigenous Ethnobotanical Knowledge of Medicinal and Aromatic Plants from Kashmir Himalayan Region. Ethnobotany Research and Applications 28:1-21.

Golden CD, Fernald LC, Brashares JS, Rasolofoniaina BR, Kremen C. 2011.Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proceedings of the National Academy of Sciences 108(49):19653-19656.

Haq SM, Khuroo AA, Malik AH, Rashid I, Ahmad R, Hamid M, Dar GH. 2020. Forest ecosystem of Jammu And Kashmir State. In Biodiversity of the Himalayan: Jammu and Kashmir state: Springer: Singapore 191-208.

Haq SM, Khoja AA, Lone FA, Waheed M, Bussmann RW, Mahmoud EA, Elansary HO. 2023. Floristic composition, life history traits and phytogeographic distribution of forest vegetation in the Western Himalaya. Frontiers in Forests and Global Change 6:1169085.

Haq SM, Waheed M, Khoja AA, Amjad MS, Bussmann RW. Ali K. 2023a.A cross-cultural study of high-altitude botanical resources among diverse ethnic groups in Kashmir Himalaya, India. Journal of Ethnobiology and Ethnomedicine 19(1):12

Haq SM, Waheed M, Khoja AA, Amjad MS, Bussmann RW, Ali K, Jones DA. 2023b. Measuring forest health at stand level: A multi-indicator evaluation for use in adaptive management and policy. Ecological Indicators 150:110225.

Haq SM, Amjad MS, Waheed M, Bussmann RW, Ali K, Jones DA. 2023d. Vegetation communities and identification of indicator species in the riparian areas of Zabarwan mountain range in the Kashmir Himalaya. Environmental and Sustainability Indicators 100277.

Haq SM, Pieroni A, Bussmann RW, Abd-ElGawad AM. El-Ansary HO. 2023c. Integrating traditional ecological knowledge into habitat restoration: implications for meeting forest restoration challenges. Journal of Ethnobiology and Ethnomedicine 19(1):33.

Haq SM, Singh B. 2020a. Ethnobotany as a science of preserving traditional knowledge: Traditional uses of wild medicinal plants from District Reasi, J&K (North-western Himalaya), India. Botanical Leads Drug Discovery. https://doi.org/10.1007/978-981-15-5917-4_13.

Haq SM, Khoja AA, Lone FA, Waheed M, Bussmann RW, Casini R, Mahmoud EA, Elansary HO. 2023e. Keeping Healthy in Your Skin—Plants and Fungi Used by Indigenous Himalayan Communities to Treat Dermatological Ailments. Plants 12(7):1575.

Haq SM, Amjad MS, Waheed M, Bussmann RW, Proćków J. 2022b. The floristic quality assessment index as ecological health indicator for forest vegetation: A case study from Zabarwan Mountain Range, Himalayas. Ecological Indicators 145:109670.

Haq SM, Khoja AA, Waheed M, Pieroni A, Siddiqui MH, Bussmann RW. 2024. Plant cultural indicators of forest resources from the Himalayan high mountains: implications for improving agricultural resilience, subsistence, and forest restoration. Journal of Ethnobiology and Ethnomedicine 20(1):44.

Haq SM, Khoja AA, Waheed M, Siddiqui MH, Alamri S, Alfagham AT, Al-Humaid LA, Bussmann RW. 2024a. Food ethnobotany of forest resource in the high-altitude Himalaya Mountains: Enhancing the food sovereignty of ethnic groups. Forest Policy and Economics 164:103247.

Hamilton AC. 2004. Medicinal plants, conservation and livelihoods. Biodiversity Conservation. 13(8):1477-1517.

Howes MJR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, et al. 2020. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet 2:463-481.

Jabeen S, Arshad F, Harun N, Waheed M, Alamri S, Haq SM, Vitasović-Kosić I, Fatima K, Chaudhry AS. Bussmann RW, 2024. Folk Knowledge and Perceptions about the Use of Wild Fruits and Vegetables-Cross-Cultural Knowledge in the Pipli Pahar Reserved Forest of Okara, Pakistan. Plants 13(6):832.

Khoja AA, Haq SM, Majeed M, Hassan M, Waheed M, Yaqoob U, Bussmann RW, Alataway A, Dewidar AZ, Al-Yafrsi M. 2022. Diversity, ecological and traditional knowledge of Pteridophytes in the Western Himalayas. Diversity 14(8):628.

Khoja AA, Andrabi SAH, Mir RA. 2022a. Traditional medicine in the treatment of gastrointestinal diseases in northern part of Kashmir Himalayas. Ethnobotany Research and Applications 23:1-17.

Khoja AA, Andrabi SAH, Mir RA, Bussmann RW. 2022b. Ethnobiological uses of plant species among three ethnic communities in the administrative (Kupwara) of Jammu and Kashmir-India: A cross cultural Analysis. Ethnobotany Research and Applications 24:1-22.

Khoja AA, Andrabi SAH, Mir RA. 2023. An ethnobotanical study on across different ethnic groups from high-altitude areas of the North-western Himalayas. Asian Journal of Ethnobiology 6(1).

Khoja AA, Waheed M, Haq SM, Bussmann RW. 2024. The role of plants in traditional medicine and current therapy: A case study from North part of Kashmir Himalaya. Ethnobotany Research and Applications 27(5):1-23.

Kumar M, Rawat S, Nagar B, Kumar A, Pala NA, Bhat JA, Bussmann RW, Cabral-Pinto M, Kunwar R. 2021. Implementation of the use of ethnomedicinal plants for curing diseases in the Indian Himalayas and its role in sustainability of livelihoods and socioeconomic development. International Journal of Environment Research Public Health 18(4):1509.

Kunwar RM, Baral B, Luintel S, Uprety Y, Poudel RC, Adhikari B, Adhikari YP, Subedi SC, Subedi CK, Poudel P, Paudel HR. 2022. Ethnomedicinal landscape: distribution of used medicinal plant species in Nepal. Journal of Ethnobiology and Ethnomedicine 18(1):34.

Muhammad M, Badshah L, Shah AA, Shah MA, Abdullah A, Bussmann RW, Basit A. 2021. Ethnobotanical profle of some useful plants and fungi of district Dir Upper, Tehsil Darora, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 21:1-15.

Ojha SN, Tiwari D, Anand A, Sundriyal RC. 2020. Ethnomedicinal knowledge of a marginal hill community of Central Himalaya: diversity, usage pattern, and conservation concerns. Journal of Ethnobiology and Ethnomedicine 16(1):1-21.

Porcher V, Carrière SM, Gallois S, Randriambanona H, Rafidison VM, Reyes-García V. 2022. Growing up in the Betsileo landscape: Children's wild edible plants knowledge in Madagascar. PloS One 17(2):e0264147.

Quesada M, Sanchez-Azofeifa GA, Alvarez-Anorve M, Stoner KE, Avila-Cabadilla L, Calvo-Alvarado J, Sanchez-Montoya G. 2009. Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management 258(6):1014-1024.

Rokaya MB, Münzbergová Z, Timsina B. 2010. Ethnobotanical study of medicinal plants from the Humla district of western Nepal. Journal of Ethnopharmacology 130(3):485-504.

Sajad S, Haq SM, Yaqoob U, Calixto ES, Hassan M. 2021. Tree composition and standing biomass in forests of the northern part of Kashmir Himalaya. Vegetos 1-10.

Sher H, Inamuddin I, Khan Z Bussmann RW, Rahman IU. 2020. Medicinal plant diversity of Hindubaig Mountain, Lalku Valley, District Swat, Pakistan. Ethnobotany Research and Applications 20:1-13.

Simsek I, Aytekin F, Yesilada E, Yildirimli Ş. 2004. An ethnobotanical survey of the Beypazari, Ayas, and Güdül district towns of Ankara Province (Turkey). Economic Botany 58(4):705-720.

Tariq A, Mussarat S, Adnan M, Abd_Allah EF, Hashem A, Alqarawi AA, Ullah R. 2015. Ethnomedicinal evaluation of medicinal plants used against gastrointestinal complaints. BioMed research international.

Tenzin S, Tendar P. 2017. Wetland medicinal plants of eastern Himalayan Highlands of Gasa District, Bhutan. Journal of Ethnobiology and Ethnomedicine 13(1):45.

Uprety Y, Asselin H, Boon EK, Yadav S, Shrestha KK. 2010. Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. Journal of Ethnobiology Ethnomedicine 6:3.

Wali S, Jan HA, Haq SM, Yaqoob U, Bussmann RW, Rahim F. 2021. The Traditional phyto-recipes used to cure various ailments by the local people of ShishiKoh valley, Chitral, Pakistan. Ethnobotany Research and Applications 22:1-32.

Wagh VV, Jain AK. 2013. Status of threatened medicinal plants of Jhabua district, Madhya Pradesh. Annals of Plant Science 2:395-400.

Waheed M, Haq SM, Arshad F, Bussmann RW, Iqbal M, Bukhari NA, Hatamleh AA. 2022. Grasses in semi-arid lowlands community composition and spatial dynamics with special regard to the influence of edaphic factors. Sustainability 14(22):14964.

Waheed M, Haq SM, Jameel MA, Arshad F, Bussmann RW. 2023. Documentation of ethnomedicinal plants used by the people living in reserved forests of semi-arid region Punjab Pakistan. Ethnobotany Research and Applications 26:1-17.

Waheed M, Haq SM, Fatima K, Arshad F, Bussmann RW, Masood FR, Alataway A, Z. Dewidar A, F. Almutairi K, Elansary HO, Kassem HS. 2022a. Ecological distribution patterns and indicator species analysis of climber plants in changa manga forest plantation. Diversity 14(11):988.

Waheed M, Haq SM, Arshad F, Bussmann RW, Pieroni A, Mahmoud EA, Casini R, Yessoufou K, Elansary HO. 2023a. Traditional Wild Food Plants Gathered by Ethnic Groups Living in Semi-Arid Region of Punjab, Pakistan. Biology 12(2):269.

Waheed M, Haq SM, Arshad F, Jameel MA, Siddiqui MH, Bussmann RW, Manshoor N, Alamri S. 2023b. Where Will Threatened *Aegle marmelos* L., a Tree of the Semi-Arid Region, Go under Climate Change? Implications for the Reintroduction of the Species. Land 12(7):1433.

Waheed M, Haq SM, Arshad F, Bussmann RW, Ali HM, Siddiqui MH. 2023c. Phyto-ecological distribution patterns and identification of alien invasive indicator species in relation to edaphic factors from semi-arid region. Ecological Indicators 148:110053.