

# Quantitative ethnobotanical analysis of ethnomedicinal flora used by the Eastern Himalayan Indigenous Communities of Assam, India

Kajoli Begum, Wishfully Mylliemngap and Nicolee Lyngdoh

#### Correspondence

Kajoli Begum<sup>1,2</sup>, Wishfully Mylliemngap<sup>1\*</sup> and Nicolee Lyngdoh<sup>3</sup>

<sup>1</sup>North-East Regional Centre, G.B. Pant National Institute of Himalayan Environment, Itanagar-791113, Arunachal Pradesh, India

<sup>2</sup>Department of Environmental Sciences, Mizoram University, Tanhril, Aizawl, Mizoram, India

<sup>3</sup>Biodiversity Research Centre, Mizoram University, Tanhril, Aizwal, Mizoram, India

\*Corresponding author: wishm2015@gmail.com

Ethnobotany Research and Applications 27:43 (2024) - http://dx. doi.org/10.32859/era.27.43.1-39 Manuscript received: 05/06/2024 - Revised manuscript received: 25/09/2024 - Published: 27/09/2024

#### Research

## **Abstract**

Background: For generations, indigenous communities have used plants as ethnomedicinal remedies, offering affordable treatments where modern medicine is scarce, especially in remote areas. However, this knowledge is eroding due to dwindling belief and interest among future generations, and lack of comprehensive documentation. This review aims to document the ethnomedicinal use of therapeutic flora by indigenous communities in Assam's hilly districts through a critical examination of selected literature. Investigating the ethnobotanical expertise of these tribes may unveil insights for novel pharmaceuticals and preserving these crucial traditional practices.

Methods: A total of 12 research papers published from 2004 to 2020 were analyzed to study the use of ethnomedicinal plants by tribal communities in Dima Hasao and Karbi Anglong districts of Assam. Data analysis involved Family Use Value (FUV), Use Value of species (UV), Informant Consensus Factor (FIC), Fidelity Level (FL) and plant part used (%) using Microsoft Excel 2013.

Results: The findings revealed the utilization of 273 species of ethnomedicinal plants from 208 genera and 83 families, addressing 10 broad disease categories and 91 specific types of ailments. The majority of remedies consisted of plant leaves (35%) with Morinda angustifolia Roxb. being the most commonly prescribed species by local herbalists (UV=5.00).

Conclusions: The study highlighted that tribal communities hold extensive knowledge and reliance on traditional medicine despite modern healthcare advancements. Plants exhibiting higher UVs, UVf, FL and FIC are crucial for conservation prioritization. This documented knowledge can guide further research potentially leading to discovering bioactive compounds for modern medicines.

Keywords: Dima Hasao, Karbi Anglong, Ethnomedicinal plants, Indigenous Communities, Diseases.

## **Background**

Throughout the ages, plant resources have been an integral part of human culture. The knowledge of plant wealth has played a vital role in promoting human well-being, with plants serving as remedies for various ailments across history and around the world for millennia (Haq et al. 2023). The tapestry of intricate harmony has woven together nature and indigenous communities, meeting their primal needs in the guise of sustenance, attire, and abode. Amidst this symphony of symbiosis, these communities have developed their indigenous knowledge systems with respect to curing of diseases and ailments that has been curated across the ages (Saikia & Parkash, 2016). Humanity's deep knowledge of medicinal plants has evolved through centuries of battling illnesses, leading to the discovery of healing properties hidden in the barks, seeds, fruit bodies, and other botanical marvels (Ahmad et al. 2021). Plants hold paramount significance in ethnomedicine for indigenous populations, relying extensively on traditional herbal remedies due to their profound belief in the efficacy of plant-based cures (Niazi & Monib, 2023).

The boon of age-old remedies, with their cost-effective and accessible healing properties, thrives among distant tribal communities residing in diverse hinterlands, where access to pricey contemporary medicines remains scarce (Terangpi et al. 2014). Inscriptions narrating on how to identify and address the social, cultural, and economic factors that impact health issues are often transmitted orally from generation to generation (Gulzar et al. 2019).

The Indian traditional medicinal systems also detailed the use of over 700 plant herbs in curing diseases in Atharvaveda, Charak Samhita and Shusrut Samhita (Dash & Sharma, 2008). These references bear a testament to the indigenous traditional knowledge that have been in use for ages which also highlights the importance of plants as a potential source of medicine.

The World Health Organization reported that approximately 80% of the global population relies on traditional medicine, with 60% of rural Indians using herbal treatments, emphasizing the significance of ethnomedicinal information (Singh, 2022). In India, about 65% of the total population mainly depends on traditional therapy for their health care needs (Sen & Chakraborty, 2015) as it is bountiful in medicinal plants and exhibits a high diversity of ethnomedicinal wealth (Prakash et al. 2008). In a larger context, "ethnomedicine" gracefully fuses the essence of "ethno" and "medicine." "Ethno," intertwined with its kin "ethnic," invokes a sense of shared lineage among individuals with a unique cultural identity, while "medicine" embodies the vast realm of wisdom and concepts encompassing health and well-being (Sonowal, 2018).

Ethnomedicine covers healthcare systems that include beliefs and practices relating to diseases and health, which are products of indigenous cultural development and are not explicitly derived from a conceptual framework of modern medicine (Iwu, 2002) whereas Chattopadhyay (2010), defined Ethnomedicine or ethnic medicine or "folk medicine" as the medical systems based on the cultural beliefs, the totality of health knowledge, values and practices of specific ethnic groups or particular culture and concern about the care and treatment of illness including all the clinical and non-clinical activities that relate to their health needs. Hence, it can be attributed that the fusion of botanical wonders and ancestral lore constitutes the very essence of ethnomedicinal panaceas. The north-eastern part of India is a biodiversity hotspot with approx. 145 tribal communities inhabiting this region. Around 1350 plant species have been identified as being employed in the region traditional medicinal preparations (Tamang et al. 2023).

Across the annals of time, a profusion of scholarly endeavors has delved into the ethnomedicinal explorations of the tribal enclaves in Assam such as on Boro Kacharis (Basumatary et al. 2014), Koch Rajbangshis (Deka & Nath, 2015), Hmar (Nath & Choudhury, 2009), illuminating the use of ethnomedicines as the primary healthcare measure over modern medicines, which indicates the use of ethnomedicines as the norm in tribal population. According to Census of India (2011), the cumulative tribal population of Assam reaches a count of 3,884,371, with Karbi Anglong contributing 5,38,738 and Dima Hasao accounting for 1,51,843. A significant proportion of this community, living in far-flung rural realms, remains bereft of convenient ingress to contemporary pharmaceuticals. The resulting void engendered by such inaccessibility has compelled the reliance on ethnomedicines as the sole recourse for remedying afflictions and maladies. The tribal communities find themselves profoundly intertwined with the wealth of ancestral plant knowledge, an invaluable legacy that has flourished through generations of experiential wisdom and time-honored customs (Lalramnghinglova & Jha, 2000). Due to urbanization and modernization, the treasure trove of ethnomedicinal wisdom cherished by the tribes are passed down via oral tradition through ages without much written records which highlights the plight of erosion of this traditional knowledge (Rout et al. 2009).

The current exposition endeavors to chronicle the myriad botanical wonders embraced by the indigenous dwellers of Dima Hasao and Karbi Anglong in Assam, India. Moreover, this manuscript astutely quantifies the profusion of ethnomedicinal flora and the wide array of maladies adroitly addressed by these remarkable communities.

## **Materials and Methods**

#### Study area

The ethereal embrace of the Eastern Himalayan realm in the state of Assam enshrines the majestic districts of Karbi Anglong (unidivided) and Dima Hasao. Both the districts were constituted under the Sixth Schedule of the Indian Constitution owing to its significant proportion of tribal population with their own unique cultural and linguistic identities to grant autonomy over their administrative set-up which are in line with their traditional systems. They are administered as Karbi Anglong Autonomous Council (KAAC) and North Cachar Hills Autonomous Council (NCHAC) (Fig. 1). Karbi Anglong lies between 25°32′N to 26°36′N latitudes and 92°10′E to 93°50′E longitudes. In 2016, the district was split into two districts, namely Karbi Anglong and West Karbi Anglong with their headquarters at Diphu and Hamren, respectively. Many tribes such as Karbi, Dimasas, Bodos, Hmar, Tiwas, Garos, Khasi, Chakmas and Rengma Nagas inhabit this region. It has a total geographical area of 10,434 km² (undivided), which accounts for 13.3% of Assam (Census 2011). The total tribal population of the district is 5,38,738 persons which accounts for 56% of the total population of the district (Census 2011). The total forest cover of the district is 7, 833.91 km² that accounts for 75.08 % of the total geographical area of the district (FSI 2021). The area mostly consists of undulating and hilly terrain with numerous rivers and streams.

Dima Hasao lies between 24°57′N to 25°43′N latitude and 92°32′E to 93°28′E longitude with its headquarters at Haflong. It occupies a total geographic area of 4,888 km2. Topographically, the district forms a rugged hilly country constituting the eastern flanks of the Jaintia Hill of Meghalaya and the northern flanks of the Borail range.

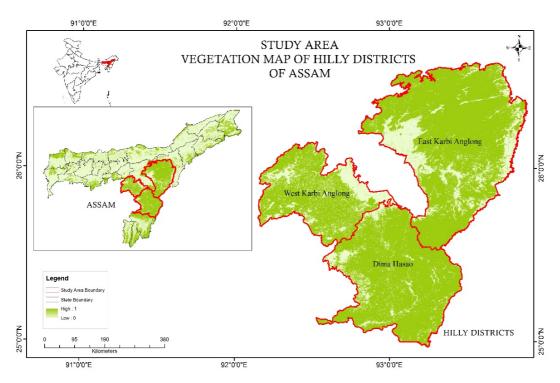



Figure 1. Location map of the study area

## Data collection

For the purpose of the study, qualitative and empirical data pertaining to ethnomedicinal plants used by the indigenous tribal communities of Dima Hasao and Karbi Anglong districts of Assam were collected through an extensive literature review from online databases like Academia.edu, ResearchGate, Semantic Scholar, Google scholar etc. by using keywords like 'ethnomedicine', 'tribes of Dima Hasao and Karbi Anglong'. A total of 11 research papers published between the years 2004 to 2020 was found to report on the ethnomedicinal plants used by the tribal communities of these two districts. The accepted botanical names and author citations of the plant species mentioned in the original papers were updated by consulting the World Flora Online (www.wfoplantlist.org).

## **Statistical Analysis**

In this study, the concept of pseudo-informant was used instead of informants, as described by Phumthum et al. (2018) and Tardío and Pardode-Santayana (2008). The pseudo-informants were the authors of the published papers used as source of data/information in this study. The results of the ethnobotanical survey were analyzed using the Family Use Value (FUV), Use Value (UV), Informant Consensus Factor (FIC) and Fidelity Level (FL). All analysis was carried out with Microsoft Excel 2013.

Family use value (FUV): The FUV identify the significance of plant families. It is an index of cultural importance which can be applied in ethnobotany to calculate the value of biological plant taxon. Phillips and Gentry (1993) introduced a formula to illustrate the significance of botanical species in cultural contexts. The modified equation of Tardío and Pardo-de-Santayana (2008) was used to calculate the family Use Values (UVf) as presented below:

$$UVf = \sum Uf / Nf$$

Where, Uf represents the number of uses mentioned by all pseudo-informants for a given family f (use reports forthe family f), and Nf is the total number of pseudo-informants that reported family f.

**Use Value (UV):** The use value of species (UV) is a quantitative method that demonstrates the relative importance of species known locally. The modified equation of Tardío and Pardo-de-Santayana (2008) was also used to calculate use value of species (UVs) as presented below:

Where Ui is the number of use reports mentioned by all pseudo-informant (i) and N is the total number pseudo-informants interviewed for agiven plant species.

**Informant Consensus Factor (FIC):** In addition, the Informant Consensus Factor (FIC) was calculated following Heinrich et al. (1998) presented as:

$$FIC = (Nur-Nt) / (Nur-1)$$

Where, Nur is the number of use-reports in each category and Nt is the number of species used in each category. The value of FIC ranges between 0 to 1, indicating a high value close to 1 as few species are used by a large number of people and vice versa.

**Fidelity Level (FL):** Fidelity level (FL) is the percentage of informants who mentioned the uses of certain plant species to treat a particular ailment in the study area. The FL index is calculated using the formula of Friedman et al. (1986) which presented as:

Where Ip is the number of pseudo-informants who independently indicated the use of a species for the same major ailment and Iu the total number of pseudo-informants who mentioned the plant for any major ailment.

## **Results and Discussion**

## Screening of research papers from 2004 to 2020

The studies taken into consideration in this present review have reported 273 ethnomedicinal plants used against a wide range of ailments and diseases by the tribal communities of Karbi Anglong and Dima Hasao districts of Assam (Appendix I). A total of 11 studies were reviewed, out of which 10 studies were based on a particular tribe while one study was carried out on 3 tribes taken altogether. Six studies reported on ethnomedicinal plants of Karbi tribe (Teron & Borthakur 2013, Terangpi et al. 2014, Teron 2019, Bhattacharjee 2018, Rengma et al. 2018, Baidya et al. 2020) while one study each on other tribes, viz., Dimasa (Rout et al. 2009), Lushai (Sajem & Gosai 2010), Bodo Kachari (Basumatary et al. 2014), Zeme Nagas (Tamuli & Saikia 2004), Jaintia (Sajem & Gosai 2006) and Karbi, Pnar, Tiwa (Teron 2019). The aforementioned studies employed group discussion, personal interview, focus group discussion and participant observation as the field survey methods in the original research (Table 1).

Table 1. Checklist of selected published research papers on ethnomedicinal plants used by the indigenous tribal communities of Dima Hasao and Karbi Anglong, India

| Ethnic tribes No. of species |     | Informant characteristics                                 | Field survey methods                                                           | Authors                    |  |
|------------------------------|-----|-----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|--|
| Bodo Kachari                 | 44  | Traditional healers and village headman                   | Interview and observation                                                      | Basumatary<br>et al. 2014  |  |
| Dimasa                       | 47  | Traditional healers and jhum cultivators                  | Semi structured questionnaires, group discussion and informal interviews       | Rout et al. 2009           |  |
| Jaintia                      | 39  | Village headman, educated medicine man, cultivators       | Semi structured questionnaires                                                 | Sajem & Gosai,<br>2006     |  |
| Karbi                        | 38  | Traditional healers                                       | Pre-structured questionnaire interview                                         | Baidya et al.<br>2020      |  |
| Karbi                        | 54  | Elderly person                                            | Unstructured interviews, group discussions and questionnaire-based interviews  | Teron &<br>Borthakur, 2013 |  |
| Karbi                        | 27  | Elderly person                                            | Open structured interview                                                      | Bhattacharjee,<br>2018     |  |
| Karbi                        | 26  | Elderly person                                            | Open structured interview                                                      | Rengma et al.<br>2018      |  |
| Karbi                        | 28  | Elderly person                                            | Semi structured interview and focus group interview                            | Terangpi et al.<br>2014    |  |
| Karbi, Tiwa<br>and Pnar      | 201 | Traditional healers                                       | Group discussion, semi-<br>structured interview and<br>participant observation | Teron, 2019                |  |
| Lushai                       | 31  | Village headman and traditional healers                   | Semi-structured questionnaires and group discussions                           | Sajem & Gosai,<br>2010     |  |
| Zeme Nagas                   | 33  | Village headman, elderly person and educated medicine men | Interview and observation                                                      | Tamuli & Saikia,<br>2004   |  |

## Ethnomedicinal plant diversity, habit, and plant parts used by the tribes

For the purpose of the study, the repetitive plant species were removed and it enlisted a total of 273 species of ethnomedicinal plants belonging to 83 families. The families with the highest number of species were Lamiaceae (16 species) and Asteraceae (16 species), followed by Leguminaceae and Solanaceae (14 species each), Zingberaceae and Acanthaceae (11 species), Rutaceae, Poaceae and Araceae (10 species), Cucurbitaceae (9 species), Apocynaceae and Malvaceae (7 species), Euphorbiaceae, Polygonaceae and Amaranthaceae (6 species), Plantaginaceae, Rubiaceae and Begoniaceae (5 species) and Phyllanthaceae (4 species). The remaining 33 families were represented by a single species, whereas 21 families represented by two species and 10 families by three species each.

Amidst the rich array of plant families revered for their medicinal properties in the hilly area, it is the Lamiaceae and Asteraceae family that reigns supreme, casting its botanical spell over the hilly landscape. This reign is not co-incidental but rather a reflection of the family's exceptional ability to thrive across varied ecosystems, supported by a remarkable diversity of species rich in bioactive compounds (Tugume et al. 2016). The ethnomedicinal plants have been categorized into ten major groups of diseases and ailments which comprises of 91 specific diseases that are prevalent and treated by the eight tribal communities of Karbi Anglong and Dima Hasao district of Assam. The enlisted ethnomedicinal plants contain the botanical name, family, IUCN status, parts used, diseases cured and name and location of the tribes (Appendix I). The review reported that 50.45% of the ethnomedicinal plants were herbs, followed by trees (22.38%), shrubs (14.80%), and climbers (11.91%) {Fig 2(a)}. Most of the remedies were prepared from leaves (35%), followed by fruits (12.53%), roots (10.44%), stems (6.52%), barks (5.48%), whole plant (5.22%), rhizomes (4.70%), shoots (4.70%), seeds (3.91%), flowers (3.65%), tubers (2.61%) and twigs (2.08%) {Fig 2(b)}. The IUCN-based conservation status of the ethnomedicinal plants revealed two Endangered, three Vulnerable, three Critically Endangered, three Near Threatened, one extinct in wild, seven data deficient, 79 least concerned and 179 not evaluated {Fig 2(c)}.

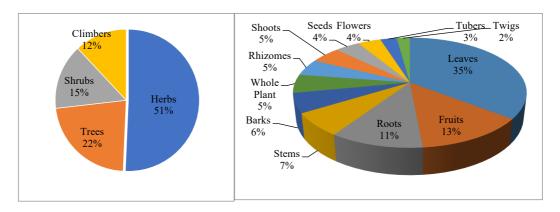



Figure 2(a). Ethnomedicinal plants habit

Figure 2(b). Ethnomedicinal plants part used (%)

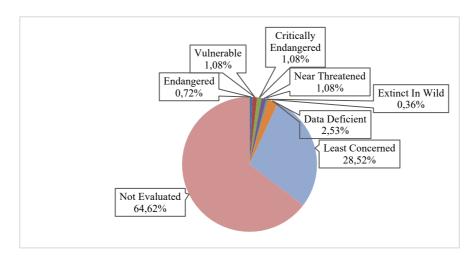



Figure 2(c). Conservation status (IUCN) of enlisted ethnomedicinal plants

## Species utilization pattern against different disease categories

The present review revealed that a total of 91 different types of ailments have been traditionally treated using different plant species. However, there are ten common categories for illnesses that every single disease falls under based on user reports (Table 2). Out of the reported species, 14 species were utilized to treat respiratory conditions, 18 species were used to treat skeletomuscular pain, 63 for treating dermatological disorder, 19 for treating Odontological disorders, 94 for gastrointestinal disorders, 148 for general health disorders, 16 for nose, eye, ear and throat problems, 50 species for Gynecological disorders, 16 to treat the cardio-vascular disorder and 16 were used to treat Orthopedic disorders (Table 2).

#### Cardiovascular disorders

Cardiovascular diseases are an array of diseases that affect the cardiovascular system i.e., the heart and the blood vessels, which are characterized as the most common diseases of the heart and blood vessel and the brain (Nason 2007). Blood pressure, diabetes, hypertension, blood coagulant and chest pain are included in this category (Table 2). Under this category, 16 species belonging to 14 families were found to be used for the treatment of cardiovascular disease (Fig. 3) and this category holds the lowest useful category (3%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). The review showed the use of eight species for treatment of blood pressure, seven species for treatment of diabetes, two species for treatment of chest pain and one species for treatment of hypertension. However, one species may have more than one treatment in the respective category. *Catharanthus roseus* (L.) G.Don, *Clerodendrum infortunatum L., Clerodendrum glandulosum* Lindl. were found to be used for high blood pressure and diabetes treatment. The use of *Alpinia nigra* (Gaertn.) Burtt, *Lablab purpureus* (L.) Sweet and *Momordica charantia* L. for the chest pain treatment was found to be used by the tribes of Zeme Nagas and Bodo Kacharis in Dima Hasao and Karbi Anglong district (Basumatary et al. 2014, Baidya et al. 2020). The use of *Catharanthus roseus*, *Clerodendrum infortunatum* and *Clerodendrum glandulosum* for the treatment of diabetes and *Momordica charantia* as an analgesic for chest pain is also found in other parts of the world (Jadeja et al. 2011, Bhutkar & Bhise 2012, Barman et al. 2013, Patel et al. 2010).

#### **Orthopedic disorders**

It is seen that orthopedic disorders have the largest burden in the developing world which constitutes more than three-fourths of the world's population (Aluede et al. 2012). Bone fracture constitutes a health issue around the globe which pose an economic burden (Court-Brown & Caesar 2006, Polinder et al. 2016). This category of disease includes bone fracture, rheumatism and joint pain (Table 2). In this category, 16 species belonging to 11 families were found to be used as an ethnomedicinal source for treatment of orthopedic disorders (Fig. 3) and this category also holds the lowest useful category (3%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). Altogether five species were found to be used for the treatment of joint pain, seven species for treatment of bone fracture and four species for treatment of rheumatism. *Cissus quadrangularis* L. and *Hydrocotyle javanica* Thunb. were found to be used for treating bone fracture by Bodo Kachari and Zeme tribe (Basumatary et al. 2014, Tamuli & Saikia 2004). The Karbi and Zeme tribe uses *Amblovenatum opulentum* J.P. Roux and *Momordica charantia* for the treatment of rheumatism (Teron 2019, Tamuli & Saikia 2004). The use of *Cissus quadrangularis* in healing process of fractured bone has been reported by Brahmkshatriya et al. (2015). The leaves of *Momordica charantia* are also widely used for rheumatism therapy (Polito et al. 2016 a).

#### **Respiratory disorders**

Respiratory diseases affect both adults and children which is constantly increasing. World Health Organization (WHO) and other agencies reported that around 400 million people in the world are suffering with mild to moderate conditions of asthma and respiratory disorder alone (Shukla et al. 2020). This category of disease includes bronchitis, asthma and sinusitis (Table 2). In this category, 14 species belonging to 11 families were found to be used for treatment of respiratory disorders (Fig. 3) and holding the lowest useful category (3%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). Altogether six species were found to be used for the treatment of asthma, four species for treatment of sinusitis, two species for treatment of bronchitis and rest of the species were found to be used against pharyngitis, lung tonic, other breathing problems etc. It was seen that *Justicia adhatoda* L., *Alpinia galanga* (L.) Willd. and *Alstonia scholaris* (L.) R. Br. were used by the Zeme tribe for the treatment of bronchitis and asthma (Tamuli & Saikia 2004). *Catharanthus roseus* (L.) G. Don, *Centella asiatica* (L.) Urb. and *Clerodendrum infortunatum* were used by the Jaintia and Lushai tribe for the treatment of asthma (Sajem & Gosai 2006, Sajem & Gosai 2010). The Karbis were also found to use *Justicia adhatoda* for curing sinusitis (Bhattacharjee 2018, Baidya et al. 2020). The rhizomes of *Alpinia galanga* are widely used in the traditional treatment of bronchitis in tropical areas of south and east India (Seo et al. 2013). Gupta et al. (2008) reported the use of *Clerodendrum infortunatum* in the treatment of bronchitis, asthma, fever, etc. in Indian folk medicine.

## **Gynecological disorders**

Gynecological disorders are the leading cause of morbidity and health care expenditures in women (Mishra et al. 2013). The various factors influencing gynecological problems include menstrual hygiene, sex hygiene, socio-economic status, cultural habits and educational status of women (Beaulah 2018). Uterine disorder, abortion, leucorrhea, menstrual cramps, prolapsed genital, painful urination and white discharge are considered under this category (Table 2). In this category, 50 species belonging to 35 families were found to be used for treatment of gynecological disorders (Fig. 3) and this category holds nine percent among the entire 10 disease category mentioned in the major traditional use (Fig. 4). Altogether three species were found to be used for the treatment of uterine disorder and one species were found to be used for the treatment of leucorrhoea and rest species for the treatment of abortion, menstrual cramps, prolapsed genital, painful urination and white discharge. The leaves of *Cycas revoluta* Thunb and *Erythropalum scandens* Blume were found to be used by the Lushai and Zeme tribe for uterine disorders (Sajem & Gosai 2010, Tamuli & Saikia 2004). The leaves and stem of *Plumbago zeylanica* L., *Aloe vera* (L.) Burm.f., *Justicia adhatoda* and *Rubus alceifolius* Poir were found to be used for the treatment of abortion, leucorrhea, prolapsed genital and white discharge by Karbi and Bodo Kachari tribe (Terangpi et al. 2014, Basumatary et al. 2014). The root powder of *Plumbago zeylanica* L. has been reported to initiate abortion upon its application to ostium uteri by Choudhary et al. (1982). The juice of *Aloe vera* was also reported to be highly effective on the treatment of leucorrhea by (Dhinagari 2011).

## **Gastrointestinal disorders**

Gastrointestinal disorders are highly prevalent and almost 40% of people at one time or two-third of these people are affected by this disorder which includes irritable bowel syndrome, functional dyspepsia, or functional constipation (Black *et al.* 2020). Cholera, constipation, intestinal worms, dyspepsia, dysentery, diarrhea, indigestion, piles, flatulence, stomachache and ulcer are included in this category (Table 2). In this category, 94 species belonging to 47 families were found to be used for treatment of gastrointestinal disorders (Fig. 3) and this category holds second highest percentage (22%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). The review revealed that 42 species were used for the treatment of dysentery, followed by 12 species for constipation, nine species for diarrhea, seven species for indigestion, six

species for the treatment of piles, four species for treatment of dyspepsia and ulcer, one species for flatulence, one species each for cholera and rest of the species are used against gastritis and other gastrointestinal disorders. The use of *Centella asiatica* (L.) Urb. was found to be used for the treatment of stomachache, indigestion, flatulence and dysentery by the Jaintia and Zeme tribe (Sajem & Gosai 2006, Tamuli & Saikia 2004). While *Drymaria cordata* (L.) Willd. ex Schult., *Garcinia pedunculata* Roxb. ex Buch. -Ham., *Paederia foetida* L. and *Psidium guajava* L. were found to be used for the treatment of stomach ache and dysentery by Karbi, Bodo Kachari and Tiwa tribes (Teron 2019, Rengma *et al.* 2018, Basumatary *et al.* 2014, Teron 2019). The flower bud, bark and shoot of *Hibiscus rosa-sinensis* L. was found to be used for the treatment of three gastrointestinal disorders such as constipation, stomachache and dysentery by the Bodo Kachari and Karbi tribe (Basumatary *et al.* 2014, Baidya *et al.* 2020). *Curcuma longa* L., *Mikania micrantha* Kunth, *Oxalis debilis* var. *corymbosa* (DC.) Lourteig and *Persicaria chinensis* (L.) H. Gross was also found to be used for the treatment of dyspepsia by the Jaintia and Lushai tribes (Sajem & Gosai 2006, Sajem & Gosai 2010) while only the root of *Tragia involucrata* L. was found to be effective against intestinal worms by the karbi tribe (Teron 2019). Use of *Paederia foetida* for effective treatment of stomach ache and dysentery was also reported by Patel (2017). The potential of *Hibiscus rosa-sinensis* for its use in the treatment of constipation and diarrhea was also reported by Gilani *et al.* (2005). The potential of *Tragia involucrata* L. as an anthelminthic agent was reported by Patil (2015).

#### **Odontological disorders**

As per 2017 Global Disease Burden Study it is estimated that nearly 3.5 billion people suffer from oral disease which is almost 50% of the world's population (Dye 2017). Dental cavities, toothache and gum bleeding are included in this category (Table 2). In this category, 19 species belonging to 11 families were found to be used for treatment of odontological disorders (Fig. 3) and this category also falls under the lowest useful category (3%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). It was found that three species were used in the treatment of dental cavities, 15 species for toothache and one species for gum bleeding and cavity building. *Ageratum conyzoides* (L.) L., *Scoparia dulcis* L. and *Tabernaemontana divaricata* (L.) R.Br. ex Roem. & Schult. were found to be used for the treatment of dental cavities by the Karbi and Lushai tribe (Baidya *et al.* 2020, Sajem & Gosai 2010), while the stem of *Jatropha curcas* L. and leaves of *Premna mollissima* Roth. were found to be used for the treatment of toothache by the Karbi tribe (Rengma *et al.* 2018, Sajem & Gosai 2010). Only a single species, *Plantago major* L. was found to be used in treatment of gum bleeding by the Lushai tribe (Sajem & Gosai 2010). *Ageratum conyzoides* in combination with *Breynia nivosus* W. Bull was found to be effective in treatment against dental cavities in Nigeria (Amadi *et al.* 2007) while *Tabernaemontana divaricata* was also reported to be effective against dental cavities (Unissa *et al.* 2018). Yernazarova *et al.* (2019) also reported the effectiveness of *Plantago major* against gum bleeding.

## Musculoskeletal disorders

Musculoskeletal disorders are a widespread and increasing occupational health problems in the workplace worldwide (Luan et al. 2018). The musculoskeletal disorders are generally seen to occur due to excessive repetition, awkward postures and heavy lifting (Da Costa 2010). The International Labour Organization (ILO) and the World Health Organization (WHO) regard MSDs as a work-related disease, which is also referred to as a "new epidemic" that should be researched and solved (Luan et al. 2018). Arthritis, muscle ache, joint pain, muscle stiffness, leg pain and body ache are included under this category (Table 2). In this category, 18 species belonging to 16 families were found to be used for treatment of musculoskeletal disorders (Fig. 3) and this category holds only 3% among the entire 10 disease category mentioned in the major traditional use (Fig. 4). The roots and leaves of *Paederia foetida* L. were found to be used for the treatment of muscle stiffness, body ache and joint pain by the Karbi tribe (Baidya et al. 2020). *Aristolochia saccata* Wall., *Murraya paniculata* (L.) Jack, *Olax acuminata* Wall. ex Benth., *Piper longum* L., *Pogostemon linearis* (Benth.) Kuntze, *Urena lobata* L. were found to be used for the treatment of body ache by the Bodo Kachari, Karbi, Zeme and Lushai tribe (Basumatary et al. 2014, Teron 2019, Tamuli & Saikia 2004, Sajem & Gosai 2010) whereas the rhizome of *Zingiber officinale* Roscoe was used against arthritis by the Bodo Kachari tribe (Basumatary et al. 2014). The use of *Paederia foetida* in the treatment of body ache was reported by Soni et al. (2013). The therapeutic role of *Zingiber officinale* in treatment against rheumatoid arthritis was reported by Al-Nahain (2014).

## **Dermatological disorders**

The prevalence of skin diseases is the fourth most common cause of all human disease that affects one-thirds of the world's population but is grossly undermined (Karimkhani *et al.* 2017, Hay *et al.* 2014). Burn, fungal skin disease, skin itching, leprosy, ring worm, skin disease, allergy and small pox are included in this category (Table 2). In this category, 63 species belonging to 37 families were found to be used for treatment of dermatological disorders (Fig 3) and this category is the third highest useful category (16%) among the entire 10 disease category mentioned in the major traditional use (Fig 4). In this category

20 species were found to be used in the treatment of skin disease, four species were found to be used in the treatment in burn and skin itch, two species for the treatment of allergy, three species for the treatment of boils, 19 species for treating skin cuts and wounds, two species for the treatment of fungal skin disease and nine species for treating skin worms diseases, five species for treating leprosy and three species for the treatment of pox. However, one species may have more than one treatment in the respective category. The leaves bark and root of *Senna tora* (L.) Roxb. were reported to be used in the treatment of skin diseases, ring worms and leprosy by the Bodo Kachari and Jaintia tribes (Sajem & Gosai 2006, Basumatary *et al.* 2014). While *Argemone mexicana* L., *Arundo donax* L., *Senna tora* and *Dysoxylum gotadhora* (Buch.-Ham.) Mabb. reported single use against treatment of leprosy by Bodo Kachari and Karbi tribes (Basumatary *et al.* 2014, Sajem & Gosai 2006, Teron 2019). The leaves and root of *Eupatorium chinense* L. and *Mimosa pudica* L. were reported to be used against fungal skin disease by the Zeme tribe (Tamuli & Saikia 2004). Aggarwal *et al.* (2011) reported the use of *Senna tora* against leprosy, ringworm infection and skin diseases while *Argemone mexicana* was reported to be effective against leprosy and other skin diseases (Brahmachari *et al.* 2013). The anti-fungal property of *Mimosa pudica* was also reported against selected human pathogens by Vijayalakshmi & Udayakumar (2018).

#### **ENT disorders**

Ear Nose Throat (ENT) disorders comprise of diseases of ear, nose and throat and constitute a serious public health problem that affects all age groups (WHO 2008). These disorders are mostly overlooked as large number of patients are affected at any given time and also due to their non-life-threatening nature (Dye 2017, Kishve et al. 2010). Eye disorder, nasal bleeding and ear ache are included under this category (Table 2). In this category 16 species under 13 families are used for the treatment of ENT disorders (Fig. 3) and this category also falls under lowest useful category (3%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4). *Bryophyllum pinnatum* (Lam.) Oken, *Ageratum conyzoides* and *Centella asiatica* were solely found to be used by the Lushai, Jaintia, Karbi and Zeme tribe for treatment of eye disorders (Sajem & Gosai 2010, Sajem & Gosai 2006, Baidya *et al.* 2020, Tamuli & Saikia 2004). *Commelina benghalensis* L. and *Plantago major* were reported to be used for treatment of ear ache (Bhattacharjee 2018, Sajem & Gosai 2010) while only *Catharanthus roseus* was reported to be used for nasal bleeding by Jaintia tribe (Sajem & Gosai 2006). The use of *Ageratum conyzoides* has been reported to be effective in the treatment of cataract and eye injury in adults and children by herbal practitioners of Kenya (Klauss & Adala 1994). The traditional use of *Plantago major* has also been reported in the treatment of ear ache in Iran (Zagari 1992).

## **General health disorders**

The common diseases general in nature like swelling due to bee/wasp sting, blood coagulant, cancer, cerebral tonic, chest pain, colic disorder, cough & cold, dehydration, dog bite, dumbness, ear ache, epilepsy, eye infection, fever, food poising, fresh cuts & wounds, gonorrhoea, headache, hyperlactation, hyperthermia, influenza, insectbite, jaundice, killing head lice, liver disease, malaria, measles, nose bleed, paralysis, rabies, scorpion bite, snake bite, tuberculosis, tumour and vomiting were included in this category. In this category, 148 plant species under 61 families are used (Fig. 3) and this category falls under the highest useful category (35%) among the entire 10 disease category mentioned in the major traditional use (Fig. 4) which are used for the treatment of 42 types of ailments (Table 2), and out of which 17 plant species were used against cough & cold, 19 species against fever, 38 species each against jaundice and malaria, and the remaining species against vomiting, various poison treatment & other disorder. However, one species may have more than one treatment in the respective category.

Table 2. Major and specific types of ailments under each broad category and the number of species/families of ethnomedicinal plants used for different groups of ailments

| Major Traditional Use Disease          | Specific types of ailments                                                                                         | No. of   | No. of  | No. of   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|---------|----------|
| Category                               |                                                                                                                    | ailments | Species | Families |
| Category 1: Cardiovascular disorders   | Blood pressure, Diabetes, hypertension, blood coagulant and chest pain                                             | 5        | 16      | 14       |
| Category 2: Orthopedic disorders       | Bone fracture, Rheumatism and joint pain                                                                           | 3        | 16      | 11       |
| Category 3: Respiratory disorders      | Bronchitis, Asthma and Sinusitis                                                                                   | 3        | 14      | 11       |
| Category 4: Gynecological disorders    | Uterine disorder, abortion, leucorrhea, menstrual cramps, prolapsed genital, painful urination and white discharge | 7        | 50      | 35       |
| Category 5: Gastrointestinal disorders | Cholera, constipation, intestinal worms, dyspepsia, dysentery, diarrhea,                                           | 11       | 94      | 47       |

|                                     | indigestion, piles, flatulence,             |    |     |    |
|-------------------------------------|---------------------------------------------|----|-----|----|
|                                     | stomachache and ulcer                       |    |     |    |
| Category 6: Odontological disorders | Dental cavities, toothache and gum          | 3  | 19  | 11 |
|                                     | bleeding                                    |    |     |    |
| Category 7: Musculoskeletal         | Arthritis, muscle ache, joint pain, muscle  | 6  | 18  | 16 |
| disorders                           | stiffness, leg pain and body ache           |    |     |    |
| Category 8: Dermatological          | Burn, fungal skin disease, skin itching,    | 8  | 63  | 37 |
| disorders                           | leprosy, ring worm, skin disease, allergy   |    |     |    |
|                                     | and small pox                               |    |     |    |
| Category 9: ENT disorders           | Eye disorder, nasal bleeding and ear ache   | 3  | 16  | 13 |
| Category 10: General health         | Leech bite, liver enlargement, loss of      | 42 | 148 | 61 |
| disorders                           | vigour, malarial fever, pig bites, poison   |    |     |    |
|                                     | treatment, rabies, scorpion bite, snake     |    |     |    |
|                                     | bite, spider bite, sterility, swelling of   |    |     |    |
|                                     | liver, tuberculosis, vermicide, vitality,   |    |     |    |
|                                     | vomiting, poisonous bites, accidental       |    |     |    |
|                                     | bleeding, anesthesia, antidote for dog      |    |     |    |
|                                     | bite, bed bugs, bee's sting, blood          |    |     |    |
|                                     | coagulation, blood vomiting, boil, cold,    |    |     |    |
|                                     | cough, deworming, Diptheria, external       |    |     |    |
|                                     | bleeding, fatigue, fever, flu, gall bladder |    |     |    |
|                                     | stone, giddiness, headache, Influenza,      |    |     |    |
|                                     | insect bite, intestinal worms, jaundice,    |    |     |    |
|                                     | kidney problems, kidney stone               |    |     |    |

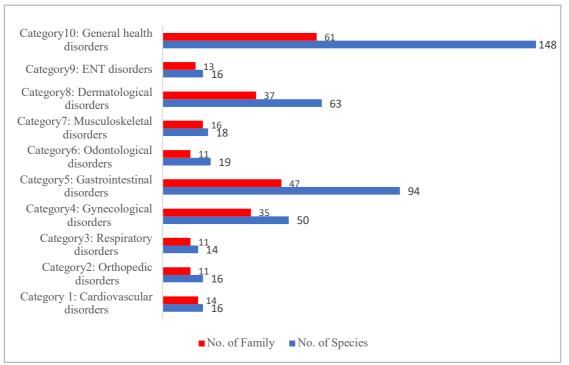



Figure 3. Number of family and species involved under each major traditional use disease category

# Quantitative ethnobotanical analysis of reported species and families: Family use value (UVf):

The plant families with the highest use reports were Zingberaceae (11 species with 30 use reports), Lamiaceae (16 species with 28 use reports), and Leguminaceae (14 species with 25 use reports). The statistical analysis shows the predominance of Cactaceae, Papaveraceae, Rutaceae and Zingberaceae with UVf of 5.00, 4.00, 2.83 and 2.73 respectively while Oxalidaceae, Melastomataceae and Chloranthaceae recorded the lowest UVf of 0.71, 0.50, and 0.50 respectively (Table 3).

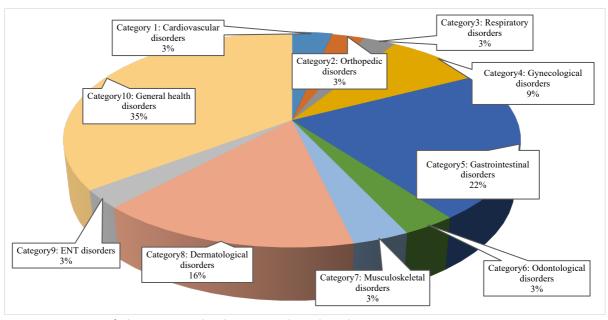



Figure 4. Percentage of ailments grouped under major traditional use disease category

Table 3. Family use values of the ethnomedicinal plants reported to be used by the indigenous tribal communities of the hill districts of Assam

| Family Name      | No. of  | Use            | No. of            | Family Use Value |
|------------------|---------|----------------|-------------------|------------------|
|                  | species | reports/family | informants/family | (UVf)            |
| Cactaceae        | 2       | 5              | 1                 | 5.00             |
| Papaveraceae     | 1       | 4              | 1                 | 4.00             |
| Rutaceae         | 10      | 17             | 6                 | 2.83             |
| Zingberaceae     | 11      | 30             | 11                | 2.73             |
| Acanthaceae      | 11      | 23             | 9                 | 2.56             |
| Lamiaceae        | 16      | 28             | 11                | 2.55             |
| Plantaginaceae   | 5       | 10             | 4                 | 2.50             |
| Polygonaceae     | 6       | 15             | 6                 | 2.50             |
| Leguminaceae     | 14      | 25             | 11                | 2.27             |
| Rubiaceae        | 5       | 15             | 7                 | 2.14             |
| Asteraceae       | 16      | 24             | 12                | 2.00             |
| Amaryllidaceae   | 2       | 6              | 3                 | 2.00             |
| Apiaceae         | 3       | 12             | 6                 | 2.00             |
| Aristolochiaceae | 3       | 6              | 3                 | 2.00             |
| Asclepiadaceae   | 1       | 2              | 1                 | 2.00             |
| Combretaceae     | 2       | 8              | 4                 | 2.00             |
| Dipterocarpaceae | 2       | 2              | 1                 | 2.00             |
| Lecythidaceae    | 1       | 2              | 1                 | 2.00             |
| Nyctaginaceae    | 1       | 4              | 2                 | 2.00             |
| Simaroubaceae    | 2       | 2              | 1                 | 2.00             |
| Thymelaeaceae    | 2       | 4              | 2                 | 2.00             |
| Xanthorrhoeaceae | 1       | 2              | 1                 | 2.00             |
| Apocynaceae      | 7       | 15             | 8                 | 1.88             |
| Poaceae          | 10      | 15             | 8                 | 1.88             |
| Meliaceae        | 3       | 9              | 5                 | 1.80             |
| Olacaceae        | 3       | 7              | 4                 | 1.75             |
| Solanaceae       | 14      | 17             | 10                | 1.70             |
| Euphorbiaceae    | 6       | 10             | 6                 | 1.67             |
| Thelypterdaceae  | 2       | 5              | 3                 | 1.67             |
| Asparagaceae     | 2       | 8              | 5                 | 1.60             |

| Malvaceae       | 7  | 11 | 7  | 1.57 |
|-----------------|----|----|----|------|
| Caryophyllaceae | 1  | 3  | 2  | 1.50 |
| Hypoxidaceae    | 1  | 3  | 2  | 1.50 |
| Lauraceae       | 3  | 3  | 2  | 1.50 |
| Moraceae        | 3  | 3  | 2  | 1.50 |
| Verbenaceae     | 2  | 3  | 2  | 1.50 |
| Cucurbitaceae   | 9  | 10 | 7  | 1.43 |
| Phyllanthaceae  | 4  | 7  | 5  | 1.40 |
| Araliaceae      | 3  | 4  | 3  | 1.33 |
| Clusiaceae      | 2  | 4  | 3  | 1.33 |
| Crassulaceae    | 1  | 8  | 6  | 1.33 |
| Acoraceae       | 1  | 5  | 4  | 1.25 |
| Convolvulaceae  | 2  | 5  | 4  | 1.25 |
| Araceae         | 10 | 11 | 9  | 1.22 |
| Begoniaceae     | 5  | 12 | 10 | 1.20 |
| Saururaceae     | 1  | 6  | 5  | 1.20 |
| Amaranthaceae   | 6  | 7  | 6  | 1.17 |
| Piperaceae      | 2  | 7  | 6  | 1.17 |
| Anacardiaceae   | 3  | 4  | 4  | 1.00 |
| Arecaceae       | 1  | 1  | 1  | 1.00 |
| Basellaceae     | 1  | 1  | 1  | 1.00 |
| Bromeliaceae    | 1  | 1  | 1  | 1.00 |
| Campanulaceae   | 1  | 1  | 1  | 1.00 |
| Capparaceae     | 2  | 2  | 2  | 1.00 |
| Caricaceae      | 1  | 1  | 1  | 1.00 |
| Colchicaceae    | 1  | 1  | 1  | 1.00 |
| Commelinaceae   | 2  | 2  | 2  | 1.00 |
| Costaceae       | 1  | 3  | 3  | 1.00 |
| Cycadaceae      | 2  | 2  | 2  | 1.00 |
| Dilleniaceae    | 1  | 1  | 1  | 1.00 |
| Dioscoreaceae   | 2  | 3  | 3  | 1.00 |
| Elaeagnaceae    | 1  | 1  | 1  | 1.00 |
| Elaeocarpaceae  | 1  | 1  | 1  | 1.00 |
| Lythraceae      | 1  | 1  | 1  | 1.00 |
| Marantaceae     | 1  | 1  | 1  | 1.00 |
| Menispermaceae  | 1  | 1  | 1  | 1.00 |
| Musaceae        | 2  | 4  | 4  | 1.00 |
| Myrtaceae       | 2  | 3  | 3  | 1.00 |
| Nelumbonaceae   | 1  | 1  | 1  | 1.00 |
| Onagraceae      | 1  | 1  | 1  | 1.00 |
| Ophioglossaceae | 1  | 1  | 1  | 1.00 |
| Orchidaceae     | 1  | 1  | 1  | 1.00 |
| Papilionaceae   | 1  | 1  | 1  | 1.00 |
| Passifloraceae  | 1  | 1  | 1  | 1.00 |
| Plumbaginaceae  | 2  | 2  | 2  | 1.00 |
| Rhamnaceae      | 1  | 1  | 1  | 1.00 |
| Rosaceae        | 2  | 2  | 2  | 1.00 |
| Salicaceae      | 1  | 2  | 2  | 1.00 |
| Sapindaceae     | 2  | 3  | 3  | 1.00 |
| Vitaceae        | 3  | 4  | 4  | 1.00 |
| Oxalidaceae     | 3  | 5  | 7  | 0.71 |
| Chloranthaceae  | 1  | 1  | 2  | 0.50 |
| Melastomataceae | 1  | 3  | 6  | 0.50 |
|                 |    |    |    | 0.50 |

Dermatological disorders emerged as the most frequently treated ailments among the tribal communities with a total of 63 plant species, 97 use reports and FIC 0.35, followed by General health (14 species, 219 use reports, and FIC 0.33) and Gastrointestinal disorders (94 species, 139 use reports and FIC 0.33). The cardiovascular disorders also has a higher number of use reports recorded 0.25 FIC. The lowest FIC was found in Odontological disorders with 0.05. The FIC of ENT, Gynecological, Orthopedic, Musculoskeletal and Respiratory disorders ranged between 0.06 to 0.19 (Table 4).

Table 4. Informant consensus factor (FIC) with number of species used and number of use reports of the ethnomedicinal plants reported against different ailment categories

| Major Traditional Use Disease Category | Number of use | Number of Species | Fic  |
|----------------------------------------|---------------|-------------------|------|
|                                        | reports       |                   |      |
| Category 1: Cardiovascular disorders   | 21            | 16                | 0.25 |
| Category 2: Orthopedic disorders       | 17            | 16                | 0.06 |
| Category 3: Respiratory disorders      | 17            | 14                | 0.19 |
| Category 4: Gynecological disorders    | 53            | 50                | 0.06 |
| Category 5: Gastrointestinal disorders | 139           | 94                | 0.33 |
| Category 6: Odontological disorders    | 20            | 19                | 0.05 |
| Category 7: Musculoskeletal disorders  | 21            | 18                | 0.15 |
| Category 8: Dermatological disorders   | 97            | 63                | 0.35 |
| Category 9: ENT disorders              | 17            | 16                | 0.06 |
| Category 10: General health disorders  | 219           | 148               | 0.33 |

## Fidelity level index (FL)

The level of fidelity FL is a crucial tool for determining which disease a particular species is most effective against. In this study, FL values were divided into three ranges: high (1.18 to 9.09), moderate (18.18 to 36.36), and low (45.45 to 63.64). According to the study's findings (Appendix I), there are 173 species of plants with low FL values, 89 species of plants with moderate FL values, and 15 species of plants with high FL values. In general, a FL of 100% for a certain plant denotes that the same treatment method was stated in all use reports for that plant (Srithi et al. 2009). According to this information, the informants in the region tended to rely more on a single plants species to treat a single illness than a variety of illnesses. 15 plant species that are frequently mentioned as having metabolic issues should be given greater thought, and research should be done to assess more information about their efficacy and veracity as stated and advised in other studies. Additionally, plants with low FL% should not be abandoned when they are diminishing in order to preserve them for future generations because doing so could raise the risk of knowledge gradually vanishing.

## Diversity of medicinal plants and their quantitative evaluation

The review study has revealed a total of 273 species of ethnomedicinal plants belonging to 208 genera and 83 families after removing the repetitive plant species with the highest number of species belonging to the family Lamiaceae and Asteraceae. Based on the pseudo informants' citations for a particular plant under study, the use values (UVs) were generated to assess the relative significance of reported medicinal plants. These UVs had values ranging from 0.40 to 5.00 (Appendix I). The study's findings showing highest UV scores viz., Morinda angustifolia (UV 5.00), followed by Argemone mexicana (UV 4.00), Erythrina variegata (UV 3.00), Thunbergia grandiflora has been employed for a variety of tasks, such as treating headache, malarial fever, leprosy, jaundice, giddiness, urinary problems, dysentery, fever, toothache, stomach disease, indigestion, eye problem, skin disease and nose bleeding, antidote, sore eye, blood coagulant, sore throats, vomiting, diarrhea, asthma, intestinal worms, used against wounds, etc. The remaining species with the lowest UV ratings were utilized for health purposes such as dental cavities, cough, fever, inflammation, tuberculosis, constipation, liver disorder, Jaundice and stomach ache etc. These species exhibited the highest Use Value (UV) index, as they were cited by the largest number of authors (pseudo-informants). The UV index is directly correlated with the frequency at which pseudo-informants report the use of a specific plant (Chaachouay et al. 2019). The species use value (UV) relies on its pseudo-informant's knowledge, accessibility, usage, and the knowledge obtained from the informants in a specific area (Sukumaran et al., 2021). Medicinal plants with high UV, which are at risk of overharvesting, should be prioritized for phytochemical and pharmaceutical studies to identify their active compounds for drug extraction (Vitalini et al., 2014). Prioritizing the conservation of these species is essential even species with lower UV values remain important in treating various illnesses.

Moreover, calculating the FIC score helped reveal consistency in the ethnobotanical data from different users. A high FIC indicates strong agreement among informants regarding the selection of certain taxa (Dulal *et al.*, 2022). However, lower FIC

values reflect informant divergence concerning the use of species for treating illnesses within the same general category, suggesting variation in species preference for similar health conditions (Rahman *et al.*, 2022).

Ethnomedicinal studies in the Eastern Himalayan region of Assam reveal that diverse cultural groups continue to rely on medicinal plants to treat various human ailments. Our review further validates the pseudo-residents' consensus on the use of specific species in the area. Although multiple communities were studied, the high Informant Consensus Factor (FIC) value may be due to the plants being sourced from the same geographical region. Dermatological conditions, with the highest FIC value (0.35), were a key focus of our analysis, likely driven by the increasing prevalence of skin issues caused by hot, humid climates and overcrowding. Behavioral factors such as poor hygiene, unhealthy diets, and living conditions further exacerbate these problems (WHO, 2005). The data also show that pseudo-informants frequently relied on a limited number of species to address dermatological issues, raising the FIC value. There is a pressing need for the local population to develop their own remedies by investigating the medicinal properties of various plant species. The study found that *Clerodendrum infortunatum* was used to treat various conditions, including bee stings, insanity, deworming, dysentery, diabetes, hypertension, asthma, menstrual complications, and breathing difficulties (63.64% FL). High FL scores suggest plants with greater therapeutic potential, warranting further phytochemical and bioactive investigations (Bekele *et al.* 2022). The research also indicates that pseudo-informants in the Eastern Himalayas tend to rely on specific plant species for targeted ailments rather than multiple conditions. High FL values are often associated with metabolic disorders, but low FL species should not be neglected to preserve traditional knowledge for future generations (Chaachouay *et al.* 2019).

## Preserving healing by shielding nature's healing blooms

The plant species diversity in the Eastern Himalayan region of Assam is rapidly declining due to the local population's heavy dependence on daily resource collection. Key drivers of biodiversity loss include overexploitation, pollution, habitat degradation, and the introduction of non-native species, all occurring at a faster rate than natural recovery (Gannon et al. 2017). Similar trends have been observed in ethnomedicinal vegetation threats in other regions, such as the Buska Mountain range in Ethiopia and Karbi Anglong in Assam (Bekele *et al.* 2022, Baidya *et al.* 2020).

The current study highlights overharvesting of medicinal plants, lack of awareness, inadequate documentation, and poor marketing channels as significant factors contributing to the region's plant conservation challenges. Species analysis revealed several critically endangered (CR), vulnerable (VU), and near-threatened (NT) species (Appendix I). To safeguard these species and preserve their therapeutic value, measures such as sustainable harvesting, awareness programs, and medicinal plant cultivation are crucial (Rahman *et al.* 2022). Financial support, seedling distribution, and the establishment of nurseries can further conservation efforts, along with documentation of traditional knowledge. Empowering local communities with sustainable harvesting techniques and propagation methods is essential for the long-term preservation of these valuable medicinal plants. Conservation strategies must prioritize sustainable practices to ensure the survival of this rich natural heritage for future generations.

## **Conclusion**

The present review revealed the use of 273 species of ethnomedicinal plants belonging to 208 genera and 83 families that are widely used for the treatment of 10 broad categories of ailments against 91 specific types of ailments. The category of general health disorder has the highest number of species (148) with use reports (219) followed by FIC 0.33. This bespeaks about the vast wealth of knowledge possessed by the tribal communities and how they are still reliant on their use even in the face of the superior prowess of modern medicines which has revolutionized the healthcare system. Key species identified for phytochemical and pharmacological exploration include *Morinda angustifolia*, which ranks as the most utilized with a UV (Use Value) of 5.00, followed by *Argemone mexicana* (UV 4.00), reflecting their significant role in traditional medicine. Their widespread application suggests a strong potential for deeper investigation into their bioactive compounds and therapeutic properties. Additionally, species such as *Murraya paniculata*, *Ixora thwaitesii*, *Arundo donax*, *Erythrina variegata*, *Albizia lebbeck*, *Careya arborea*, *Opuntia dillenii*, and *Thunbergia grandiflora* also exhibited high UV scores, highlighting their extensive use and potential for phytochemical study. As their preferred usage may put their populations at risk from over harvesting, these species should also be given priority for conservation and the ethnomedicinal plants with the highest FIC would aid in the prioritization of a subsequent study. Species with lower UV scores, though less frequently used, may still hold valuable therapeutic properties, warranting investigation to uncover novel bioactive compounds or medicinal applications.

This study provides essential data for medicinal plant research by fostering collaboration between traditional healers and scientific institutions. Such partnerships can benefit the pharmaceutical and agro-food industries by integrating traditional

expertise with modern science. Documenting and promoting ethnomedicinal plant use, particularly among younger generations, is crucial for preserving this knowledge and their conservation is vital for sustainable use, boosting employment and income. This heritage should inspire future pharmacological studies to validate traditional remedies and advance global healthcare through natural drug development and highlighting its socioeconomic relevance.

In conclusion, this review study emphasizes the key medicinal plant species in the hilly districts of Assam while underscoring the need for further investigation and advocating the importance to document and conserve indigenous knowledge. The findings support integrating traditional practices into modern healthcare for sustainable use and cultural preservation.

## **Declarations**

List of abbreviations: NCHAC- North Cachar Hills Autonomous Council; KAAC - Karbi Anglong Autonomous Council

Ethics approval and consent to participate: Not Applicable

Consent for publication: Not Applicable

Availability of data and materials: All data generated during this study are included in this article itself and its associated

supplementary files.

**Competing interests:** We the authors have no conflict of interest to declare.

Funding: Not Applicable

**Author contributions:** The study was conceived and designed by KJB and WFM. KJB was responsible for data collection and initial manuscript composition, as well as interpreting and analyzing the data. WFM and NCL contributed to manuscript modifications and revisions. The final version was reviewed and approved by all authors.

## **Acknowledgements**

We are deeply grateful to the anonymous reviewers for their invaluable insights, constructive feedback, and meticulous evaluation, all of which have significantly enriched the quality and depth of this manuscript. Institutional support and facilities utilized by the authors during preparation of this review are gratefully acknowledged.

## Literature cited

Ahmad L, Riaz M, Jan H.A, Semotiuk A.J, Ahmad I, Khan I, Ali F, Rashid W, Bussmann R.W. 2021. An ethnobotanical survey of wild food plants used by the local communities of Kumrat Valley in District Upper Dir, Pakistan. Ethnobotany Research and Applications 22: 1-13.

Al-Nahain A, Jahan R, Rahmatullah M. 2014. *Zingiber officinale*: A Potential Plant against Rheumatoid Arthritis. Arthritis 2014:1-8. doi: 10.1155/2014/159089.

Aluede EE, Phillips J, Bleyer J, Jergesen HE, Coughlin R. 2012. Representation of Developing Countries in Orthopaedic Journals: A Survey of Four Influential Orthopaedic Journals. Clinical Orthopaedics and Related Research 470 (8): 2313-2318. doi: 10.1007/s11999-012-2377-5.

Amadi ES, Oyeka CA, Onyeagba RA, Ugbogu OC, Okoli I. 2007. Antimicrobial screening of *Breynia nivosus* and *Ageratum conyzoides* against dental caries organisms. Journal of Biological Sciences 7(2): 354-348. doi: 10.3923/jbs.2007.354.358.

Aggarwal B, Prasad S, Reuter S, Kannappan R, R Yadav V, Park B, Hye Kim J, C Gupta S, Phromnoi K, Sundaram C, Prasad S. 2011. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: "reverse pharmacology" and "bedside to bench" approach. Current Drug Targets 12(11):1595-653. doi: 10.2174/138945011798109464.

Baidya S, Thakur B, Devi A. 2020. Ethnomedicinal plants of the sacred groves and their uses by Karbi tribe in Karbi Anglong district of Assam, Northeast India. Indian Journal of Traditional Knowledge 19(2): 277-87. doi: 10.56042/ijtk.v19i2.35375.

Barman TK, Kalita P, Pal TK. 2013. Comparative evaluation of total flavonoid content and antioxidant activity of methanolic root extract of *Clerodendrum infortunatum* and methanolic whole plant extract of biophytumsensitivum. International Journal of Pharmaceutical Sciences Review and Research 22:626-6.

Basumatary N, Teron R, Saikia M. 2014. Ethnomedicinal practices of the Bodo-Kachari tribe of Karbi Anglong district of Assam. International Journal of Life Sciences Biotechnology and Pharma Research 3(1):161-7.

Beaulah P. 2018. Prevalence of gynaecological problems and their effect on working women. Indian Journal of Continuing Nursing Education 19 (1):103-108.

Bekele M, Woldeyes F, Lulekal E, Bekele T, Demissew S. 2022. Ethnobotanical investigation of medicinal plants in Buska Mountain range, Hamar district, Southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine 18(1):1-26.

Bhattacharjee S, 2018. Natural Resources and Indigenous Knowledge of Healthcare System among the Karbis of Assam, in: Sengupta, S.S. (Ed.), Indigenous Health Practices among the People of North East India. Kalpaz Publications, Delhi 77.

Bhutkar MA, Bhise SB. 2012. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. International Journal of Chemical Sciences 10(1): 457-462. doi: 10.31031/MAPP.2018.01.000518

Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. 2020. Functional gastrointestinal disorders: advances in understanding and management. The Lancet 396 (10263): 1664-1674. doi: 10.1016/S0140-6736(20)32115-2.

Brahmachari G, Gorai D, Roy R. 2013. *Argemone mexicana*: Chemical and pharmacological aspects. Revista Brasileira de Farmacognosia 23(3): 559-575. doi: 10.1590/s0102-695x2013005000021.

Brahmkshatriya H, Shah K, Ananthkumar G, Brahmkshatriya M. 2015. Clinical evaluation of *Cissus quadrangularis* as osteogenic agent in maxillofacial fracture: A pilot study. AYU, An International Quarterly Journal of Research in Ayurveda 36(2):169. doi: 10.4103/0974-8520.175542.

Bushi D, Bam K, Mahato R, Nimasow G, Nimasow OD, Tag H. 2021. Ethnomedicinal plants used by the indigenous tribal communities of Arunachal Pradesh, India: a review. Ethnobotany Research and Applications 22. doi: 10.32859/era.22.34.1-40.

Census of India. 2011. Assam- District Census Handbook. Directorate of Census Operations, Assam. Government of India.

Chaachouay N, Benkhnigue O, Fadli M, El Ibaoui H, Zidane L. 2019. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon. 5(10).

Chattopadhyay D. ed. 2010. Ethnomedicine: a source of complementary therapeutics. Kerala (India): Research Signpost.

Choudhary AA, Sushanta KC, Khan AA. 1982. Antifertility activity of Plumbagozeylanica Linn. root. The Indian Journal of Medical Research 76:99-101.

Court-Brown CM, Caesar B. 2006. Epidemiology of adult fractures: a review. Injury 37(8):691-697. doi: 10.1016/j.injury.2006.04.130.

Da Costa BR, Vieira ER, 2010. Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. American Journal of Industrial Medicine 53(3):285-323.n/a-n/a. doi: 10.1002/ajim.20750.

Dash B, Sharma R, 2008. Charaka Samhita, Chaukhamba Sanskrit Series Office, Varanasi.

Deka K, Nath N, 2015. Traditional hepatoprotective herbal medicine of Bongaigaon district, Assam (NE India). American Journal of Ethnomedicine. 2(5):2348-9502. Dhinagari J. 2011.

Effectiveness of Aloevera Juice upon Leucorrhoea among Women at Selected Villages, Chennai (Doctoral dissertation, Apollo College of Nursing, Chennai).

Dye BA. 2017. The global burden of oral disease: research and public health significance. Journal of Dental Research 96 (4):361-363. doi: 10.1177/0022034517693567.

Dulal K., Chaudhary S, Uprety Y, Shrestha N, Shakya S, Munankarmi N. 2022. Ethnomedicinal plants used by the local people of Changunarayan Municipality, Bhaktapur, Nepal. Ethnobotany Research and Applications 23:1-27.

Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z. 1985. Medicinal plants in therapy. Bulletin of the world health organization 63(6):965.

Forest Survey of India. 2021. India State Forest Report. Forest Survey of India, Dehradun, India.

Foster GM, Anderson BG. 1978. Medical anthropology. John Wiley and Sons, Inc. 605 3rd Avenue, New York, NY 10016, USA.

Friedman J, Yaniv Z, Dafni A, Palewitch D. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. Journal of Ethnopharmacology 16(2-3):275-287.

Gannon P, Seyoum-Edjigu E, Cooper D, Sandwith T, Ferreira de Souza Dias B, Paşca Palmer C, Lang B, Ervin J, Gidda S. 2017. Status and prospects for achieving Aichi Biodiversity Target 11: implications of national commitments and priority actions. Parks 23(2): 13-26.

Gilani AH, Bashir S, Janbaz KH, Shah AJ. 2005. Presence of cholinergic and calcium channel blocking activities explains the traditional use of *Hibiscus rosa-sinensis* in constipation and diarrhoea. Journal of Ethnopharmacology 102(2):289-294. doi: 10.1016/j.jep.2005.07.023.

Gulzar H, Hazrat A, Gulzar K, Ali F, Khan N, Nisar M, Khan I, Ullah A. 2019. Medicinal plants and their traditional uses in Thana village, district Malakand, Khyber Pakhtunkhwa, Pakistan. International Journal of Endorsing Health Science Research 7(1): 11-21.

Gupta AK, Sharma M, Chadha A, Dixit R. 2008. Reviews on Indian medicinal plants. Reviews on Indian Medicinal Plants 7 (Cl-Co).

Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, Marks R, Naldi L, Weinstock MA, Wulf SK, Michaud C. 2014. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. Journal of Investigative Dermatology 134(6): 1527-1534.

Haq SM, Khoja AA, Lone FA, Waheed M, Bussmann RW, Casini R, Mahmoud, EA, Elansary HO, 2023. Keeping healthy in your skin—plants and fungi used by indigenous Himalayan communities to treat dermatological ailments. Plants 12(7): 1575.

Haq SM, Waheed M, Khoja AA, Amjad MS, Bussmann RW, Ali K, 2023. A cross-cultural study of high-altitude botanical resources among diverse ethnic groups in Kashmir Himalaya, India. Journal of Ethnobiology and Ethnomedicine 19(1):12.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Science and Medicine 47(11):1859-1871.

Hughes C. 1968. International Encyclopedia of the Social Sciences. New York: Crowell Collier and Macmillan.

Iwu MM. 2002. Introduction: Therapeutic agents from ethnomedicine. InAdvances in phytomedicine. (1):1-22.

Jadeja RN, Thounaojam MC, Ramani UV, Devkar RV, Ramachandran AV. 2011. Anti-obesity potential of *Clerodendron glandulosum* Coleb leaf aqueous extract. Journal of Ethnopharmacology 135(2):338-343.

Kala CP. 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. Journal of Ethnobiology and Ethnomedicine 1:1-8.

Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, Nsoesie EO, Ferrari AJ, Erskine HE, Silverberg JI, Vos T. 2017. Global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatology 153 (5):406-412.

Kishve SP, Kumar N, Kishve PS, Aarif SM, Kalakoti P. 2010. Ear, Nose and Throat disorders in paediatric patients at a rural hospital in India. Australasian Medical Journal 3(12).

Klauss V, Adala HS. 1994. Traditional herbal eye medicine in Kenya. In World health forum 15 (2): 138-143.

Lalramnghinglova H, Jha L. 2000. Ethnobotany: A Review, in: Maheshwari, J.K. (Eds.), Ethnobotany and Medicinal Plants of Indian Subcontinent. Scientific Publishers, Jodhpur, India 1-27.

Luan HD, Hai NT, Xanh PT, Giang HT, Van Thuc P, Hong NM, Khue PM. 2018. Musculoskeletal disorders: prevalence and associated factors among district hospital nurses in Haiphong, Vietnam. BioMed Research International 2018. doi: 10.1155/2018/3162564.

Maikhuri RK, Gangwar AK. 1993. Ethnobiological notes on the Khasi and Garo tribes of Meghalaya, Northeast India. Economic Botany 47:345-357.

Majumder R, Tiwari KC, Bhattacharjee S, Nair AR. 1978. Some folklore medicine from Assam and Meghalaya. Quarterly Journal of Crude Drug Research 16(4):185-189.

Mishra D, Singh RK, Srivastava RK, Dubey SR. 2013. Ethnomedicinal plants used to cure the gynaecological disorders by ethnic populace of Sitapur district, Uttar Pradesh, India. Medicinal Plants-International Journal of Phytomedicines and Related Industries 5(4): 238-245.

Nason E. 2007. An overview of cardiovascular disease and research. Santa Monica, CA.

Nath M, Choudhury MD. 2009. Ethno-medico-botanical aspects of Hmar tribe of Cachar district, Assam (Part I). Indian Journal of Traditional Knowledge 9(4): 760-4.

Niazi P, Monib AW. 2024. The role of plants in traditional and modern medicine. Journal of Pharmacognosy and Phytochemistry 13(2): 643-647.

Patel DK. 2017. *Paederia foetida* Linn.: A Potential Climbing Medicinal Herb in Central India. International Journal of Environmental Sciences and Natural Resources 6(5): 118-124.

Patel R, Mahobia N, Upwar N, Waseem N, Talaviya H, Patel Z. 2010. Analgesic and antipyretic activities of Momordicacharantia Linn. fruits. Journal of Advanced Pharmaceutical Technology and Research 1(4): 415. doi: 10.4103/0110-5558.76441.

Patil BS, Raut ID, Bhutkar MA, Mohite SK. 2015. Evaluation of anthelmintic activity of leaves of Tragiainvolucrata Linn. Journal of Pharmacognosy and Phytochemistry 4(1):155-159.

Phillips O, Gentry AH. 1993. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Economic Botany 47:15-32. doi: 10.1007/bf02862203.

Phumthum M, Srithi K, Inta A, Junsongduang A, Tangjitman K, Pongamornkul W, Trisonthi C, Balslev H. 2018. Ethnomedicinal plant diversity in Thailand. Journal of Ethnopharmacology 214:90-98. doi: 10.1016/j.jep.2017.12.003.

Polinder S, Haagsma J, Panneman M, Scholten A, Brugmans M, Van Beeck E. 2016. The economic burden of injury: Health care and productivity costs of injuries in the Netherlands. Accident Analysis and Prevention 93:92-100. doi: 10.1016/j.aap.2016.04.003.

Polito L, Bortolotti M, Maiello S, Battelli M, Bolognesi A. 2016 (a). Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine. Molecules 21:1560. doi: 10.3390/molecules21111560.

Prakash JW, Raja RD, Anderson NA, Williams C, Regini GS, Bensar K, Rajeev R, Kiruba S, Jeeva S, Das SS. 2008. Ethnomedicinal plants used by Kani tribes of Agasthiyarmalai biosphere reserve, southern Western Ghats. Indian Journal of Traditional Knowledge 7(3): 410-413.

Rengma MS, Tisso SI, Timung L. 2018. Ethnomedicinal Practices among the Karbis of Assam. Indigenous Health Practices among the People of North East India, New Delhi, India: Kalpaz Publications 5(1): 67-76.

Rout J, Sajem AL, Nath M. 2009. Medicinal plants of North Cachar Hills district of Assam used by the Dimasa tribe. Indian Journal of Traditional Knowledge 11(3): 520-527.

Saikia AJ, Parkash V. 2016. Traditional Remedies for Ailments Prevalent Amongst the Thengal-Kacharis of Lakhimpur District, Assam, India. Notulae Scientia Biologicae 8:401-407. doi: 10.15835/nsb849847.

Sajem AL, Gosai K. 2006. Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India. Journal of Ethnobiology and Ethnomedicine 2(1):1-7.

Sajem AL, Gosai K. 2010. Ethnobotanical investigations among the Lushai tribes in North Cachar hills district of Assam, northeast India. Indian Journal of Traditional Knowledge 9(1):108-113.

Sengupta S. 2017. Indigenous Health Practices among the People of North East India. 1st ed. Delhi, India: Kalpaz Publications.

Sen S, Chakraborty R. 2015. Toward the integration and advancement of herbal medicine: a focus on traditional Indian medicine. Botanics: Targets and Therapy 33-44.

Seo JW, Cho SC, Park SJ, Lee EJ, Lee JH, Han SS, Pyo BS, Park DH, Kim BH. 2013. 1'-Acetoxychavicol acetate isolated from *Alpinia galanga* ameliorates ovalbumin-induced asthma in mice. PloS One 8(2):e56447. doi: 10.1371/journal.pone.0056447.

Shukla, SD, Vanka KS, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, Pabreja K, Mahmood MQ, O'toole RF. 2020. Chronic respiratory diseases: An introduction and need for novel drug delivery approaches, in: Dua K, Hansbro PM, Wadhwa R, Haghi M, Pont LG, Williams KA.(Eds.), Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Academic Press 1-31. doi: 10.1016/B978-0-12-820658-4.00001-7.

Singh A. 2022. A Review of various aspects of the Ethnopharmacological, Phytochemical, Pharmacognostical, and Clinical significance of selected Medicinal plants. Asian Journal of Pharmacy and Technology 12(4):349-360.

Soni RK, Irchhaiya R, Dixit V, Alok S. 2013. *Paederia foetida* Linn: Phytochemistry, pharmacological and traditional uses. International Journal of Pharmaceutical Sciences and Research 4(12): 4525.

Sonowal, C.J.S. 2018. Revisiting the Domain of Ethnomedicine: Some Issues and Methods, in: Sengupta, S.S. (Eds.), Indigenous Health Practices among the People of North East India. Kalpaz Publications., Delhi 29.

Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. Journal of Ethnopharmacology 123(2):335-342.

Sukumaran S, Sujin RM, Geetha VS, Jeeva S. 2021. Ethnobotanical study of medicinal plants used by the Kani tribes of Pechiparai Hills, Western Ghats, India. Acta Ecologica Sinica 41(5):365-376

Tamang S, Singh A, Bussmann RW, Shukla V, Nautiyal MC. 2023. Ethno-medicinal plants of tribal people: A case study in Pakyong subdivision of East Sikkim, India. Acta Ecologica Sinica 43(1):34-46.

Tamuli P, Saikia R. 2004. Ethno-medico-botany of the Zeme tribe of North Cachar Hills district of Assam. Indian Journal of Traditional Knowledge 3(4): 430-436. http://nopr.niscpr.res.in/handle/123456789/9371.

Tardío J, Pardo-de-Santayana M. 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Economic Botany 62:24-39.

Terangpi R, Basumatary T K, Teron R. 2014. Ethnomedicinal plants of the Karbi ethnic group in Assam state (India) for management of gynaecological disorders. International Journal of Pharmacy and Life Sciences 5(10): 3910-3916.

Teron R, Borthakur SK. 2013. Folklore claims of some medicinal plants as antidote against poisons among the Karbis of Assam, India. Pleione 7(2):346-356.

Teron R. 2019. 2018. Cross-Cultural ethnobotanical exploration of diversity and utilization of medicinal plants in Karbi Anglong district, Assam, Northeast India. NeBIO 10(1): 35-46.

Tugume P, Kakudidi E.K, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J. 2016. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. Journal of Ethnobiology and Ethnomedicine 12: 1-28.

Unissa R, Swathi C, Priyanka B, Redddy DM, Niharika K. 2018. Evaluation of in Vitro Antimicrobial Activity of Flower Extract of *Tabernaemontana divaricata* against Oral Pathogens. Haya: The Saudi Journal of Life Sciences 3(3): 255-258.

Vijayalakshmi K, Udayakumar R. 2018. Antifungal Activity of M. pudica L. against Selected Human Pathogens. International Journal of Advanced Scientific and Management 3(10): 79-87.

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) An alpine ethnobotanical study. Journal of Ethnopharmacology 145(2): 517-529.

WFO Plant List. http://www. wfoplantlist.org (accessed 27 July 23).

World Health Organization. 2005. Epidemiology and management of common skin diseases in children in developing countries. World Health Organization.

World Health Organization. 2008. The global burden of disease: 2004 update. World Health Organization.

Yernazarova KB, Abdrassulova ZT, Tuleuhanov ST, Tussupbekova GA, Salybekova NN, Isayev G, Basim H. 2019. Biological features of the medicinal plant Plantago major L. International Journal of Biology and Chemistry 12(1): 86-93.

Zagari A. 1992. Medicinal plants Publications No. 1810 (4), vol. 4. Tehran University, Tehran, Iran.

Appendix 1. List of ethnomedicinal plants used by the indigenous tribal communities of Dima Hasao and Karbi Anglong districts of Assam.

| Botanical Name                                    | Family      | Habit/<br>IUCN<br>Status* | Parts used           | Diseases cured                                                                                                                        | Tribe(s)                           | FL    | UV   | Reference                                                                                        |
|---------------------------------------------------|-------------|---------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|------|--------------------------------------------------------------------------------------------------|
| Andrographis paniculata                           | Acanthaceae | Herb <b>/</b>             | Leaves               | Stomachache, fever                                                                                                                    | Karbi and Bodo                     | 18.18 | 1.50 | Teron 2019, Basumatary et al.                                                                    |
| (Burm.f.) Nees                                    |             | NE                        |                      | and malaria                                                                                                                           | Kachari                            |       |      | 2014                                                                                             |
| Barleria cristata L.                              | Acanthaceae | Herb <b>/</b><br>NE       | Aerial part          | Skin infections                                                                                                                       | Jaintia                            | 9.09  | 1.00 | Sajem & Gosai 2006                                                                               |
| Eranthemum suffruticosum                          | Acanthaceae | Shrub/                    | Leaf                 | Skin infection                                                                                                                        | Pnar                               | 9.09  | 1.00 | Teron 2019                                                                                       |
| Roxb.                                             |             | NE                        |                      |                                                                                                                                       |                                    |       |      |                                                                                                  |
| Justicia adhatoda L.                              | Acanthaceae | Shrub <b>/</b><br>LC      | Flower and<br>leaf   | Nose bleeding,<br>dysentery, blood<br>vomiting, malaria,<br>diphtheria, asthma,<br>cough, cold, uterine<br>problems and<br>bronchitis | Jaintia, Zeme, Lushai<br>and Karbi | 36.36 | 2.50 | Sajem & Gosai 2006, Tamuli &<br>Saikia 2004, Sajem & Gosai<br>2010, Bhattacharjee 2018           |
| Justicia comata (L.) Lam.                         | Acanthaceae | Herb <b>/</b><br>NE       | Leaf                 | Ringworm                                                                                                                              | Karbi                              | 9.09  | 1.00 | Teron 2019                                                                                       |
| <i>Justicia gendarussa</i><br>Burm.f.             | Acanthaceae | Shrub <b>/</b><br>NE      | Root                 | Antidote, indigestion, dysentery and fever                                                                                            | Karbi and Bodo<br>Kachari          | 27.27 | 1.33 | Teron 2019, Teron & Borthakur 2013, Basumatary                                                   |
| ~! !! !! !C !                                     |             |                           | -1                   |                                                                                                                                       |                                    |       | 4.00 | et al. 2014                                                                                      |
| Phlogacanthus thyrsiformis (Hardw.) Mabb.         | Acanthaceae | Shrub <b>/</b><br>NE      | Flower               | Stomach pain                                                                                                                          | Karbi, Pnar, Tiwa                  | 9.09  | 1.00 | Teron 2019                                                                                       |
| Phlogacanthus curviflorus<br>(Wall.) Nees         | Acanthaceae | Shrub <b>/</b><br>NE      | Root and<br>leaf     | Stomach ulcer and uterus contraction                                                                                                  | Karbi                              | 9.09  | 2.00 | Baidya <i>et al.</i> 2020                                                                        |
| Rungia pectinata<br>(L.) Nees                     | Acanthaceae | Herb <b>/</b><br>NE       | Leaf                 | Cuts and wounds                                                                                                                       | Dimasa                             | 9.09  | 2.00 | Rout et al. 2012                                                                                 |
| Strobilanthes cusia<br>(Nees) Kuntze              | Acanthaceae | Herb <b>/</b><br>NE       | Leaf                 | Antidote for dog bite                                                                                                                 | Karbi                              | 9.09  | 1.00 | Teron 2019                                                                                       |
| Thunbergia grandiflora<br>(Roxb. ex Rottl.) Roxb. | Acanthaceae | Tree/<br>NE               | Leaf and stem        | Antidote, sore eye,<br>blood coagulant                                                                                                | Karbi, Pnar                        | 9.09  | 3.00 | Teron 2019                                                                                       |
| Acorus calamus L.                                 | Acoraceae   | Herb <b>/</b><br>LC       | Rhizome<br>and tuber | Constipation,<br>stomachache, labor                                                                                                   | Karbi, Pnar and Tiwa               | 36.36 | 1.25 | Teron 2019, Terangpi <i>et al.</i><br>2014, Rengma <i>et al.</i> 2018,<br>Teron & Borthakur 2013 |

|                                             |                |                     |                            | pain, gastritis and poison treatment                                                                         |                                                                  |       |      |                                                                                                                  |
|---------------------------------------------|----------------|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|------|------------------------------------------------------------------------------------------------------------------|
| Achyranthes aspera L.                       | Amaranthaceae  | Herb <b>/</b><br>NE | Twigs and<br>leaf          | Labor complicacy, boils and skin disease                                                                     | Karbi, Jaintia and<br>Lushai                                     | 27.27 | 1.00 | Terangpi <i>et al.</i> 2014, Sajem & Gosai 2006, Sajem & Gosai 2010                                              |
| Alternanthera sessilis<br>(L.) R.Br. ex DC. | Amaranthaceae  | Herb <b>/</b><br>LC | Leaf                       | Skin disease                                                                                                 | Karbi                                                            | 9.09  | 1.00 | Bhattacharjee 2018                                                                                               |
| Amaranthus spinosus L.                      | Amaranthaceae  | Herb <b>/</b><br>NE | Root                       | Poisonous bites and mensuration cramp                                                                        | Karbi                                                            | 9.09  | 2.00 | Baidya et al.2020                                                                                                |
| Beta vulgaris L.                            | Amaranthaceae  | Herb <b>/</b><br>CE | Shoot                      | Jaundice                                                                                                     | Karbi                                                            | 9.09  | 1.00 | Bhattacharjee 2018                                                                                               |
| Celosia argentea L.                         | Amaranthaceae  | Herb <b>/</b><br>NE | Leaf                       | Skin whitening disease                                                                                       | Dimasa                                                           | 9.09  | 1.00 | Rout et al. 2012                                                                                                 |
| Chenopodium album L.                        | Amaranthaceae  | Herb <b>/</b><br>NE | Leaf                       | Dysentery                                                                                                    | Karbi                                                            | 9.09  | 1.00 | Bhattacharjee 2018                                                                                               |
| Allium chinense G.Don                       | Amaryllidaceae | Herb <b>/</b><br>LC | Bulb                       | Constipation                                                                                                 | Dimasa                                                           | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                                                                          |
| Allium sativum L.                           | Amaryllidaceae | Herb <b>/</b><br>NE | Leaf                       | Snake bite, spider bite,<br>cuts, wounds and<br>poison treatment                                             | Karbi, Pnar and Tiwa                                             | 18.18 | 2.50 | Teron 2019, Teron &<br>Borthakur 2013                                                                            |
| Brucea javanica<br>(L.) Merr.               | Anacardiaceae  | Tree <b>/</b><br>LC | Fruit                      | Poison treatment                                                                                             | Karbi                                                            | 9.09  | 1.00 | Teron & Borthakur 2013                                                                                           |
| Mangifera indica L.                         | Anacardiaceae  | Tree <b>/</b><br>DD | Fruit                      | Constipation and dysentery                                                                                   | Karbi                                                            | 18.18 | 1.00 | Baidya <i>et al</i> . 2020, Teron 2019                                                                           |
| Rhus chinensis Mill.                        | Anacardiaceae  | Tree <b>/</b><br>NE | Fruit                      | Constipation, dysentery and stomach ache                                                                     | Pnar and Dimasa                                                  | 18.18 | 1.50 | Teron 2019, Rout <i>et al.</i> 2012                                                                              |
| Centella asiatica (L.) Urb.                 | Apiaceae       | Herb <b>/</b><br>LC | Whole<br>plant and<br>leaf | Leprosy, tuberculosis, asthma, constipation, dysentery, stomach ache, eye injury, gastritis, cuts and wounds | Lushai, Karbi, Tiwa,<br>Zeme, Jaintia, Bodo<br>Kachari and Karbi | 45.45 | 2.00 | Sajem & Gosai 2010, Teron<br>2019, Tamuli & Saikia 2004,<br>Sajem & Gosai 2006,<br>Basumatary <i>et al.</i> 2014 |
| Eryngium foetidum L.                        | Apiaceae       | Herb <b>/</b><br>NE | Leaf                       | Food allergy                                                                                                 | Dimasa                                                           | 9.09  | 1.00 | Rout et al.2012                                                                                                  |

| Coriandrum sativum L.          | Apiaceae    | Herb <b>/</b>       | Stem and | Jaundice and stomach                   | Karbi                 | 27.27 | 0.67 | Teron 2019, Sajem & Gosai                 |
|--------------------------------|-------------|---------------------|----------|----------------------------------------|-----------------------|-------|------|-------------------------------------------|
|                                |             | NE                  | fruit    | ache                                   |                       |       |      | 2006, Sajem & Gosai 2010                  |
| Alstonia scholaris             | Apocynaceae | Tree/               | Bark and | Asthma, malaria and                    | Lushai, Zeme and      | 27.27 | 1.00 | Sajem & Gosai 2010, Tamuli &              |
| (L.) R. Br.                    |             | LC                  | leaf     | stomachache                            | Jaintia               |       |      | Saikia 2004, Sajem & Gosai<br>2006        |
| Calotropis gigantea            | Apocynaceae | Shrub/              | Leaf and | Swelling of liver                      | Bodo Kachari and      | 18.18 | 0.50 | Basumatary et al.2014,                    |
| (L.) Dryand.                   |             | NE                  | latex    |                                        | Karbi                 |       |      | Rengma et al. 2018                        |
| Catharanthus roseus            | Apocynaceae | Herb <b>/</b>       | Leaf     | Diabetes, high blood                   | Zeme, Jaintia and     | 27.27 | 1.33 | Tamuli & Saikia 2004, Sajem &             |
| (L.) G.Don                     |             | NE                  |          | pressure, sinusitis and nasal bleeding | Lushai                |       |      | Gosai 2006, Sajem & Gosai<br>2010         |
| Marsdenia tinctoria            | Apocynaceae | Shrub/              | Leaf     | Dog bite and poison                    | Karbi                 | 18.18 | 1.00 | Teron 2019, Teron &                       |
| R. Br.                         |             | NE                  |          | treatment                              |                       |       |      | Borthakur 2013                            |
| Rauvolfia serpentina           | Apocynaceae | Herb <b>/</b>       | Root and | Fever, cough,                          | Karbi, Pnar, Tiwa and | 27.27 | 1.67 | Teron 2019,                               |
| (L.) Benth. ex Kurz            |             | NE                  | leaf     | stomachache, jaundice                  | Dimasa                |       |      | Rengma et al. 2018,                       |
|                                |             |                     |          | and poision treatment                  |                       |       |      | Rout <i>et al.</i> 2012                   |
| Tabernaemontana                | Apocynaceae | Shrub/              | Latex    | Dental cavities                        | Lushai and Jaintia    | 18.18 | 0.50 | Sajem & Gosai 2008, Sajem &               |
| divaricata (L.) R.Br. ex Roem. |             | LC                  |          |                                        |                       |       |      | Gosai 2006                                |
| &Schult.                       |             |                     |          |                                        |                       |       |      |                                           |
| Holarrhena pubescens Wall.     | Apocynaceae | Shrub/              | Bark and | Dysentery                              | Karbi                 | 9.09  | 1.00 | Teron 2019                                |
| ex G.Don                       |             | LC                  | latex    |                                        |                       |       |      |                                           |
| Alocasia fornicata             | Araceae     | Herb <b>/</b>       | Corm     | Poison treatment                       | Karbi                 | 9.09  | 1.00 | Teron & Borthakur 2013                    |
| (Roxb.) Schott                 |             | LC                  |          |                                        |                       |       |      |                                           |
| Alocasia macrorrhizos          | Araceae     | Herb <b>/</b>       | Root     | Joint pain                             | Bodo Kachari          | 9.09  | 1.00 | Basumatary et al. 2014                    |
| (L.) G.Don                     |             | NE                  |          |                                        |                       |       |      |                                           |
| Arum dioscoridis Sm.           | Araceae     | Herb <b>/</b><br>NE | Stem     | Boil                                   | Lushai and Jaintia    | 18.18 | 0.50 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006 |
| Colocasia antiquorum           | Araceae     | Herb <b>/</b>       | Stem     | Insect bite                            | Dimasa                | 9.09  | 1.00 | Rout <i>et al.</i> 2012                   |
| Schott                         |             | NE                  |          |                                        |                       |       |      |                                           |
| Colocasia esculenta            | Araceae     | Herb <b>/</b>       | Tuber,   | Blood coagulation, cuts                | Karbi                 | 18.18 | 1.50 | Baidya et al.2020,                        |
| (L.)Schott                     |             | LC                  | Petiole  | and wound                              |                       |       |      | Teron 2019                                |
| Homalomena                     | Araceae     | Herb/               | Rhizome  | Influenza, joint pain                  | Tiwa and Karbi        | 36.36 | 0.75 | Teron 2019, Bhattacharjee                 |
| aromatica (Spreng.) Schott     |             | NE                  |          | and blood purifier                     |                       |       |      | 2018, Baidya et al. 2020,                 |
|                                |             |                     |          |                                        |                       |       |      | Rengma et al. 2018                        |
| Lasia spinosa                  | Araceae     | Herb <b>/</b>       | Root and | Jaundice                               | Pnar                  | 9.09  | 1.00 | Teron 2019                                |
| (L.) Thwaites                  |             | LC                  | rhizome  |                                        |                       |       |      |                                           |

| Amorphophallus bulbifer   | Araceae          | Herb <b>/</b> | Stem and   | Cuts, wounds and piles  | Karbi                 | 18.18 | 1.50 | Rengma et al. 2018,           |
|---------------------------|------------------|---------------|------------|-------------------------|-----------------------|-------|------|-------------------------------|
| (Roxb.) Blume             |                  | NE            | tuber      |                         |                       |       |      | Bhattacharjee 2018            |
| Arisaema tortuosum        | Araceae          | Herb/         | Tuber      | Piles                   | Karbi                 | 9.09  | 1.00 | Bhattacharjee 2018            |
| (Wall.) Schott            |                  | NE            |            |                         |                       |       |      |                               |
| Hydrocotyle javanica      | Araliaceae       | Herb <b>/</b> | Whole      | Jaundice and bone       | Zeme                  | 9.09  | 2.00 | Tamuli & Saikia 2004          |
| Thunb.                    |                  | LC            | plant      | fracture                |                       |       |      |                               |
| Hydrocotyle               | Araliaceae       | Herb <b>/</b> | Leaf       | Dysentery               | Karbi                 | 9.09  | 1.00 | Rengma et al. 2018            |
| sibthorpioides Lam.       |                  | LC            |            |                         |                       |       |      |                               |
| Trevesia palmata          | Araliaceae       | Tree/         | Flower     | Piles                   | Dimasa                | 9.09  | 1.00 | Rout <i>et al.</i> 2012       |
| (Roxb. ex Lindl.) Vis.    |                  | LC            |            |                         |                       |       |      |                               |
| Calamus rotang L.         | Arecaceae        | Herb <b>/</b> | Shoot      | Vitality                | Karbi                 | 9.09  | 1.00 | Bhattacharjee 2018            |
|                           |                  | NE            |            |                         |                       |       |      |                               |
| Aristolochia indica L.    | Aristolochiaceae | Creeper/      | Root       | Stomachache and         | Karbi and Tiwa        | 18.18 | 1.00 | Teron 2019, Teron &           |
|                           |                  | NE            |            | poison treatment        |                       |       |      | Borthakur 2013                |
| Aristolochia platanifolia | Aristolochiaceae | Climber/      | Root       | Poison treatment        | Karbi                 | 9.09  | 1.00 | Teron & Borthakur 2013        |
| (Klotzsch) Duch.          |                  | NE            |            |                         |                       |       |      |                               |
| Aristolochia saccata      | Aristolochiaceae | Climber/      | Root and   | Stomach pain, body      | Bodo Kachari, Karbi,  | 27.27 | 2.00 | Basumatary et al., 2014,      |
| Wall.                     |                  | NE            | leaf       | pain, jaundice,         | Pnar and Tiwa         |       |      | Teron 2019, Teron &           |
|                           |                  |               |            | dysentery, constipation |                       |       |      | Borthakur2013                 |
|                           |                  |               |            | and poison treatment    |                       |       |      |                               |
| Hoya globulosa Hook.f.    | Asclepiadaceae   | Climber/      | Leaf       | Cut and wound           | Karbi                 | 9.09  | 2.00 | Teron 2019                    |
|                           |                  | NE            |            |                         |                       |       |      |                               |
| Asparagus racemosus       | Asparagaceae     | Climber/      | Leaf, root | Stomach disorder,       | Lushai, Jaintia, Zeme | 36.36 | 1.75 | Sajem & Gosai 2010,           |
| Willd.                    |                  | NE            | and whole  | jaundice, stomach ache, | and Bodo Kachari      |       |      | Basumatary et al. 2014,       |
|                           |                  |               | plant      | urinary disorder,       |                       |       |      | Sajem & Gosai 2006, Tamuli &  |
|                           |                  |               |            | rheumatic pain,nerve    |                       |       |      | Saikia 2004                   |
|                           |                  |               |            | disorder and dysentery  |                       |       |      |                               |
| Dracaena angustifolia     | Asparagaceae     | Shrub/        | Leaf       | Cut and wound           | Karbi                 | 9.09  | 2.00 | Teron 2019                    |
| (Medik.) Roxb.            |                  | NE            |            |                         |                       |       |      |                               |
| Inula cappa (D.Don) DC.   | Asteraceae       | Herb <b>/</b> | Leaf       | Cure vaginal wounds     | Karbi                 | 9.09  | 1.00 | Terangpi et al.2014           |
|                           |                  | NE            |            | after delivery          |                       |       |      |                               |
| Ageratum conyzoides       | Asteraceae       | Herb <b>/</b> | Leaf       | Bleeding, cuts, wound   | Dimasa,Karbi, Pnar,   | 45.45 | 0.80 | Rout et al.2012, Teron 2019,  |
| (L.) L.                   |                  | NE            |            | and blood coagulant     | Tiwa, Jaintia and     |       |      | Sajem & Gosai 2006, Baidya et |
|                           |                  |               |            |                         | Lushai                |       |      | al.2020, Sajem & Gosai 2010   |

| Chromolaena odorata                             | Asteraceae | Herb/               | Leaf and                          | Constipation, cure                                                            | Dimasa, Pnar and                        | 27.27 | 1.33 | Rout et al. 2012, Teron 2019,                                                                                 |
|-------------------------------------------------|------------|---------------------|-----------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|-------|------|---------------------------------------------------------------------------------------------------------------|
| (L.) R.M.King&H.Rob.                            |            | NE                  | twig                              | vaginal wounds after<br>delivery, cuts and<br>wounds                          | Karbi                                   |       |      | Terangpi et al. 2014                                                                                          |
| Crassocephalum crepidioides (Benth.) S.Moore    | Asteraceae | Herb <b>/</b><br>NE | Leaf                              | Poison treatment                                                              | Karbi                                   | 9.09  | 1.00 | Teron & Borthakur 2013                                                                                        |
| Eupatorium cannabinum<br>L.                     | Asteraceae | Herb <b>/</b><br>NE | Leaf and stem                     | Jaundice, scurvy, ulcers and skin infection                                   | Zeme and Pnar                           | 18.18 | 2.00 | Tamuli & Saikia 2004, Teron<br>2019                                                                           |
| Eupatorium chinense L.                          | Asteraceae | Herb <b>/</b><br>NE | Leaf                              | Fungal skin disease                                                           | Zeme                                    | 9.09  | 1.00 | Tamuli & Saikia 2004                                                                                          |
| Mikania micrantha Kunth.                        | Asteraceae | Climber/<br>NE      | Leaf                              | Blood coagulant,<br>diarrhoea, dyspepsia,<br>insect bite and scorpion<br>bite | Lushai, Jaintia,<br>Zeme,Karbi and Pnar | 45.45 | 1.00 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006, Tamuli & Saikia<br>2004, Baidya <i>et al</i> . 2020,<br>Teron 2019 |
| Mikania scandens<br>(L.) Willd.                 | Asteraceae | Herb <b>/</b><br>NE | Shoot                             | Cure vaginal wounds after delivery                                            | Karbi                                   | 9.09  | 1.00 | Terangpi <i>et al.,</i> 2014                                                                                  |
| Spilanthes acmella<br>(L.) L.                   | Asteraceae | Herb <b>/</b><br>NE | Flower and<br>leaf                | Anesthesia and toothache                                                      | Karbi                                   | 9.09  | 2.00 | Baidya <i>et al</i> .2020                                                                                     |
| Synedrella nodiflora<br>(L.) Gaertn.            | Asteraceae | Herb <b>/</b><br>NE | Stem and leaf                     | Body ache                                                                     | Bodo Kachari                            | 9.09  | 1.00 | Basumatary et al. 2014                                                                                        |
| Vernonia<br>volkameriifolia DC.                 | Asteraceae | Tree <b>/</b><br>LC | Leaf                              | Backache                                                                      | Karbi                                   | 9.09  | 1.00 | Rengma et al. 2018                                                                                            |
| Xanthium strumarium L.                          | Asteraceae | Herb <b>/</b><br>NE | Shoot and<br>Leaf                 | High blood pressure,<br>poison treatment and<br>dysentery                     | Karbi                                   | 18.18 | 1.50 | Bhattacharjee 2018, Teron & Borthakur 2013                                                                    |
| Acmella paniculata<br>(Wall. ex DC.) R.K.Jansen | Asteraceae | Herb <b>/</b><br>LC | Head, leaf,<br>flower and<br>leaf | Toothache and stomach ache                                                    | Pnar,Karbi, Jaintia<br>and Zeme         | 36.36 | 0.50 | Teron 2019, Bhattacharjee<br>2018,<br>Sajem & Gosai 2006, Tamuli &<br>Saikia 2004                             |
| Elephantopus scaber L.                          | Asteraceae | Herb <b>/</b><br>NE | Whole plant and root              | Fracture and stomach pain                                                     | Karbi                                   | 9.09  | 2.00 | Teron 2019                                                                                                    |
| Emilia sonchifolia<br>(L.) DC. ex DC.           | Asteraceae | Herb <b>/</b><br>NE | Shoot                             | Dysentery                                                                     | Karbi                                   | 9.09  | 1.00 | Teron 2019                                                                                                    |
| Tagetes erecta L.                               | Asteraceae | Herb <b>/</b>       | Shoot                             | Jaundice                                                                      | Karbi                                   | 9.09  | 1.00 | Teron 2019                                                                                                    |

| Basella alba L.                             | Basellaceae   | NE<br>Climber <b>/</b><br>NE | Whole<br>plant                                     | Jaundice                                                                                                                      | Karbi                                               | 9.09  | 1.00 | Teron 2019                                                                                                                |
|---------------------------------------------|---------------|------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|------|---------------------------------------------------------------------------------------------------------------------------|
| Begonia hatacoa                             | Begoniaceae   | Herb/                        | Rhizome                                            | Dysentery                                                                                                                     | Pnar                                                | 9.09  | 1.00 | Teron 2019                                                                                                                |
| BuchHam. ex D.Don                           | -0-           | NE                           |                                                    | , ,                                                                                                                           |                                                     |       |      |                                                                                                                           |
| Begonia palmata D.Don                       | Begoniaceae   | Herb <b>/</b><br>NE          | Rhizome                                            | Indigestion                                                                                                                   | Zeme                                                | 9.09  | 1.00 | Tamuli & Saikia 2004                                                                                                      |
| Begonia thomsonii<br>A.DC.                  | Begoniaceae   | Herb <b>/</b><br>NE          | Rhizome                                            | Dermatitis                                                                                                                    | Karbi, Pnar                                         | 9.09  | 1.00 | Teron 2019                                                                                                                |
| Oroxylum indicum<br>(L.) Kurz               | Bignoniaceae  | Tree <b>/</b><br>NE          | Flower,<br>bark, leaf<br>and seed                  | Deworming, gastritis,<br>jaundice, stomach<br>problem and snake bite                                                          | Karbi                                               | 45.45 | 1.00 | Rengma et al. 2018,<br>Bhattacharjee 2018, Baidya et<br>al. 2020, Teron 2019,<br>Basumatary et al. 2014                   |
| Begonia roxburghii<br>A.DC.                 | Bigoniaceae   | Herb <b>/</b><br>NE          | Rhizome,<br>bulb, leaf,<br>twig and<br>whole plant | Thorn infection,<br>stomach disorder,<br>poison treatment,<br>dermatitis, skin disease,<br>indigestion and<br>testicular pain | Jaintia, Lushai, Karbi,<br>Tiwa, Zeme and<br>Dimasa | 54.55 | 1.17 | Sajem & Gosai 2006, Sajem & Gosai 2010, Teron & Borthakur 2013, Teron 2019, Rout <i>et al.</i> 2012, Tamuli & Saikia 2004 |
| Ananas comosus (L.) Merr.                   | Bromeliaceae  | Herb <b>/</b><br>NE          | Fruit                                              | Lung tonic                                                                                                                    | Dimasa                                              | 9.09  | 1.00 | Rout et al.2012                                                                                                           |
| <i>Opuntia dillenii</i><br>(Ker Gawl.) Haw. | Cactaceae     | Herb <b>/</b><br>LC          | Stem and fruit                                     | Asthma, cough and snake bite                                                                                                  | Bodo Kachari                                        | 9.09  | 3.00 | Basumatary et al. 2014                                                                                                    |
| Opuntia ficus-indica<br>(L.) Mill.          | Cactaceae     | Shrub <b>/</b><br>DD         | Whole<br>plant                                     | Ulcer and urine disease                                                                                                       | Bodo Kachari                                        | 9.09  | 2.00 | Basumatary et al. 2014                                                                                                    |
| Lobelia nummularia                          | Campanulaceae | Herb <b>/</b>                | Fruit                                              | Headache                                                                                                                      | Karbi                                               | 9.09  | 1.00 | Teron 2019                                                                                                                |
| Lam.                                        |               | NE                           |                                                    |                                                                                                                               |                                                     |       |      |                                                                                                                           |
| Crateva nurvala                             | Capparaceae   | Tree/                        | Shoot                                              | Recovery from                                                                                                                 | Karbi                                               | 9.09  | 1.00 | Terangpi <i>et al.</i> 2014                                                                                               |
| BuchHam.                                    |               | NE                           |                                                    | weakness after delivery                                                                                                       |                                                     |       |      |                                                                                                                           |
| Crateva religiosa                           | Capparaceae   | Tree/                        | Bark                                               | Urinary complaint                                                                                                             | Karbi                                               | 9.09  | 1.00 | Teron 2019                                                                                                                |
| G.Forst.                                    |               | LC                           |                                                    |                                                                                                                               |                                                     |       |      |                                                                                                                           |
| Carica papaya L.                            | Caricaceae    | Tree <b>/</b><br>NE          | Fruit                                              | Expelling worm                                                                                                                | Dimasa                                              | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                                                                                   |

| Drymaria cordata          | Caryophyllaceae | Herb <b>/</b>          | Whole             | Dysentery,                                            | Karbi                  | 18.18 | 1.50 | Teron 2019, Bhattacharjee                          |
|---------------------------|-----------------|------------------------|-------------------|-------------------------------------------------------|------------------------|-------|------|----------------------------------------------------|
| (L.) Willd. ex Schult.    |                 | NE                     | plant and<br>leaf | stomachache and sinusitis                             |                        |       |      | 2018                                               |
| Chloranthus elatior       | Chloranthaceae  | Shrub/                 | Leaf              | Smooth delivery and                                   | Karbi                  | 18.18 | 0.50 | Teron 2019, Terangpi et al.                        |
| Link                      |                 | NE                     |                   | complicacy during delivery                            |                        |       |      | 2014                                               |
| Garcinia lanceifolia      | Clusiaceae      | Tree/                  | Seed              | Diarrhoea                                             | Dimasa                 | 9.09  | 1.00 | Rout et al.2012                                    |
| Roxb.                     |                 | NE                     |                   |                                                       |                        |       |      |                                                    |
| Garcinia pedunculata      | Clusiaceae      | Tree/                  | Fruit             | Poison treatment,                                     | Karbi                  | 18.18 | 1.50 | Teron & Borthakur 2013,                            |
| Roxb. ex BuchHam.         |                 | NE                     |                   | stomach ache and dysentery                            |                        |       |      | Rengma et al. 2018                                 |
| Gloriosa superba L.       | Colchicaceae    | Herb <b>/</b><br>LC    | Leaf              | Worms                                                 | Dimasa                 | 9.09  | 1.00 | Rout <i>et al.</i> 2012                            |
| Terminalia bellirica      | Combretaceae    | Tree/                  | Fruit             | Constipation and                                      | Karbi                  | 9.09  | 2.00 | Teron 2019                                         |
| (Gaertn.) Roxb.           |                 | LC                     |                   | dysentery                                             |                        |       |      |                                                    |
| Terminalia chebula Retz.  | Combretaceae    | Tree/                  | Fruit             | Stomach pain, gastric                                 | Bodo Kachari and       | 36.36 | 2.00 | Basumatary et al.2014, Teron                       |
|                           |                 | LC                     |                   | problem, cough, fever,                                | Karbi                  |       |      | 2019, Rengma et al. 2018,<br>Teron & Borthakur2013 |
|                           |                 |                        |                   | flu, dysentery,<br>deworming and poision<br>treatment |                        |       |      | Teron & Borthakur2013                              |
| Commelina benghalensis L. | Commelinaceae   | Herb <b>/</b><br>LC    | Leaf              | Ear ache                                              | Karbi                  | 9.09  | 1.00 | Bhattacharjee 2018                                 |
| Floscopa scandens Lour.   | Commelinaceae   | Herb <b>/</b><br>LC    | Shoot             | Smooth child delivery                                 | Tiwa                   | 9.09  | 1.00 | Teron 2019                                         |
| Cuscuta reflexa Roxb.     | Convolvulaceae  | Climber/               | Whole             | Premature hair fall,                                  | Jaintia                | 27.27 | 1.33 | Sajem & Gosai 2006, Teron                          |
|                           |                 | LC                     | plant and         | graying of hair,                                      |                        |       |      | 2019, Sajem & Gosai 2010                           |
|                           |                 |                        | stem              | dandruff and jaundice                                 |                        |       |      |                                                    |
| Ipomoea alba L.           | Convolvulaceae  | Climber <b>/</b><br>LC | Leaf              | Improve appetite                                      | Dimasa                 | 9.09  | 1.00 | Rout <i>et al.</i> 2012                            |
| Cheilocostus speciosus    | Costaceae       | Herb/                  | Rhizome,          | Snake bite, digestion,                                | Karbi                  | 27.27 | 1.33 | Teron 2019, Rengma et al.                          |
| (J.Koenig) C.D.Specht     |                 | LC                     | leaf and          | urinary problem and                                   |                        |       |      | 2018, Basumatary et al. 2014                       |
|                           |                 |                        | root              | burning                                               |                        |       |      |                                                    |
| Bryophyllum pinnatum      | Crassulaceae    | Herb <b>/</b>          | Leaf              | Eye sores, burns and                                  | Lushai, Jaintia, Zeme, | 54.55 | 1.50 | Sajem & Gosai 2010, Sajem &                        |
| (Lam.) Oken               |                 | NE                     |                   | bruises, kidney stones,                               | Karbi and Bodo         |       |      | Gosai 2006, Tamuli & Saikia                        |
|                           |                 |                        |                   | hypertension,                                         | Kachari                |       |      | 2004, Baidya <i>et al.</i> 2020,                   |

|                        |                  |                        |                | gall bladder stone,               |                       |       |      | Teron 2019, Basumatary et                              |
|------------------------|------------------|------------------------|----------------|-----------------------------------|-----------------------|-------|------|--------------------------------------------------------|
|                        |                  |                        |                | kidney problems,                  |                       |       |      | al.2014                                                |
|                        |                  |                        |                | leucorrhoea, burn and             |                       |       |      |                                                        |
|                        |                  |                        |                | boil                              |                       |       |      |                                                        |
| Benincasa hispida      | Cucurbitaceae    | Climber/               | Fruit          | Fever and dysentery               | Karbi and Dimasa      | 18.18 | 1.00 | Teron 2019, Rout <i>et al</i> .2012                    |
| (Thunb.) Cogn.         |                  | LC                     |                |                                   |                       |       |      |                                                        |
| Coccinia grandis       | Cucurbitaceae    | Climber/               | Tuber          | Stomachache                       | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |
| (L.) Voigt             |                  | NE                     |                |                                   |                       |       |      |                                                        |
| Cucumis melo L.        | Cucurbitaceae    | Herb <b>/</b><br>NE    | Fruit          | Fever                             | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |
| Cucumis sativus L.     | Cucurbitaceae    | Climber <b>/</b><br>NE | Leaf           | Urinary problem                   | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |
| Cucurbita pepo L.      | Cucurbitaceae    | Climber <b>/</b><br>LC | Fruit          | Poison treatment                  | Karbi                 | 9.09  | 1.00 | Teron & Borthakur 2013                                 |
| Gymnopetalum           | Cucurbitaceae    | Climber/               | Fruit          | Dysentery                         | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |
| chinense (Lour.) Merr. |                  | NE                     |                |                                   |                       |       |      |                                                        |
| Hodgsonia macrocarpa   | Cucurbitaceae    | Climber/               | Fruit          | Dysentery                         | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |
| (Blume) Cogn.          |                  | NE                     |                |                                   |                       |       |      |                                                        |
| Lagenaria siceraria    | Cucurbitaceae    | Climber/               | Leaf           | Fracture and poison               | Karbi                 | 18.18 | 1.00 | Teron 2019, Teron &                                    |
| (Molina) Standl.       |                  | NE                     |                | treatment                         |                       |       |      | Borthakur2013                                          |
| Momordica charantia L. | Cucurbitaceae    | Climber/               | Fruit, leaf    | High blood pressure,              | Dimasa, Zeme, Jaintia | 36.36 | 1.00 | Rout et al.2012, Tamuli &                              |
|                        |                  | NE                     | and seed       | chest pain, rheumatism and rabies | and Lushai            |       |      | Saikia 2004, Sajem & Gosai<br>2006, Sajem & Gosai 2010 |
| Cycas revoluta Thunb.  | Cycadaceae       | Tree <b>/</b><br>LC    | Female<br>cone | Painful urination                 | Dimasa                | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                |
| Cycas pectinata        | Cycadaceae       | Tree/                  | Leaf           | Gastritis                         | Karbi                 | 9.09  | 1.00 | Bhattacharjee 2018                                     |
| BuchHam.               | ,                | VU                     |                |                                   |                       |       |      | ,                                                      |
| Dillenia indica L.     | Dilleniaceae     | Tree/                  | Whole          | Dysentery                         | Karbi                 | 9.09  | 1.00 | Baidya <i>et al</i> .2020                              |
|                        |                  | LC                     | plant          | , ,                               |                       |       |      | •                                                      |
| Dioscorea alata L.     | Dioscoreaceae    | Climber/               | Leaves,        | Blood pressure,                   | Karbi                 | 27.27 | 1.00 | Baidya et al.2020, Terangpi et                         |
|                        |                  | NE                     | bark, tuber,   | weakness after delivery           |                       |       |      | al. 2014, Teron &                                      |
|                        |                  |                        | whole plant    | and poison treatment              |                       |       |      | Borthakur2013                                          |
| Dioscorea bulbifera L. | Dioscoreaceae    | Climber<br>NE          | Bulbil         | Poison treatment                  | Karbi                 | 9.09  | 1.00 | Teron & Borthakur2013                                  |
| Shorea robusta Gaertn. | Dipterocarpaceae | Tree/                  | Root           | Wound healing                     | Karbi                 | 9.09  | 1.00 | Teron 2019                                             |

|                               |                  | LC            |             |                                         |                     |       |      |                                      |
|-------------------------------|------------------|---------------|-------------|-----------------------------------------|---------------------|-------|------|--------------------------------------|
| Vatica lanceifolia (Roxburgh) | Dipterocarpaceae | Tree/         | Bark        | Dysentery                               | Karbi               | 9.09  | 1.00 | Teron 2019                           |
| Blume                         |                  | CE            |             |                                         |                     |       |      |                                      |
| Elaeagnus caudata             | Elaeagnaceae     | Climber/      | Roots       | Miscarriage                             | Dimasa              | 9.09  | 1.00 | Rout <i>et al.</i> 2012              |
| Schltdl. ex Momiy.            |                  | NE            |             |                                         |                     |       |      |                                      |
| Elaeocarpus tectorius         | Elaeocarpaceae   | Tree/         | Fruit       | Constipation                            | Dimasa              | 9.09  | 1.00 | Rout et al. 2012                     |
| (Lour.) Poir.                 |                  | NE            |             |                                         |                     |       |      |                                      |
| Croton joufra Roxb.           | Euphorbiaceae    | Tree/         | Leaf        | Reduce abdominal pain                   | Karbi               | 9.09  | 1.00 | Terangpi <i>et al.</i> 2014          |
|                               |                  | NE            |             | after delivery                          |                     |       |      |                                      |
| Euphorbia hirta L.            | Euphorbiaceae    | Herb <b>/</b> | Whole       | Dysentery                               | Karbi               | 9.09  | 1.00 | Baidya <i>et al.</i> 2020            |
|                               |                  | NE            | plant       |                                         |                     |       |      |                                      |
| Jatropha curcas L.            | Euphorbiaceae    | Shrub/        | Latex, leaf | Burns, wounds,                          | Dimasa, Karbi and   | 27.27 | 1.67 | Rout <i>et al.</i> 2012, Teron 2019, |
|                               |                  | LC            | and stem    | headache, toothache and blood coagulant | Pnar                |       |      | Rengma et al. 2018                   |
| Mallotus philippensis         | Euphorbiaceae    | Tree/         | Seeds       | Skin infection                          | Karbi               | 9.09  | 1.00 | Baidya <i>et al</i> .2020            |
| (Lam.) Müll.Arg.              | Euphorbiaceae    | LC            | seeus       | Skiii iiiiectioii                       | Karbi               | 9.09  | 1.00 | Baidya et di.2020                    |
| Ricinus communis L.           | Euphorbiaceae    | Shrub/        | Leaf        | Itching, skin problems                  | Bodo Kachari and    | 18.18 | 1.50 | Basumatary et al.2014, Teron         |
| memas communs L.              | Lapitorbiaceae   | NE            | Lear        | and headache                            | Karbi               | 10.10 | 2.50 | 2019                                 |
| Tragia involucrata L.         | Euphorbiaceae    | Shrub/        | Root        | Intestinal worms                        | Karbi               | 9.09  | 1.00 | Teron 2019                           |
| J                             | •                | NE            |             |                                         |                     |       |      |                                      |
| Curculigo orchioides          | Hypoxidaceae     | Herb/         | Rhizome     | Blood clotting, relieve                 | Karbi               | 18.18 | 1.50 | Teron 2019, Teron &                  |
| Gaertn.                       |                  | NE            | and root    | pain and poison                         |                     |       |      | Borthalur, 2013                      |
|                               |                  |               |             | treatment                               |                     |       |      |                                      |
| Clerodendrum hastatum Lindl.  | Lamiaceae        | Shrub/        | Leaf        | Vaginal itches                          | Karbi               | 9.09  | 1.00 | Terangpi et al. 2014                 |
|                               |                  | NE            |             |                                         |                     |       |      |                                      |
| Clerodendrum                  | Lamiaceae        | Shrub/        | Leaf        | High blood pressure                     | Dimasa              | 45.45 | 0.40 | Rout et al.2012, Tamuli &            |
| <i>glandulosum</i> Lindl.     |                  | NE            |             | and diabetes                            |                     |       |      | Saikia 2004, Sajem & Gosai           |
|                               |                  |               |             |                                         |                     |       |      | 2006. Rengma <i>et al.</i> 2018,     |
|                               |                  |               |             |                                         |                     |       |      | Sajem & Gosai 2010                   |
| Clerodendrum                  | Lamiaceae        | Shrub/        | Leaf and    | Bee sting, insanity,                    | Dimasa, Karbi, Bodo | 63.64 | 1.29 | Rout <i>et al.</i> 2012, Teron 2019, |
| infortunatum L.               |                  | LC            | twig        | deworming, dysentery,                   | Kachari and Jaintia |       |      | Baidya et al. 2020,                  |
|                               |                  |               |             | diabetes, high blood                    |                     |       |      | Basumatary et al. 2014, Sajem        |
|                               |                  |               |             | pressure, asthma,                       |                     |       |      | & Gosai 2006, Terangpi <i>et al.</i> |
|                               |                  |               |             | complication in                         |                     |       |      | 2014, Rengma <i>et al.</i> 2018      |

|                         |           |                       |                           | menstruation and            |                            |       |      |                                                        |
|-------------------------|-----------|-----------------------|---------------------------|-----------------------------|----------------------------|-------|------|--------------------------------------------------------|
| Clabaltaia atuahilifana | Laurianaa | I I a wha /           | Turina                    | difficulty in breathing     | 1/ ala :                   | 0.00  | 1.00 | Townsi et al 2014                                      |
| Elsholtzia strobilifera | Lamiaceae |                       | Twigs                     | Reduce abdominal pain       | Karbi                      | 9.09  | 1.00 | Terangpi et al.2014                                    |
| (Benth.) Benth.         |           | NE                    |                           | after delivery              | Manufa!                    | 10.10 | 4.00 | Daile at al 2020 Tanan 2010                            |
| Gmelina arborea Roxb.   | Lamiaceae | •                     | Flower, leaf<br>and fruit | Fever and stomach           | Karbi                      | 18.18 | 1.00 | Baidya <i>et al</i> .2020, Teron 2019                  |
|                         |           |                       |                           | ache                        | Manufa!                    | 0.00  | 4.00 | Daild and at all 2020                                  |
| Leucas aspera           | Lamiaceae |                       | Flower and                | Sinusitis                   | Karbi                      | 9.09  | 1.00 | Baidya <i>et al</i> .2020                              |
| (Willd.) Link           |           |                       | leaf                      | 15 con automorphisch        | Dada Kadasi                | 0.00  | 2.00 | Decomposite we set of 2014                             |
| Mentha spicata L.       | Lamiaceae |                       | Tender                    | Liver enlargement and       | Bodo Kachari               | 9.09  | 2.00 | Basumatary et al.2014                                  |
|                         |           |                       | shoot and                 | loss of vigour              |                            |       |      |                                                        |
| Onima                   | Laurianaa |                       | leaf                      | Daisan tuaatusant           | 1/ ala :                   | 0.00  | 1.00 | Taran R Dawbhalu 2012                                  |
| Ocimum americanum L.    | Lamiaceae | •                     | Leaf                      | Poison treatment            | Karbi                      | 9.09  | 1.00 | Teron & Borthakur2013                                  |
| Ocimum basilicum L.     | Laminana  | NE<br>Herb <b>/</b> L | Leaf                      | Cut assidental blooding     | Bodo Kachari and           | 18.18 | 1.50 | Pagumatany at al. 2014                                 |
| Ocimum basincum L.      | Lamiaceae | NE                    | Leai                      | Cut, accidental bleeding    |                            | 16.16 | 1.50 | Basumatary <i>et al.</i> 2014,<br>Tamuli & Saikia 2004 |
| Ocimum tenuiflorum L.   | Laminana  |                       | Leaf                      | and cough Stomach ache,head | Zeme<br>Jaintia and Lushai | 18.18 | 2.00 |                                                        |
| Ocimum tenuijiorum L.   | Lamiaceae | NE                    | Lear                      | ache, cough and             | Jaintia and Lushai         | 18.18 | 2.00 | Sajem & Gosai 2006, Sajem & Gosai 2010                 |
|                         |           | INE                   |                           | parasitic skin disease      |                            |       |      | Gosai 2010                                             |
| Premna pinguis          | Lamiaceae | Herb <b>/</b> T       | Tuber                     | Poison treatment and        | Karbi                      | 18.18 | 1.00 | Teron & Borthakur 2013,                                |
| C.B.Clarke              | Lamiaceae | NE                    | ruber                     | toothache                   | Kaibi                      | 10.10 | 1.00 | Teron 2019                                             |
| Rotheca serrata         | Lamiaceae |                       | Leaf, flower              | Fever, stomach ache,        | Jaintia and Karbi          | 27.27 | 1.33 | Sajem & Gosai 2006, Teron                              |
| (L.) Steane & Mabb.     | Lamiaceae | •                     | and fruit                 | cuts and wound              | Janitia and Karbi          | 27.27 | 1.55 | 2019, Bhattacharjee 2018                               |
| Vitex negundo L.        | Lamiaceae |                       | Leaf                      | Malaria                     | Karbi                      | 9.09  | 1.00 | Bhattacharjee 2018                                     |
| Vitex negundo L.        | Lamiaceae | LC                    | Leai                      | iviaiaila                   | Karbi                      | 3.03  | 1.00 | Bhattacharjee 2010                                     |
| Pogostemon linearis     | Lamiaceae |                       | Leaf                      | Body ache                   | Karbi                      | 9.09  | 1.00 | Teron 2019                                             |
| (Benth.) Kuntze         | Lamiaceae | NE                    | LCai                      | body defic                  | Karbi                      | 5.05  | 1.00 | 101011 2013                                            |
| Pogostemon              | Lamiaceae |                       | Leaf                      | Joint pain, cure vaginal    | Karbi                      | 27.27 | 1.33 | Rengma et al. 2018, Terangpi                           |
| parviflorus Benth.      | Lamiaceae | NE                    | LCUI                      | wounds after delivery       | Karbi                      | 27.27 | 1.55 | et al. 2014, Teron &                                   |
| purvijiorus bentin.     |           | 112                   |                           | and poison treatment        |                            |       |      | Borthakur2013                                          |
| Premna mollissima Roth  | Lamiaceae | Tree <b>/</b> NE L    | Leaf                      | Toothache                   | Karbi                      | 9.09  | 1.00 | Teron 2019                                             |
| Alseodaphne petiolaris  | Lauraceae | •                     | Bark                      | Jaundice                    | Dimasa                     | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                |
| Hook.f.                 | Laaraccac | NE                    |                           |                             | 2                          | 3.03  | 1.00 |                                                        |
| Litsea cubeba           | Lauraceae |                       | Fruit                     | Cough                       | Dimasa                     | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                |
| (Lour.) Pers.           | Laaraccac | LC                    |                           | wb''                        | 2.111454                   | 5.05  | 1.00 |                                                        |
| (====:, 1 =:=:          |           |                       |                           |                             |                            |       |      |                                                        |

| Litsea glutinosa                     | Lauraceae     | Tree/                  | Bark of                | Bone fracture                                                              | Bodo Kachari                             | 9.09  | 1.00 | Basumatary et al. 2014                                                                                                          |
|--------------------------------------|---------------|------------------------|------------------------|----------------------------------------------------------------------------|------------------------------------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------|
| (Lour.) C.B.Rob.                     |               | LC                     | stem                   |                                                                            |                                          |       |      |                                                                                                                                 |
| Careya arborea Roxb.                 | Lecythidaceae | Tree <b>/</b><br>NE    | Root                   | Dysentery, diarrhoea and blood dysentery                                   | Karbi                                    | 9.09  | 3.00 | Teron 2019                                                                                                                      |
| Tadehagi triquetrum<br>(L.) H.Ohashi | Leguminaceae  | Herb <b>/</b><br>NE    | Leaf and seed          | Vermicide and deworming                                                    | Lushai and Jaintia                       | 18.18 | 1.00 | Sajem & Gosai, 2008, Sajem &<br>Gosai 2006                                                                                      |
| Abrus precatorius L.                 | Leguminosae   | Shrub <b>/</b><br>NE   | Seed and<br>leaf       | Poison treatment and cough                                                 | Karbi                                    | 18.18 | 1.00 | Teron & Borthakur2013,<br>Bhattacharjee 2018                                                                                    |
| Albizia lebbeck (L.) Benth.          | Leguminosae   | Tree <b>/</b><br>LC    | Leaf, seed<br>and bark | Dental problem, eye disorders and piles                                    | Karbi                                    | 9.09  | 3.00 | Baidya et al.2020                                                                                                               |
| Albizia procera<br>(Roxb.) Benth.    | Leguminosae   | Tree <b>/</b><br>LC    | Bark                   | Stomach pain                                                               | Karbi                                    | 9.09  | 1.00 | Baidya et al.2020                                                                                                               |
| Cajanus cajan (L.) Millsp.           | Leguminosae   | Shrub <b>/</b><br>NT   | Seed, shoot and leaf   | Expelling worm, jaundice and diarrhoea                                     | Bodo Kachari, Karbi<br>and Dimasa        | 27.27 | 1.00 | Basumatary et al. 2014,Teron<br>2019, Rout et al. 2012                                                                          |
| Erythrina variegata L.               | Leguminosae   | Tree <b>/</b><br>LC    | Leaf                   | Eye problem, skin disease and nose bleeding                                | Bodo Kachari                             | 9.09  | 3.00 | Basumatary <i>et al</i> .2014                                                                                                   |
| Lablab purpureus<br>(L.) Sweet       | Leguminosae   | Climber <b>/</b><br>NE | Root and whole plant   | Malaria, chest pain,<br>external bleeding,<br>jaundice and sterility       | Zeme and Karbi                           | 27.27 | 1.67 | Tamuli & Saikia 2004, Teron<br>2019, Terangpi <i>et al</i> .2014                                                                |
| Mimosa pudica L.                     | Leguminosae   | Herb <b>/</b><br>LC    | Root                   | Jaundice, oral contraceptive, piles, fungal skin disease and birth control | Karbi, Pnar, Lushai,<br>Jaintia and Zeme | 54.55 | 0.83 | Baidya et al. 2020, Teron<br>2019, Sajem & Gosai 2006,<br>Sajem & Gosai 2010, Tamuli &<br>Saikia 2004, Terangpi et al.<br>2014, |
| Mucuna nigricans<br>(Lour.) Steud.   | Leguminosae   | Climber <b>/</b><br>NE | Seed                   | Fever and cough                                                            | Karbi                                    | 9.09  | 2.00 | Teron 2019                                                                                                                      |
| Pterocarpus santalinus L.f.          | Leguminosae   | Tree <b>/</b><br>EN    | Seed                   | Poison treatment                                                           | Karbi                                    | 9.09  | 1.00 | Teron & Borthakur2013                                                                                                           |
| Senna alata (L.) Roxb.               | Leguminosae   | Herb <b>/</b><br>LC    | Leaf                   | Deworming                                                                  | Karbi                                    | 18.18 | 0.50 | Teron 2019, Rengma <i>et al.</i><br>2018                                                                                        |
| Senna tora (L.) Roxb.                | Leguminosae   | Herb <b>/</b><br>NE    | Leaf, bark<br>and root | Skin diseases, ring worms, leprosy, tonsil and jaundice                    | Jaintia, Lushai and<br>Karbi             | 36.36 | 1.25 | Sajem & Gosai 2006, Sajem &<br>Gosai 2008, Baidya <i>et al</i> .2020,<br>Bhattacharjee 2018                                     |
| Bauhinia purpurea L.                 | Leguminosae   | Tree/                  | Leaf                   | Poisonous bites                                                            | Karbi                                    | 9.09  | 1.00 | Baidya et al.2020                                                                                                               |

| Bauhinia scandens L.           | Leguminosae     | LC<br>Climber <b>/</b> | Stem                                | Snake bite                                                         | Dimasa                             | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                                                                                      |
|--------------------------------|-----------------|------------------------|-------------------------------------|--------------------------------------------------------------------|------------------------------------|-------|------|------------------------------------------------------------------------------------------------------------------------------|
| Lawsonia inermis L.            | Lythraceae      | NE<br>Tree <b>/</b>    | Leaf                                | Scabies                                                            | Bodo Kachari                       | 9.09  | 1.00 | Basumatary et al. 2014                                                                                                       |
| Gossypium hirsutum L.          | Malvaceae       | NE<br>Shrub <b>/</b>   | Seed                                | Memory enhancer                                                    | Zeme                               | 9.09  | 1.00 | Tamuli & Saikia 2004                                                                                                         |
| Hibiscus rosa-sinensis L.      | Malvaceae       | VU<br>Tree <b>/</b>    | Bark,                               | Cholera, stomach pain                                              | Bodo Kachari and                   | 18.18 | 1.50 | Basumatary et al. 2014,                                                                                                      |
|                                |                 | NE                     | flower,<br>shoot, leaf<br>and latex | and dysentery                                                      | Karbi                              |       |      | Baidya <i>et al.</i> 2020                                                                                                    |
| Hibiscus sabdariffa L.         | Malvaceae       | Shrub <b>/</b><br>NE   | Leaf and calyx                      | Poison treatment                                                   | Karbi                              | 9.09  | 1.00 | Teron & Borthakur 2013                                                                                                       |
| Sida cordifolia L.             | Malvaceae       | Herb <b>/</b><br>NE    | Leaf                                | Swelling problem                                                   | Bodo Kachari                       | 9.09  | 1.00 | Basumatary et al. 2014                                                                                                       |
| Urena lobata L.                | Malvaceae       | Shrub <b>/</b><br>LC   | Leaf                                | Blood pressure,<br>rheumatic pain and<br>body ache                 | Lushai, Jaintia and<br>Zeme        | 27.27 | 1.00 | Sajem & Gosai, 2008, Sajem &<br>Gosai 2006, Tamuli & Saikia<br>2004                                                          |
| Bombax ceiba L.                | Malvaceae       | Tree <b>/</b><br>LC    | Root                                | Cough and urinary complaint                                        | Karbi                              | 9.09  | 2.00 | Teron 2019                                                                                                                   |
| Gossypium arboreum L.          | Malvaceae       | Tree <b>/</b><br>NT    | Seed                                | Memory power                                                       | Lushai and Jaintia                 | 18.18 | 0.50 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006                                                                                    |
| Phrynium pubinerve<br>Blume    | Marantaceae     | Herb <b>/</b><br>NE    | Root                                | Poison treatment                                                   | Karbi                              | 9.09  | 1.00 | Teron & Borthakur2013                                                                                                        |
| Melastoma malabathricum L.     | Melastomataceae | Shrub/<br>NE           | Leaf, twig<br>and whole<br>plant    | Indigestion, dysentery and poison treatment                        | Lushai, Jaintia, Zeme<br>and Karbi | 54.55 | 0.50 | Sajem & Gosai 2010, Sajem & Gosai 2006, Tamuli & Saikia 2004, Baidya <i>et al</i> . 2020, Teron 2019, Teron & Borthakur 2013 |
| Azadirachta indica A.Juss.     | Meliaceae       | Tree <b>/</b><br>LC    | Leaf and<br>Bark                    | Antifertility, skin disease, boil, itching, allergy, worms and pox | Karbi, Bodo Kachari<br>and Dimasa  | 36.36 | 1.75 | Terangpi <i>et al.</i> 2014,<br>Basumatary <i>et al.</i> 2014,<br>Teron 2019, Rout <i>et al.</i> 2012                        |
| Chukrasia tabularis<br>A.Juss. | Meliaceae       | Tree <b>/</b><br>LC    | Leaf                                | Astringent                                                         | Karbi                              | 9.09  | 1.00 | Baidya <i>et al.</i> 2020                                                                                                    |
| Dysoxylum gotadhora            | Meliaceae       | Tree/                  | Seed                                | Leprosy                                                            | Karbi                              | 9.09  | 1.00 | Teron 2019                                                                                                                   |

| (BuchHam.) Mabb.                            |                 | NE                             |                         |                                                         |                                   |       |      |                                                                                                 |
|---------------------------------------------|-----------------|--------------------------------|-------------------------|---------------------------------------------------------|-----------------------------------|-------|------|-------------------------------------------------------------------------------------------------|
| Tinospora sinensis                          | Menispermaceae  | Climber/                       | Stem                    | Diabetes                                                | Karbi                             | 9.09  | 1.00 | Baidya <i>et al.</i> 2020                                                                       |
| (Lour.) Merr.                               |                 | NE                             |                         |                                                         |                                   |       |      |                                                                                                 |
| Ficus hispida L.f.                          | Moraceae        | Tree <b>/</b><br>LC            | Leaf, bark<br>and fruit | Ringworm                                                | Karbi                             | 9.09  | 1.00 | Baidya <i>et al</i> . 2020                                                                      |
| Ficus religiosa L.                          | Moraceae        | Tree <b>/</b><br>NE            | Bark                    | Jaundice                                                | Karbi                             | 9.09  | 1.00 | Teron 2019                                                                                      |
| Morus australis Poir.                       | Moraceae        | Shrub <b>/</b><br>NE           | Fruit                   | Urinary problems                                        | Karbi                             | 9.09  | 1.00 | Teron 2019                                                                                      |
| Musa paradisiaca L.                         | Musaceae        | Herb <b>/</b><br>NE            | Stem and sap            | Fever, malaria, blood coagulant and sterility           | Bodo Kachari, Dimasa<br>and Karbi | 36.36 | 1.00 | Basumatary <i>et al.</i> 2014, Rout <i>et al.</i> 2012, Teron 2019, Terangpi <i>et al.</i> 2014 |
| <i>Musa velutina</i><br>H.Wendl. &Drude     | Musaceae        | Herb <b>/</b><br>NE            | Sap                     | Blood coagulant                                         | Karbi                             | 9.09  | 1.00 | Teron 2019                                                                                      |
| Syzygium cumini<br>(L.) Skeels              | Myrtaceae       | Tree <b>/</b><br>LC            | Seed                    | Diabetes                                                | Dimasa                            | 9.09  | 1.00 | Rout et al.2012                                                                                 |
| Psidium guajava L.                          | Myrtaceae       | Tree <b>/</b><br>LC            | Shoot and leaf          | Dysentery and stomachache                               | Karbi, Tiwa and Bodo<br>Kachari   | 18.18 | 1.00 | Teron 2019, Basumatary et al.2014                                                               |
| Nelumbo nucifera Gaertn.                    | Nelumbonaceae   | Aquatic<br>Herb <b>/</b><br>NE | Flower                  | Jaundice                                                | Bodo Kachari                      | 9.09  | 1.00 | Basumatary et al. 2014                                                                          |
| Mirabilis jalapa L.                         | Nyctaginaceae   | Herb <b>/</b><br>NE            | Leaf                    | Skin itch, sprains, joint swelling and poison treatment | Dimasa                            | 18.18 | 2.00 | Rout <i>et al.</i> 2012, Teron & Borthakur2013                                                  |
| Erythropalum scandens Blume.                | Olacaceae       | Climber <b>/</b><br>LC         | Bark and<br>leaf        | Piles and prolapsed genitals                            | Karbi                             | 18.18 | 1.00 | Teron 2019, Terangpi <i>et al.</i><br>2014                                                      |
| Olax acuminata Wall. ex Benth.              | Olacaceae       | Herb <b>/</b><br>NE            | Leaf                    | Body ache                                               | Karbi                             | 9.09  | 1.00 | Teron 2019                                                                                      |
| Nyctanthes arbor-tristis L.                 | Oleaceae        | Tree <b>/</b><br>NE            | Leaf and flower         | Fever, stomach pain, baldness and malaria               | Bodo Kachari and<br>Karbi         | 18.18 | 2.00 | Basumatary <i>et al.</i> 2014,<br>Bhattacharjee 2018                                            |
| Ludwigia hyssopifolia<br>(G.Don) Exell      | Onagraceae      | Herb <b>/</b><br>LC            | Twig                    | Foot infection                                          | Karbi                             | 9.09  | 1.00 | Teron 2019                                                                                      |
| Helminthostachys zeylanica (Linnaeus) Hook. | Ophioglossaceae | Herb <b>/</b><br>NE            | Root                    | Poison treatment                                        | Karbi                             | 9.09  | 1.00 | Teron & Borthakur 2013                                                                          |
| Papilionanthe teres                         | Orchidaceae     | Epiphyte/                      | Stem                    | Wound                                                   | Karbi, Tiwa                       | 9.09  | 1.00 | Teron 2019                                                                                      |

| (Roxb.) Schltr.                                 |                | NE                     |                                  |                                                                                                               |                                    |       |      |                                                                                                                                      |
|-------------------------------------------------|----------------|------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| Averrhoa carambola L.                           | Oxalidaceae    | Tree <b>/</b><br>NE    | Fruits                           | Jaundice and poison treatment                                                                                 | Bodo Kachari, Karbi<br>and Tiwa    | 27.27 | 0.67 | Basumatary et al.2014, Teron 2019, Teron & Borthakur2013                                                                             |
| Oxalis corniculata L.                           | Oxalidaceae    | Herb <b>/</b><br>NE    | Whole<br>plant                   | Dysentery                                                                                                     | Karbi                              | 9.09  | 1.00 | Baidya et al.2020                                                                                                                    |
| Oxalis debilis var.<br>corymbosa (DC.) Lourteig | Oxalidaceae    | Herb <b>/</b><br>NE    | Whole<br>plant                   | Dyspepsia, jaundice and indigestion                                                                           | Lushai, Jaintia and<br>Zeme        | 27.27 | 1.00 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006, Tamuli & Saikia<br>2004                                                                   |
| Argemone mexicana L.                            | Papaveraceae   | Herb <b>/</b><br>NE    | Leaf                             | Headache, malarial<br>fever, leprosy and<br>jaundice                                                          | Bodo Kachari                       | 9.09  | 4.00 | Basumatary et al.2014                                                                                                                |
| Millettia pachycarpa Benth.                     | Papilionaceae  | Climber <b>/</b><br>NE | Bark                             | Skin itch and skin infection                                                                                  | Dimasa                             | 9.09  | 1.00 | Rout et al.2012                                                                                                                      |
| Passiflora foetida L.                           | Passifloraceae | Climber <b>/</b><br>NE | Fruit                            | Sore tongue                                                                                                   | Karbi                              | 9.09  | 1.00 | Teron 2019                                                                                                                           |
| Phyllanthus amarus<br>Schumach. &Thonn.         | Phyllanthaceae | Herb <b>/</b><br>NE    | Fruit                            | Jaundice                                                                                                      | Karbi                              | 9.09  | 1.00 | Baidya et al.2020                                                                                                                    |
| Phyllanthus emblica L.                          | Phyllanthaceae | Tree <b>/</b><br>LC    | Fruit and<br>bark                | Jaundice, stomach<br>ache, blood purifier,<br>cough and cold                                                  | Karbi, Pnar and Bodo<br>Kachari    | 27.27 | 1.67 | Baidya <i>et al</i> .2020, Teron 2019,<br>Basumatary <i>et al</i> . 2014                                                             |
| Phyllanthus fraternus<br>G.L.Webster            | Phyllanthaceae | Herb <b>/</b><br>NE    | Leaf, root<br>and whole<br>plant | Diarrhoea and jaundice                                                                                        | Zeme and Karbi                     | 18.18 | 1.00 | Tamuli & Saikia 2004, Teron<br>2019                                                                                                  |
| Phyllanthus niruri L.                           | Phyllanthaceae | Herb <b>/</b><br>NE    | Leaf and root                    | Diarrhoea and fever                                                                                           | Jaintia                            | 9.09  | 2.00 | Sajem & Gosai 2006                                                                                                                   |
| Piper longum L.                                 | Piperaceae     | Climber <b>/</b><br>NE | Fruit, root<br>and seed          | Malaria, body ache,<br>cough, tooth ache,<br>recovery from<br>weakness after delivery<br>and poison treatment | Jaintia, karbi, Lushai<br>and Tiwa | 54.55 | 1.00 | Sajem & Gosai 2006, Baidya <i>et al.</i> 2020, Sajem & Gosai 2010, Teron 2019, Terangpi <i>et al.</i> , 2014, Teron & Borthakur 2013 |
| Piper nigrum L.                                 | Piperaceae     | Climber <b>/</b><br>NE | Fruit                            | Dog bite, toothache,<br>recovery from<br>weakness after delivery<br>and poison treatment                      | Karbi and Tiwa                     | 27.27 | 1.33 | Teron 2019, Terangpi <i>et al.</i> , 2014, Teron & Borthakur 2013                                                                    |

| Plantago major L.           | Plantaginaceae | Herb <b>/</b><br>LC | Leaf        | Ear ache, tooth ache, gum bleeding and | Lushai and Jaintia | 18.18 | 2.00 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006   |
|-----------------------------|----------------|---------------------|-------------|----------------------------------------|--------------------|-------|------|---------------------------------------------|
|                             |                |                     |             | jaundice                               |                    |       |      |                                             |
| Plantago ovata Forssk.      | Plantaginaceae | Herb <b>/</b><br>NE | Leaves      | Jaundice and bee sting                 | Zeme               | 9.09  | 2.00 | Tamuli & Saikia 2004                        |
| Scoparia dulcis L.          | Plantaginaceae | Herb/               | Leaf, Root  | Helps in cavity                        | Jaintia, Karbi and | 27.27 | 1.67 | Sajem & Gosai 2006, Teron                   |
|                             |                | NE                  | and Whole   | formation, colic pain,                 | Lushai,            |       |      | 2019, Sajem & Gosai 2010                    |
|                             |                |                     | plant       | malaria and foot                       |                    |       |      |                                             |
|                             |                |                     |             | infection and dental cavities          |                    |       |      |                                             |
| Plumbago indica L.          | Plumbaginaceae | Shrub/              | Root        | Deworming                              | Karbi              | 9.09  | 1.00 | Teron 2019                                  |
|                             |                | NE                  |             |                                        |                    |       |      |                                             |
| Plumbago zeylanica L.       | Plumbaginaceae | Herb <b>/</b>       | Root and    | Deworming and                          | Karbi              | 18.18 | 1.00 | Teron 2019, Terangpi <i>et</i>              |
|                             |                | NE                  | stem        | initiating abortion                    |                    |       |      | al.2014                                     |
| Arundo donax L.             | Poaceae        | Herb <b>/</b>       | Leaf and    | Leprosy, fever and leg                 | Bodo Kachari       | 9.09  | 3.00 | Basumatary et al.2014                       |
|                             |                | LC                  | shoot       | pain                                   |                    |       |      |                                             |
| Bambusa multiplex (Lour.)   | Poaceae        | Herb <b>/</b>       | Stem        | External bleeding                      | Zeme               | 9.09  | 1.00 | Tamuli & Saikia 2004                        |
| Raeusch. ex Schult.         |                | NE                  |             |                                        |                    |       |      |                                             |
| Cynodon dactylon            | Poaceae        | Herb <b>/</b>       | Leaf and    | Intestinal infection, skin             | Karbi              | 18.18 | 1.50 | Baidya <i>et al.</i> 2020, Teron 2019       |
| (L.) Pers.                  |                | NE                  | whole plant | disease and jaundice                   |                    |       |      |                                             |
| Saccharum bengalense        | Poaceae        | Herb <b>/</b>       | Root        | Poison treatment                       | Karbi              | 9.09  | 1.00 | Teron & Borthakur 2013                      |
| Retz.                       |                | NE                  |             |                                        |                    |       |      |                                             |
| Thysanolaena latifolia      | Poaceae        | Herb <b>/</b>       | Twig and    | Sterility, flatulence and              | Karbi and Dimasa   | 18.18 | 1.50 | Terangpi <i>et al.</i> 2014, Rout <i>et</i> |
| (Roxb. ex Hornem.) Honda    |                | NE                  | leaf        | improve digestion                      |                    |       |      | al.2012                                     |
| Dendrocalamus hamiltonii    | Poaceae        | Herb <b>/</b>       | Bark        | Cuts and wound                         | Karbi              | 9.09  | 2.00 | Rengma et al., 2018                         |
| Nees&Arn. ex Munro          |                | NE                  |             |                                        |                    |       |      |                                             |
| Desmostachya bipinnata (L.) | Poaceae        | Herb <b>/</b>       | Tuber       | Pharyngitis                            | Karbi              | 9.09  | 1.00 | Teron 2019                                  |
| Stapf                       |                | LC                  |             |                                        |                    |       |      |                                             |
| Oryza sativa L.             | Poaceae        | Herb <b>/</b>       | Grain       | Allergy, reduce pain                   | Karbi              | 27.27 | 1.00 | Teron 2019, Terangpi et al.,                |
|                             |                | LC                  |             | during delivery and poison treatment   |                    |       |      | 2014, Teron & Borthakur2013                 |
| Phragmites karka            | Poaceae        | Herb <b>/</b>       | Shoot       | Jaundice                               | Karbi              | 9.09  | 1.00 | Teron 2019                                  |
| (Retz.) Trin. ex Steud.     |                | LC                  |             |                                        |                    |       |      |                                             |
| Saccharum officinarum L.    | Poaceae        | Herb <b>/</b>       | Stem        | Jaundice                               | Karbi, Pnar, Tiwa  | 9.09  | 1.00 | Teron 2019                                  |
|                             |                | NE                  |             |                                        |                    |       |      |                                             |

| Persicaria barbata         | Polygonaceae  | Herb <b>/</b>    | Flower and  | Tooth infection and                          | Zeme               | 9.09        | 2.00 | Tamuli & Saikia 2004                  |
|----------------------------|---------------|------------------|-------------|----------------------------------------------|--------------------|-------------|------|---------------------------------------|
| (L.) H.Hara                |               | LC               | leaf        | nose bleeding                                |                    |             |      |                                       |
| Persicaria chinensis       | Polygonaceae  | Herb <b>/</b>    | Shoot and   | Stomach ache,                                | Karbi, Jaintia and | 27.27       | 1.67 | Baidya <i>et al.</i> 2020, Tamuli &   |
| (L.) H. Gross              |               | NE               | leaf        | dyspepsia, indigestion,                      | Zeme               |             |      | Saikia 2004, Sajem & Gosai            |
|                            |               |                  |             | dysentery and small                          |                    |             |      | 2006                                  |
|                            |               |                  |             | pox                                          |                    |             |      |                                       |
| Persicaria hydropiper      | Polygonaceae  | Herb <b>/</b>    | Leaves      | Uterine disorder                             | Zeme               | 9.09        | 1.00 | Tamuli & Saikia 2004                  |
| (L.) Delarbre              |               | LC               |             |                                              |                    |             |      |                                       |
| Polygonum affine D. Don    | Polygonaceae  | Herb <b>/</b>    | Leaf        | Poison treatment,                            | Karbi and Jaintia  | 27.27       | 2.33 | Teron & Borthakur2013,                |
|                            |               | NE               |             | sinus, ulcer treatment,                      |                    |             |      | Teron 2019, Sajem & Gosai             |
|                            |               |                  |             | antidote, blood                              |                    |             |      | 2006                                  |
|                            |               |                  |             | coagulant, cuts and                          |                    |             |      |                                       |
|                            |               |                  |             | wounds                                       |                    |             |      |                                       |
| Polygonum microcephalum D. | Polygonaceae  | Shrub <b>/</b>   | Leaf        | Poison treatment, cuts                       | Karbi              | 18.18       | 1.50 | Teron & Borthakur 2013,               |
| Don                        |               | NE               |             | and wounds                                   |                    |             |      | Rengma et al. 2018                    |
| Pyrrosia obovata           | Polypodiaceae | Herb <b>/</b>    | Leaf        | Blood coagulant                              | Karbi              | 9.09        | 1.00 | Teron 2019                            |
| (Blume) Ching              |               | NE               |             |                                              |                    |             |      |                                       |
| Rhamnus nepalensis         | Rhamnaceae    | Herb/            | Fruit       | Headache                                     | Karbi              | 9.09        | 1.00 | Teron 2019                            |
| (Wall.) M.A. Lawson        | _             | LC               |             |                                              |                    |             |      |                                       |
| Rubus alceifolius Poir.    | Rosaceae      | Shrub/           | Roots,      | Menstrual cramps                             | Karbi              | 9.09        | 1.00 | Baidya <i>et al.</i> 2020             |
|                            |               | NE               | shoots and  |                                              |                    |             |      |                                       |
| 5.1                        | _             |                  | fruits      | 5                                            |                    |             |      | 5                                     |
| Rubus ellipticus Sm.       | Rosaceae      | Shrub/           | Leaf        | Diarrhoea                                    | Dimasa             | 9.09        | 1.00 | Rout <i>et al.</i> 2012               |
| Coffee beautholessis       | Dubinana      | NE               | Doot        | Daire a transfer and                         | W- ale:            | 0.00        | 1.00 | Tarrage Q. Darethalium 2012           |
| Coffea benghalensis        | Rubiaceae     | Shrub/           | Root        | Poison treatment                             | Karbi              | 9.09        | 1.00 | Teron & Borthakur 2013                |
| B.Heyne ex Schult.         | Dubisses      | EN<br>Climahau / | Chara land  | Discourte m. et e man ele                    | Dada Kashari Zarra | <b>5455</b> | 1.67 | Decreases at al 2014 Tempeli          |
| Paederia foetida L.        | Rubiaceae     | Climber/         | Stem, leaf, | Dysentery, stomach                           | Bodo Kachari, Zeme | 54.55       | 1.67 | Basumatary <i>et al.</i> 2014, Tamuli |
|                            |               | NE               | root and    | ache, malaria, joint                         | and Karbi          |             |      | & Saikia 2004, Baidya et al.          |
|                            |               |                  | whole plant | pain, muscle stiffness,                      |                    |             |      | 2020, Rengma <i>et al.</i> 2018,      |
|                            |               |                  |             | jaundice, gastritis,                         |                    |             |      | Bhattacharjee 2018, Teron             |
|                            |               |                  |             | constipation, urinary                        |                    |             |      | 2019                                  |
| Ivara thugitasii Haak f    | Dubiasaa      | Chrub /          | Loof        | problems and jaundice                        | Karbi Daar Tiwa    | 0.00        | 2.00 | Toron 2010                            |
| Ixora thwaitesii Hook.f.   | Rubiaceae     | Shrub/           | Leaf        | Wound, analgesic after child birth and wound | Karbi, Pnar, Tiwa  | 9.09        | 3.00 | Teron 2019                            |
|                            |               | NE               |             |                                              |                    |             |      |                                       |
|                            |               |                  |             | healing                                      |                    |             |      |                                       |

| Morinda angustifolia Roxb.    | Rubiaceae   | Tree/               | Leaf        | Giddiness, urinary       | Karbi               | 9.09  | 5.00 | Teron 2019                          |
|-------------------------------|-------------|---------------------|-------------|--------------------------|---------------------|-------|------|-------------------------------------|
|                               |             | NE                  |             | problems, dysentery,     |                     |       |      |                                     |
|                               |             |                     |             | fever and toothache      |                     |       |      |                                     |
| Ophiorrhiza ochroleuca        | Rubiaceae   | Herb <b>/</b>       | Leaf        | Cut and wound            | Karbi               | 9.09  | 2.00 | Teron 2019                          |
| Hook.f.                       |             | LC                  |             |                          |                     |       |      |                                     |
| Aegle marmelos (L.) Corrêa    | Rutaceae    | Tree/               | Fruit       | Diarrhoea and            | Dimasa and Karbi    | 18.18 | 1.00 | Rout <i>et al.</i> 2012, Teron 2019 |
|                               |             | NT                  |             | constipation             |                     |       |      |                                     |
| Citrus limon (L.) Osbeck      | Rutaceae    | Tree <b>/</b>       | Stem, Fruit | Poison treatment         | Karbi               | 9.09  | 1.00 | Teron & Borthakur 2013              |
|                               |             | LC                  |             |                          |                     |       |      |                                     |
| Citrus maxima (Burm.) Merr.   | Rutaceae    | Tree/               | Fruit       | Involuntary shaking      | Dimasa              | 9.09  | 1.00 | Rout <i>et al.</i> 2012             |
|                               |             | LC                  |             |                          |                     |       |      |                                     |
| Micromelum integerrimum       | Rutaceae    | Tree/               | Stem        | Hasten delivery of child | Karbi               | 9.09  | 1.00 | Terangpi <i>et al</i> .2014         |
| (BuchHam. ex DC.) Wight       |             | LC                  |             |                          |                     |       |      |                                     |
| &Arn. ex M. Roem.             |             |                     |             |                          |                     |       |      |                                     |
| Zanthoxylum armatum DC.       | Rutaceae    | Tree/               | Leaf, shoot | Urinary problems,        | Karbi, Dimasa, Pnar | 18.18 | 2.50 | Rout <i>et al.</i> 2012, Teron 2019 |
|                               |             | LC                  | and root    | intestinal worms, fever, | and Tiwa            |       |      |                                     |
|                               |             |                     |             | cough, fever and         |                     |       |      |                                     |
|                               | 5 .         |                     |             | ringworm                 | D                   | 0.00  | 4.00 | D                                   |
| Zanthoxylum oxyphyllum        | Rutaceae    | Herb <b>/</b>       | Leaves      | Tooth problem.           | Bodo Kachari        | 9.09  | 1.00 | Basumatary et al.2014               |
| Edgew.                        | Dutagaa     | NE<br>Trac/         | Fruit       | Vidnov stano             | Karbi               | 9.09  | 1.00 | Donama at al 2019                   |
| Citrus paradisi Macfad.       | Rutaceae    | Tree <b>/</b><br>NE | Fruit       | Kidney stone             | Karbi               | 9.09  | 1.00 | Rengma et al. 2018                  |
| Micromelum minutum (Forst.    | Rutaceae    | Tree/               | Stem        | Dysentery and to         | Karbi               | 9.09  | 2.00 | Teron 2019                          |
| f.) Wt. &Arn.                 | Rutaceae    | LC                  | Stem        | hasten process of        | Kaibi               | 9.09  | 2.00 | 161011 2013                         |
| i.) Wt. XAIII.                |             | LC                  |             | delivery                 |                     |       |      |                                     |
| Murraya koenigii (L.) Spreng. | Rutaceae    | Shrub/              | Leaf        | Stomachache, gastritis   | Karbi and Bodo      | 27.27 | 1.00 | Teron 2019, Rengma et al.           |
| Warraya Roemgn (E.) Spreng.   | nataccac    | LC                  | Lear        | and fever                | Kachari             | 27.27 | 1.00 | 2018, Basumatary <i>et al.</i> 2014 |
| Murraya paniculata(L.) Jack   | Rutaceae    | Shrub/              | Root        |                          | Karbi               | 9.09  | 3.00 | Teron 2019                          |
|                               |             | NE                  |             | Labour pain, body pain   |                     |       |      |                                     |
|                               |             |                     |             | and stomachache          |                     |       |      |                                     |
| Xylosma longifolia Clos.      | Salicaceae  | Tree/               | Stem and    | Poison treatment and     | Karbi               | 18.18 | 1.00 | Teron & Borthakur 2013,             |
|                               |             | NE                  | bark        | dysentery                |                     |       |      | Teron 2019                          |
| Aesculus assamica Griff.      | Sapindaceae | Tree/               | Leaf        | Ear sore                 | Karbi               | 9.09  | 1.00 | Teron 2019                          |
|                               |             | NE                  |             |                          |                     |       |      |                                     |

| Sapindus mukorossi Gaertn.                                               | Sapindaceae   | Tree <b>/</b><br>LC  | Fruit              | Skin disease and poison treatment                                                                | Dimasa and Karbi                   | 1818  | 1.00 | Rout <i>et al.</i> 2012, Teron &<br>Borthakur 2013                                               |
|--------------------------------------------------------------------------|---------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------|------------------------------------|-------|------|--------------------------------------------------------------------------------------------------|
| Houttuynia cordata Thunb.                                                | Saururaceae   | Herb <b>/</b><br>NE  | Leaves             | Diarrhoea, dysentery,<br>skin infections, body<br>ache, weakness after<br>delivery and gastritis | Bodo Kachari and<br>Karbi          | 45.45 | 1.20 | Basumatary et al.2014, Baidya et al. 2020, Teron 2019, Terangpi et al. 2014, Rengma et al., 2018 |
| Picrasma javanica Blume                                                  | Simaroubaceae | Tree <b>/</b><br>LC  | Fruit              | Dysentery                                                                                        | Karbi                              | 9.09  | 1.00 | Teron 2019                                                                                       |
| Brucea mollis Wall. ex Kurz                                              | Simaroubaceae | Herb <b>/</b><br>LC  | Fruit and root     | Fever and dysentery                                                                              | Karbi                              | 9.09  | 2.00 | Teron 2019                                                                                       |
| Brugmansia suaveolens<br>(Humb. & Bonpl. ex Willd.)<br>Bercht. & J.Presl | Solanaceae    | Shrub <b>/</b><br>EW | Leaf               | Body ache and fatigue                                                                            | Dimasa                             | 9.09  | 2.00 | Rout <i>et al.</i> 2012                                                                          |
| Datura innoxia Mill.                                                     | Solanaceae    | Herb <b>/</b><br>NE  | Leaf               | Skin itching                                                                                     | Dimasa                             | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                                                          |
| Datura metel L.                                                          | Solanaceae    | Shrub <b>/</b><br>NE | Fruit              | Poison treatment                                                                                 | Karbi                              | 9.09  | 1.00 | Teron & Borthakur 2013                                                                           |
| Nicotiana plumbaginifolia Viv.                                           | Solanaceae    | Herb <b>/</b><br>NE  | Leaf               | Poison treatment                                                                                 | Karbi                              | 9.09  | 1.00 | Teron & Borthakur 2013                                                                           |
| Nicotiana tabacum L.                                                     | Solanaceae    | Herb <b>/</b><br>NE  | Leaf and<br>flower | Skin itch, bed bugs and poison treatment                                                         | Zeme, Karbi, Lushai<br>and Jaintia | 36.36 | 0.75 | Tamuli & Saikia 2004, Teron & Borthakur 2013, Sajem & Gosai 2010, Sajem & Gosai 2006             |
| Solanum indicum L.                                                       | Solanaceae    | Shrub <b>/</b><br>LC | Fruit              | Cough, asthma, teeth disorders, high blood pressure and jaundice                                 | Karbi, Lushai, Jaintia<br>and Zeme | 36.36 | 1.25 | Baidya <i>et al.</i> 2020, Sajem &<br>Gosai 2010, Sajem & Gosai<br>2006, Tamuli & Saikia 2004    |
| Solanum aethiopicum L.                                                   | Solanaceae    | Herb <b>/</b><br>NE  | Fruit              | High blood pressure                                                                              | Dimasa                             | 9.09  | 1.00 | Rout <i>et al.</i> 2012                                                                          |
| Solanum tuberosum L.                                                     | Solanaceae    | Herb <b>/</b><br>NE  | Tuber              | Recovery from weakness after delivery                                                            | Karbi                              | 9.09  | 1.00 | Terangpi <i>et al</i> .2014                                                                      |
| Capsicum annuum L.                                                       | Solanaceae    | Herb <b>/</b><br>LC  | Leaf and<br>fruit  | Dysentery, stomach pain, leech bite and poison treatment                                         | Karbi and Dimasa                   | 27.27 | 1.33 | Teron 2019, Rout <i>et al</i> .2012,<br>Teron & Borthakur2013                                    |

| Physalis peruviana L.          | Solanaceae       | Shrub/        | Fruit and | Analgesic, stomach      | Karbi            | 36.36 | 0.75 | Teron 2019, Rengma et al.     |
|--------------------------------|------------------|---------------|-----------|-------------------------|------------------|-------|------|-------------------------------|
|                                |                  | NE            | shoot     | ache and dysentery      |                  |       |      | 2018, Bhattacharjee 2018,     |
|                                |                  |               |           |                         |                  |       |      | Teron 2019                    |
| Solanum ferox L.               | Solanaceae       | Herb <b>/</b> | Fruit     | Toothache               | Karbi            | 9.09  | 1.00 | Teron 2019                    |
|                                |                  | NE            |           |                         |                  |       |      |                               |
| Solanum aculeatissimum Jacq.   | Solanaceae       | Herb <b>/</b> | Fruit     | Toothache and           | Karbi            | 9.09  | 2.00 | Teron 2019                    |
|                                |                  | NE            |           | insecticide             |                  |       |      |                               |
| Solanum americanum Mill.       | Solanaceae       | Herb <b>/</b> | Fruit     | Deworming               | Karbi            | 9.09  | 1.00 | Bhattacharjee 2018            |
|                                |                  | NE            |           |                         |                  |       |      |                               |
| Solanum surattense Burm. f.    | Solanaceae       | Herb <b>/</b> | Fruit     | Toothache               | Karbi            | 9.09  | 1.00 | Teron 2019                    |
|                                |                  | NE            |           |                         |                  |       |      |                               |
| Amblovenatum                   | Thelypterdaceae  | Herb <b>/</b> | Leaf      | Headache rheumatism,    | Karbi            | 18.18 | 2.00 | Teron 2019, Rengma et al.     |
| opulentum J.P. Roux            |                  | NE            |           | joint pain and backache |                  |       |      | 2018                          |
| Cyclosorus extensus (Blume)    | Thelypteridaceae | Fern/         | Leaf      | Herpes and skin         | Dimasa           | 9.09  | 2.00 | Rout <i>et al.</i> 2012       |
| H. Itô                         |                  | NE            |           | infection               |                  |       |      |                               |
| Aquilaria malaccensis Lam.     | Thymelaeaceae    | Tree/         | Bark of   | Stomach pain, snake     | Bodo Kachari     | 9.09  | 3.00 | Basumatary et al. 2014        |
|                                |                  | CE            | stem      | bite and vomiting       |                  |       |      |                               |
| Linostoma decandrum (Roxb.)    | Thymelaeaceae    | Shrub/        | Root      | Ringworm                | Karbi            | 9.09  | 1.00 | Teron 2019                    |
| Wall. ex Meisn.                |                  | NE            |           |                         |                  |       |      |                               |
| Lantana camara L.              | Verbenaceae      | Shrub/        | Leaves    | Blood clotting and      | Karbi            | 9.09  | 2.00 | Baidya <i>et al.</i> 2020     |
|                                |                  | NE            |           | constipation            |                  |       |      |                               |
| Lippia alba (Mill.) N.E.Br. ex | Verbenaceae      | Shrub/        | Leaf      | Conjunctivitis          | Karbi            | 9.09  | 1.00 | Bhattacharjee 2018            |
| Britton &P.Wilson              |                  | NE            |           |                         |                  |       |      |                               |
| Cayratia pedata (Lam.)         | Vitaceae         | Climber/      | Leaf      | Poison treatment        | Karbi            | 9.09  | 1.00 | Teron & Borthakur, 2013       |
| Gagnep.                        |                  | VU            |           |                         |                  |       |      |                               |
| Cissus quadrangularis L.       | Vitaceae         | Climber/      | Leaf and  | Fracture, sprain and    | Bodo Kachari and | 27.27 | 1.00 | Basumatary et al. 2014, Teroi |
|                                |                  | NE            | stem      | joint pain              | Karbi            |       |      | 2019, Bhattacharjee 2018      |
| Aloe vera (L.) Burm.f.         | Xanthorrhoeaceae | Herb <b>/</b> | Stem      | Burning and white       | Bodo Kachari     | 9.09  | 2.00 | Basumatary et al. 2014        |
|                                |                  | NE            |           | discharge               |                  |       |      |                               |
| Alpinia galanga (L.) Willd.    | Zingberaceae     | Herb <b>/</b> | Rhizome   | Cough, flu, pharyngitis | Karbi            | 18.18 | 2.00 | Teron 2019, Bhattacharjee     |
|                                |                  | NE            |           | and bronchitis          |                  |       |      | 2018                          |
| Boesenbergia rotunda (L.)      | Zingberaceae     | Herb <b>/</b> | Rhizome   | Fever and poison        | Karbi            | 18.18 | 1.00 | Teron 2019, Teron &           |
| Mansf.                         |                  | LC            | and tuber | treatment               |                  |       |      | Borthakur2013                 |
| Hedychium coronarium           | Zingberaceae     | Herb <b>/</b> | Rhizome   | Snake bite              | Karbi            | 9.09  | 1.00 | Teron 2019                    |
| J.Koenig                       |                  | DD            |           |                         |                  |       |      |                               |

| Kaempferia galanga L.                | Zingberaceae  | Herb <b>/</b>       | Rhizome                      | Poison treatment, dog                                                                                                                                    | Karbi                                   | 18.18 | 1.50 | Teron 2019, Teron &                                                                                                                            |
|--------------------------------------|---------------|---------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |               | DD                  |                              | and pig bites                                                                                                                                            |                                         |       |      | Borthakur 2013                                                                                                                                 |
| Alpinia nigra (Gaertn.) Burtt        | Zingiberaceae | Herb <b>/</b>       | Root and                     | Poison treatment,                                                                                                                                        | Karbi and Bodo                          | 18.18 | 2.50 | Teron & Borthakur 2013,                                                                                                                        |
|                                      |               | LC                  | stem                         | headache, sore throat, chest pain and diabetes                                                                                                           | Kachari                                 |       |      | Basumatary et al. 2014                                                                                                                         |
| Amomum aromaticum Roxb.              | Zingiberaceae | Herb <b>/</b><br>NE | Fruits                       | Cough and pox                                                                                                                                            | Bodo Kachari                            | 9.09  | 2.00 | Basumatary et al. 2014                                                                                                                         |
| Amomum dealbatum Roxb.               | Zingiberaceae | Herb <b>/</b><br>DD | Rhizome,<br>root and<br>leaf | Joint pain, cramps and muscle pain                                                                                                                       | Lushai, Jaintia and<br>Zeme             | 27.27 | 1.00 | Sajem & Gosai 2010, Sajem &<br>Gosai 2006, Tamuli & Saikia<br>2004                                                                             |
| Curcuma amada Roxb.                  | Zingiberaceae | Herb <b>/</b><br>NE | Rhizome                      | Gastritis and dysentery                                                                                                                                  | Karbi                                   | 27.27 | 0.67 | Rengma <i>et al.</i> 2018,<br>Bhattacharjee 2018, Teron<br>2019                                                                                |
| Curcuma longa L.                     | Zingiberaceae | Herb <b>/</b><br>DD | Rhizome                      | Sprains, cramps,<br>antiseptic, dyspepsia,<br>gastritis, stomach<br>disorder,<br>bone fracture and<br>poison treatment                                   | Dimasa                                  | 54.55 | 1.33 | Rout <i>et al.</i> 2012, Teron 2019,<br>Sajem & Gosai 2010,<br>Basumatary <i>et al.</i> 2014, Sajem<br>& Gosai 2006, Teron &<br>Borthakur 2013 |
| Zingiber officinale Roscoe           | Zingiberaceae | Herb <b>/</b><br>NE | Rhizome,<br>leaf and<br>root | Stomach disorder, cough, cold, fever, arthritis, recovery from weakness after delivery, poison treatment, blood coagulation, sprain, flu and sore throat | Bodo Kachari, Karbi,<br>Pnar and Dimasa | 54.55 | 1.83 | Basumatary et al. 2014,<br>Terangpi et al. 2014, Teron &<br>Borthakur 2013, Baidya et al.<br>2020, Teron 2019, Rout et<br>al. 2012             |
| Zingiber zerumbet (L.) Roscoe ex Sm. | Zingiberaceae | Herb <b>/</b><br>DD | Rhizome                      | Blood dysentery                                                                                                                                          | Karbi                                   | 18.18 | 0.50 | Rengma <i>et al.</i> 2018,<br>Bhattacharjee 2018                                                                                               |

<sup>\*</sup>Abbreviations: CE- Critically Endangered; EN- Endangered; NT-Near Threatened; VU-Vulnerable; EW- Extinct in the wild; DD-Data Deficient; LC-Least Concerned; NE-Not Evaluated