

Ethnobotanical survey of lesserknown economic plants in the Chamba region of the Western Himalaya, Uttarakhand, India

Lakhi Ram Dangwal, Biswaranjan Bhujabal, Tarseem Lal, Minakshi Rawat, Umang Kumar Shukla, Aniket Panwar

Correspondence

Lakhi Ram Dangwal^{1*}, Biswaranjan Bhujabal^{1*}, Tarseem Lal^{1*}, Minakshi Rawat¹, Umang Kumar Shukla¹, Aniket Panwar¹

¹Herbarium and Plant Systematic Laboratory, Department of Botany, Hemvati Nandan Bahuguna Garhwal University (A Central University), S.R.T. Campus, Badshahithaul, Tehri Garhwal - 249199, Uttarakhand, India.

*Corresponding Author: drlrdangwal@gmail.com, tarseemlal35527@gmail.com biswabhujabal@gmail.com

Ethnobotany Research and Applications 30:52 (2025) - http://dx.doi.org/10.32859/era.30.52.1-21 Manuscript received: 03/09/2024 - Revised manuscript received: 22/04/2025 - Published: 23/04/2025

Research

Abstract

Background: The Chamba region of the Western Himalaya in Uttarakhand, India, is enriched with traditional knowledge and is a treasure house of various significant ethnomedicinal plants. Although few plant species have been explored, yet most of these plants are still unexplored and undocumented, based on lesser-known economic plants and sustainable development perspectives. This scarcity of information about conservation strategies and management plans poses serious hazards to the economic potential of ethnomedicine, a valuable treasure trove of plants. Globally this study is crucial because it addresses broader issues like biodiversity loss, climate change, malnutrition, and the need for sustainable resources. The ambition of this research is to document the lesser-known economic plants through an ethnobotanical survey and investigate the factors contributing to these economic plants being unpopular. The study creates awareness, therefore, encouraging self-employment and revenue production through the cultivation of lesser-known economic plants in the area.

Methods: An ethnobotanical investigation was carried out in 8 representative villages in the Chamba region (namely Arakot, Chopariyal Gaon, Dharsal Gaon, Dobhal, Pursol, Weer, Dargi, and Saundkoti), where traditional practices are most common among all the local inhabitants. The frequent periodical field trips were made up to three times a month during the flowering and fruiting season. Various methods were utilized (questionnaires, personal observation, meetings, group discussions, and distinct interviews) to acquire information about lesser-known economic plants from local inhabitants, including 124 key informants (86 females and 38 males). The data interpretation is done through quantitative analysis indices like use value (UV), informant consensus factor (ICF), and fidelity level (FI). The various questions were used to find out the reason behind the lesser-known economic plants and awareness for self-employment and revenue production through the cultivation of lesser-known economic plants.

Results: This study documented that 40 medicinal plant species represented 37 genera and 24 families. Out of these, 35 plants were categorised as 'lesser-known economic plants,' while 5 were classified as 'very lesser-known economic plants.' The local inhabitants utilized various plant parts, including roots (19.15%), leaves (38.29%), flowers (19.15%), fruits (7.44%), whole plant (1.07%), seeds (6.38%), barks (4.25%), stem (1.07%), twig (1.07%), and latex (2.13%), for both ethnomedicinal and economic purposes. The modes of preparation included extract (30%), decoction (17.5%), paste (17.5%), infusion (2.5%),

powder (5%), juice (10%) and others (17.5%). The study also found that herbs accounted for 60% (24 species), and shrubs for 35% (14 species), with one tree and one climber each making up 2.5% of the total species documented.

Conclusions: This present study documented traditional knowledge and uncovered various reasons for the lesser-known status of economic plants. This invaluable conventional knowledge can be used to educate local communities, create significant self-employment opportunities, boost revenue production, and improve livelihoods through the cultivation of lesser-known economic plants and the conservation of plant diversity.

Keywords: Lesser-known economic plants, Western Himalaya, Local communities, Traditional knowledge, Self-employment, Income generation, Cultivation, Livelihoods

Background

Globally, nutritional insecurity is affecting the world population, primarily those who depend on cereal-based diets. Approximately 691 to 783 million people suffered from severe food insecurity and malnutrition in 2022, which is 122 million greater than the 2019 pandemic report (FAO 2023; UNICEF 2023). According to the World Health Organization (WHO), close to 80% of the global population receives basic medical treatment from traditional medicine (Azaizeh *et al.* 2003; Alemu *et al.* 2024). There is little information about some economic plant species due to insufficient scientific investigations. However, the rural community is knowledgeable of the importance and benefits of these plants. Various natural plants have improved local communities' livelihoods. Importantly, some of these plants are used differently in foods, flavors, cosmetics, fragrances, pharmaceuticals, and textiles (Tomar & Singh 2021; Garg *et al.* 2024). The growing interest in wild edible plants (WEPs) has catalyzed various regional ethnobotanical studies, even in current communities (Choudhary *et al.* 2008; Goyal & Sharma 2009; Khadka *et al.* 2024).

On this planet, 75-80% of people still utilize herbal medicine as their main source of treatment, especially in underdeveloped countries. Herbal medicine is perceived as cultural, harmoniously interacts with the body, and has fewer occurrences of adversities (Kamboj 2000). Herbal medicines have been used since time immemorial and are considered safe and non-toxic (Kumar *et al.* 2021). However, understanding the influence of herbal medicine remains uncertain, primarily due to the lack of documentation by traditional healers regarding these ancient practices (Chakraborty *et al.* 2016). The indigenous people living in isolated regions depend primarily on traditional medicinal practices to treat their illnesses (Patro 2016). However, the popularity of traditional remedies is slowly reducing as a result of the quick urbanization and availability of allopathic facilities (Das & Misra 1988).

India is renowned as one of Asia's significant mega-biodiversity hotspots. The Himalayan region, which covers 18% of the country's land area, harbors over 40% of unique species and more than 50% of its forests. This area has a rich biodiversity, being home to over 3,000 wild plants, which provide supplementary nutritious diets for various communities, showcasing its economic and ecological significance (Anon 1994). Today, generational experience has deepened the understanding of herbal therapy in every culture around the world (Al-Snaf 2016). The majority of the medicinal chemicals utilized in traditional medicine come from plant products (Khond *et al.* 2009; Bandow *et al.* 2003). Traditional methods, including medicinal plants, are used by millions of people around the world for trade and as a source of income (Malik *et al.* 2011; Rather & Baba 2015).

The Himalaya offers a wide range of ecological significance both in flora and faunal diversity. As of current, it faces several threats including excessive use of resources. This has decreased the vegetation structure and resulted in natural disasters (Bisht *et al.* 2022). Natural plant resources are essential to the food security, health, and economic stability of a region. People in rural Himalayan, depend on a diverse range of natural resources for their livelihoods, animal husbandry, and limited-scale agriculture acting as the key contributions to their economies (Kala 2005; 2007). The local population derives their income from harvesting and selling medicinal plants sourced from forests (Seth 2003; Adnan & Holscher 2011). Traditional knowledge gathered indicates that 229 plants are used for fuel, food, fiber, timber, beverages, tannin, crafts, resin, dye, sacred groves, medicine, fodder, and cosmetics (Jadhav 2006).

The Garhwal Himalaya is renowned for its extensive legacy of wild edible plants. The region has a rich flora and fauna, despite its social and cultural diversity. These God-given forest products contribute towards households' daily necessities as well as other requirements in this region (Shrestha & Dhillon 2006; Das *et al.* 2022). The rural Himalayan people depend on a variety of ecological resources for their everyday survival. Agriculture is the main source of their economy (Kala 2005; 2007; Bijalwan 2011). Currently, the majority of ethnic communities in underdeveloped countries depend on wild flora daily. Approximately

20,000 species of WEPs have been recognised globally. Of these, 1,532 WEP species are found in India, and more than 675 species are specifically in the Himalaya region (Abbasi *et al.* 2013; Pal *et al.* 2014).

Forest dwellers and other tribal people rely on native knowledge, which cascaded from their elders and perpetuated to future generations. They harvest wild edible plants for both commercial and personal usage. This provides a better income for the tribal people (Guha 1983; Berkes 2004; Kala 2005). There are varieties of edible plant parts, which include, roots, stems, fruits, tubers, inflorescences, flowers, seeds, thallus, and fruiting bodies. These can be eaten raw, roasted, fried, cooked, boiled, or stored for an extended duration of time in the form of oil, spices, seasonings, pickles, and jams. Most importantly wild edible plants are unique to places and communities (Negi 1986; Samant et al. 2001).

Several studies have shown the cultivation and sustainable harvesting of *Saussurea lappa* and *Picrorhiza kurrooa*, therefore, showing their economic importance both in the market and in the rural economy (Kuniyal *et al.* 2013; Singh *et al.* 2024). A study on the women-centric approach of medicinal plants recorded 34 medicinal plant species belonging to different families (Joshi & Bhardwaj 2017). Seventy-three wild edible plant species have been identified in the Jaunpur region of Uttarakhand, signifying their importance to human well-being (Dangwal & Lal 2024). Recently Lal *et al.* 2024, documented the 30 ethnomedicinal plants used to cure diarrhea and dysentery.

Despite its natural beauty and cultural background, the Chamba region of Tehri Garhwal Uttarakhand state remains unexplored with regard to known economic plant species. This study aims to provide insights into biodiversity preservation and economic prosperity of natural resources. With these in mind, the present study documented the lesser-known economic plants through an ethnobotanical surveys and investigated the factors contributing to these economic plants being unpopular. The study creates awareness, therefore encouraging self-employment and revenue production through the cultivation of lesser-known economic plants in the study area.

Materials and Methods

Study area

The current investigation was conducted in the Chamba block, Tehri Garhwal, Uttarakhand. It is very unique and rich in vegetation, encapsulating a diverse range of habitats from 400-2000m above sea level (Dangwal 2016). Geographically, this area comprises 34,832 hectares, which is equivalent to 6.96% of the overall land area of the district. It is located between 30° 26′ to 30° 40′ N latitude and 78° 36′ to 78° 55′ E longitude (Dangwal *et al.* 2010).

The Chamba block is bounded by Narendranagar to its south, Jaunpur to the west, Pratapnagar to the north, and Jakhanidhar to its east, all within the Tehri district (Sharma 2005). The study area experiences a climate ranging from subtropical to temperate zones (Mishra 1968). The area is hilly in nature, with an average minimum temperature of 9.55° and a maximum temperature of 19.47°C, respectively, and the average annual rainfall is 108.88 mm (Dobhal *et al.* 2023).

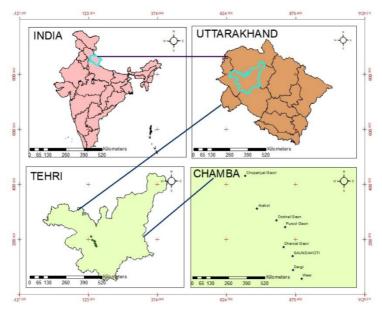


Figure 1. Map of the study area

Data collection

The intensive field survey was carried out during the period of March 2024 to July 2024 in the Chamba region, Tehri district to gather information about the lesser-known economic plants. During this period, an investigation was conducted in 8 villages in the block, i.e. Arakot, Chopariyal Gaon, Dharsal Gaon, Dobhal, Pursol, weer, Dargi, and Saundkoti. The periodic field trips were made up to thrice a month during the flowering and fruiting season. The data were collected from the local inhabitants through various methods like questionnaires, personal observation, meetings, group discussions, and distinct interviews (Figure 2). The main key respondents were 124 in number, including 86 women and 38 men. Most of the local informants were primarily farmers, with others including government employees, educators (teachers, Anganwadi workers, etc.), shepherds, traditional healers (vaidyas), shopkeepers, priests (pujari), students, and retired service members. Various age groups (20-90) were engaged to record their knowledge about these plants to ensure authentic information.

Figure 2. (a-b). Information gathered from local informants of different locality (c). Information gathered from Vaidya in Chamba region (d-f) Information gathered from local informants at various villages

The survey of lesser-known economic plants mostly focused on answering the following questions to find out the reason behind the lesser-known economic plants in the study region.

- 1. Can you describe some of the plants that grow naturally in this area and how you use them?
- 2. What local, social, cultural, and economic values are associated with these plants?
- 3. Are any of these plants sold or traded locally?
- 4. Do younger generations in your community know about these plants and their uses?
- 5. Have you noticed any plants becoming less common or harder to find?
- 6. Are there any local markets or businesses that specialize in products made from these plants?
- 7. What challenges do you face in cultivating, growing, and harvesting these plants?
- 8. Are there any barriers or challenges to marketing these plants more widely, such as lack of awareness or access to markets?

The awareness campaign was conducted in these representative villages such as Arakot, Chopariyal Gaon, Dharsal Gaon, Dobhal, Pursol, weer, Dargi, and Saundkoti to educate, motivate (through various cultivation techniques i.e. Propagation, grafting, layering, cutting, growing of seeds) and spread knowledge of valuable lesser-known economic plants for promoting the self-employment opportunities and revenue production among all the local inhabitants residing in the study region.

Identification of collected plants

All the collected plant specimens were accurately characterized by using relevant flora and validated from regional herbaria at the Botanical Survey of India, Northern Circle (BSD), Dehradun. The standard survey methods outlined by Jain & Rao (1977) and Singh & Subramaniyam (2008) were implemented for the collection, maintenance, and preservation of specimens (Figure 3). The collected plant specimens were deposited in the H.N.B. Garhwal University, S.R.T. Campus, Badshahithaul, Department of Botany, SRTGUH Herbarium.

Data Interpretation

The data interpretation is done through quantitative analysis indices like use value (UV), informant consensus factor (ICF), and fidelity level (FI).

It is utilized to determine the importance of different plant species in the region and provide help to estimate the significance of UV, ICF, and FI of plant usage within the community (Phillips *et al.* 2002).

$$= \sum U/n$$

Use value (UV), is defined as the "number of local informants (n), frequency of use reports for a particular plant species (U). Informant consensus factor is employed to assess the degree of consensus among informants regarding the use of ethnomedicinal plants, particularly when ailments are classified into different classes of disease groups (Heinrich *et al.* 1998). It was calculated by using this formula

$$ICF = \frac{Nur - Nt}{Nur - 1}$$

The Informant Consensus Factor (ICF) as "Nt", is the total number of used taxa "Nur" is the number of use reports utilized for specific diseases.

The Fidelity Index (FI%) was calculated by using this mathematical formula introduced by (Friedman et al. 1986).

$$FI = \frac{Np}{N} \times 100$$

The fidelity index value (FI%) is calculated as "N", entire number of use reports for plant species, and "Np", use reports for several illnesses.

Figure 3. (a). Collection of plant specimens (b). Drying of plant specimens (c). Poisoning of plant specimens (d & e). Stitching and Mounting (f). Labelling of herbarium sheets

Results and Discussion

The present study documented 40 plant species of lesser-known economic plants representing 37 genera and 24 different families. The most dominant families were Asteraceae and Lamiaceae (5 species each), followed by Amaranthaceae and Rosaceae (4 species each) followed by Polygonaceae and Euphorbiaceae (2 species each), followed by Asparagaceae, Berberidaceae, Cannabaceae, Coriariaceae, Anacardiaceae, Solanaceae, Moraceae, Araliaceae, Fabaceae, Acanthaceae, Malvaceae, Nyctaginaceae, Oxalidaceae, Plantaginaceae, Ranunculaceae, Caprifoliaceae, Scrophulariaceae and Lythraceae (1 species each) (Table 1, Figure 4). In which herbs were 24 (60%), shrubs were 14 (35%), and there was 1 tree and 1 climber, each making up 2.5% (Table 1, Figure 5). The local inhabitants utilized specific plant parts such as roots (19.15%), stem (1.07%), twig (1.07%), barks (4.25%), latex (2.13 %), leaves (38.29%), flowers (19.15%), fruits (7.44%), whole plant (1.07%), and seeds (6.38%) for ethnomedicinal and economic uses (Table 1, Figure 6). Among the various economic uses, 35 plants fall under the category of 'Lesser-known economic plants,' while 5 fall under 'Very lesser-known economic plants (Table 1, Figure 7). These are several modes of preparation were utilized in different modes such as infusion (2.5%), decoction (17.5%), extract (30%), paste (17.5%), powder (5%), juice (5%), and others (17.5%) (Table 1, Figure 8). Other significant economic uses include fodder for livestock, furniture, fuel, ornamental purposes, rituals and ceremonies, crafts, pesticides, skincare products, natural dyes, sacred groves, juice, vegetables, salads, tea, desserts, soups, spinach, dishes, beverages, perfumes, jams, jellies, shampoo, toothbrushes, aromatic oils, musical instruments, curries, chutney, candies, and agricultural implements for indoor house plant growth.

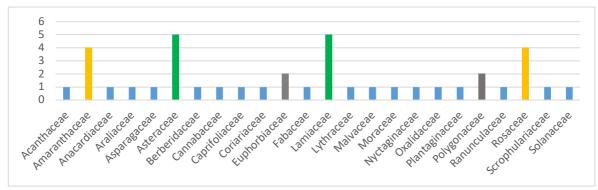


Figure 4. Graph chart showing the number of species in different families

Use value of medicinal plants

Based on their use value, the most valuable and important ethnomedicinal plants are categorized into three groups in the present study site. In group i category, UV= >0.80 use value were: *Ajuga parviflora* (UV=0.99), *Asparagus racemosus* (UV=0.87), *Ficus palmata* (UV=0.84), *Rumex hastatus* (UV=0.97), *Rumex nepalensis* (UV=0.83). In group ii category, UV= 0.60 to 0.80 were: *Amaranthus spinosus* (UV=0.66), *Berberis aristata* (UV=0.72), *Bidens pilosa* (UV=0.65), *Cotinus coggygria* (UV=0.75), *Erigeron emodi* (UV=0.60), *Eupatorium adenophorum* (UV=0.76), *Euphorbia helioscopia* (UV=0.75), *Gerbera gossypina* (UV=0.62), *Oxalis corniculata* (UV=0.78), *Plantago major* (UV=0.64), *Potentilla indica* (UV=0.60), *Ricinus communis* (UV=0.79), *Valeriana wallichii* (UV=0.69). In group iii category, UV= <0.60 were: *Achyranthes aspera* (UV=0.59), *Ajuga bracteosa* (UV=0.33), *Amaranthus caudatus* (UV=0.40), *Cannabis sativa* (UV=0.52), *Chenopodium album* (UV=0.37), *Coriaria napalensis* (UV=0.46), *Datura stramonium* (UV=0.44), *Hedera nepalensis* (UV=0.43), *Indigofera heterantha* (UV=0.45), *Justicia adhatoda* (UV=0.21), *Leucas lanata* (UV=0.46), *Malva parviflora* (UV=0.54), *Mirabilis jalapa* (UV=0.41), *Prinsepia utilis* (UV=0.28), *Rosa brunonii* (UV=0.53), *Rubus ellipticus* (UV=0.53), *Salvia lanata* (UV=0.50), *Sonchus asper* (UV=0.21), *Thalictrum foliolosum* (UV=0.59), *Verbascum thapsus* (UV=0.45), *Vitex negundo* (UV=0.25), *Woodfordia fruticosa* (UV=0.25) (Table 1, Figure 9).

Informant consensus factor

(a). Respiratory disease: Cold (ICF=0.96), Cough (ICF=0.96), Asthma (ICF=0.96), Bronchitis (ICF=0.95), (b). Gastrointestinal disease: Diarrhea (ICF=0.96), dysentery (ICF=0.94), stomach pain (ICF=0.96), indigestion (ICF=0.97), stomach ulcer (ICF=1), tuberculosis (ICF=1), constipation (ICF=1), (c). Cardiovascular disease: Blood Pressure (ICF=1), (d). Neuro-related diseases: Headache (ICF=1), insomnia (ICF=1), (e). Musculoskeletal and pain: Muscle pain (ICF=1), arthritis (ICF=1), (f). Reproductive health: Menstrual cycle (ICF=1), infertility (ICF=1), (g). Kidney function (ICF=0.97), (h). Infection and wound care: Urinary tract infection (ICF=0.96), bacterial and fungal infections (ICF=0.91), wounds (ICF=0.98), cuts (ICF=1), (i). Skin disease: Skin infection (ICF=0.98), eczema (ICF=1), dermatitis (ICF=1), rashes (ICF=1), (j). Others: Fever (ICF=0.96), diabetes (ICF=1), inflammation (ICF=0.96), eye disease (ICF=1), malaria (ICF=1), insect bite (ICF=0.95), HIV/AIDS (ICF=1), snake bite (ICF=1), and cancer (ICF=1), (Table 2, Figure 8).

Table 1. The list of important medicinal plants found in the Chamba block along with their Botanical name, Family, Local name, Habit, Part used, Ethnomedicinal uses, Use value, Other uses, and Economic value

Botanical name	Family	Local name	Habit	Part	Ethnomedicinal uses	Use	Other uses	Economic value
(Voucher No.)				used		value		
Achyranthes aspera L.	Amaranthaceae	Latjiri/	Н	Lf, Tw,	Decoction of twigs and leaves	0.59	Extract of roots are used	LKEP
BB-SRTGUH-1539		Chaff-flower		Rt	was added with honey and given		as a natural dye. Leaves	
					orally to a person for curing the		are used as fodder for	
					diarrhea (62) and dysentery (12).		livestock.	
Ajuga bracteosa Wall. ex	Lamiaceae	Ratpatia	Н	Lf, Rt	Paste of leaves is applied to	0.33	Infusion of leaves and	LKEP
Benth.					relieve from headache (23), and		roots was utilized to	
TL-SRTGUH-1661					decoction of roots are used to		make herbal tea.	
					treat fever (18).			
Ajuga parviflora Benth.	Lamiaceae	Neelkanthi	Н	Lf, Fl,	Extract of leaves was used to	0.99	The plant serves as	LKEP
TL-SRTGUH-1706				Rt	treat diabetes (45) and reduce		fodder for livestock, with	
					fever (17). Flowers were used to		its young leaves eaten as	
					treat diarrhea (26) and dysentery		a green vegetable or	
					(10). Roots extract alleviate		added to salads.	
					digestive problems (6), stomach			
					pain (13), and indigestion (12).			
Amaranthus caudatus L.	Amaranthaceae	Marshu	Н	Lf, Sd,	Leaves juice is used to treat	0.40	Flowers are used for	LKEP
BB-SRTGUH-1533				Fl	diarrhea (23), and inflammation		ornamental purposes in	
					of the mouth and throat (27).		gardens.	
					Seeds are edible and rich in			
					protein, nutrients and			
					antioxidants.			
Amaranthus spinosus L.	Amaranthaceae	Sagoti	Н	Lf, Sd	A warm paste of leaves, peach	0.66	The young leaves are	LKEP
BB-SRTGUH-1511					seeds, and salt is used to treat		edible, consumed as a	
					unhealthy stomach ulcers (5).		vegetable, and added to	
					Also promotes urine production		salads. It is also used as	
					(31), supports kidney function		animal feed.	
					(12), and helps regulate			
					excessive menstrual bleeding			
					(35).			

Asparagus racemosus Willd. TL-SRTGUH-1749	Asparagaceae	Shatavar	S	Rt, Lf	Roots were used to improve female reproductive health, including treating infertility (52) and regulating the menstrual cycle (28). Leaves and flowers	0.87	Young shoots are edible and cooked as vegetables.	VLKEP
				D. 16	help to treat urinary tract infection (16) and diarrhea (12).	0.72		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Berberis aristata DC. BB-SRTGUH-1541	Berberidaceae	Kingoda	S	Rt, Lf, Br, Fr	Root extract is used as eye drops for eye disease (15). Leaves juice is used for jaundice (62). Bark is used to cure a variety of bacterial (6) and fungal infections (7).	0.72	The juicy, sugar-rich bright, red berries are commonly eaten as a dessert.	VLKEP
Bidens pilosa L. TL-SRTGUH-1826	Asteraceae	Saryala	Н	Lf, FI	Leaves are antidiabetic (5), helping to regulate blood sugar levels and are also used to reduce inflammation (25) and treat wounds (37). Flower extract is used to treat malaria (14).	0.65	Leaves and flowers are used in salads, soups, and herbal tea. Entire plant extract is used for natural skincare products.	LKEP
Cannabis sativa L. BB-SRTGUH-1535	Cannabaceae	Bhang	Н	Rt, Lf, Fl, Sd	Leaves paste is used for insect bites (16) and wounds (23). Flowers (buds) help to stimulate appetite in conditions like HIV/AIDS (15) and cancer (6). Roots treat inflammation (3) and pain (2).	0.52	Dry leaves are commonly used in smoke. Seed oil helps with cooking and skin care products like lotion, soap, etc.	LKEP
Chenopodium album L. BB-SRTGUH-1537	Amaranthaceae	Bethoo	Н	Sd, Lf	Leaves used for intestinal disorder (26), anti-inflammatory (13), and treating scurvy. Rich in Vitamin C. Green vegetable used in bladder stone (8).	0.37	Seeds are used in gruel- type dishes.	LKEP

Coriaria napalensis Wall.	Coriariaceae	Masuri	S	Lf, Br,	Extract of bark and leaves used	0.46	The plant is used for	LKEP
BB-SRTGUH-1542				Fr	traditionally as insecticides and		ornamental purposes,	
					in pest control. Fruits treating		cultivated for its	
					rheumatism (37) and skin		attractive foliage and	
					disorder (21).		flowers, which enhance	
							landscaping and garden	
							aesthetics.	
Cotinus coggygria Scop.	Anacardiaceae	Dhakda	S	Lf, Br,	Leaves are frequently used to	0.75	The plant is cultivated for	LKEP
TL-SRTGUH-1658				Fl	treat mucosal lesion (15). Bark		ornamental purposes in	
					treats fever (24), urinary disease		gardens and landscaping	
					(33), and liver disease (21).		due to its pinkish	
							blooms. It is also used as	
							fuel.	
Datura stramonium L.	Solanaceae	Dhatura	Н	Lf, Fl,	Leaves, flowers, and seeds	0.44	Plants help to control	LKEP
MP-SRTGUH-1563				Sd	mixtures were used to treat		insect pests in	
					asthma (17), cough (22), and		agriculture.	
					cold (16).			
Erigeron emodi I.M.Turner	Asteraceae	Himalayan	Н	Lf, Fl	Leaves and flowers are utilized	0.60	Due to its attractive	LKEP
BB-SRTGUH-1538		Daisy			for treating cold (23), cough (25),		flowers, it is grown as an	
					bronchitis (27).		ornamental plant in	
							gardens and landscapes.	
Eupatorium adenophorum	Asteraceae	Kala Bansa	S	Lf	Extract of leaves applied	0.76	Plants used for fuel and	LKEP
Spreng.					externally to treat wounds (53),		ornamental purposes.	
BB-SRTGUH-1536					and skin infections (42).			
Euphorbia helioscopia L.	Euphorbiaceae	Dudhi	S	Lf, Lt	Leaves were used to treat cold	0.75	Plant are used for	LKEP
MP-SRTGUH-1570					(27), asthma (16), bronchitis		ornamental purposes for	
					(12), and snakebite (7). small		their unique appearance.	
					amounts of the latex were			
					ingested to treat intestinal			
					parasite (31).			
Ficus palmata Forssk.	Moraceae	Bedu	Т	Lf, Lt,	Decoction of leaves are used to	0.84	The fruits are edible,	LKEP
BB-SRTGUH-1503				Fr	treat respiratory issues such as		eaten fresh, and also	
					cough (37). The latex from the		used to make jam and	
					tree is used to control bleeding		jellies.	
					(68) and remove spine.			

Gerbera gossypina (Royle)	Asteraceae	Jhulu	Н	Rt, Fl	The paste of roots is traditionally	0.62	The plant is widely	LKEP
Beauverd					used for skin infection such as		cultivated for its vibrant	
BB-SRTGUH-1526					ringworm and other fungal		flowers and is popular in	
					infection (32). The flowers are		gardens and floral	
					utilized to alleviate cough (16),		arrangements.	
					cold (15), and bronchitis (14).			
Hedera nepalensis K.Koch	Araliaceae	Banaksha	С	Lf	The extract of leaves is applied	0.43	Plant growth indoors	LKEP
TL-SRTGUH-1611					to inflamed areas to reduce		helps improve air quality	
					swelling (37) and pain (17).		by absorbing pollutants	
							and increasing oxygen	
							levels in the	
							environment.	
Indigofera heterantha Wall.	Fabaceae	Kainth	S	Rt, Lf	Root extract is used to treat	0.45	Plant is used as fodder	LKEP
ex Brandis					digestive disorder including		for livestock.	
BB-SRTGUH-1517					stomachache (23) and			
					indigestion (16). Leaves help to			
					treat gastrointestinal and			
					abdominal disorder (17).			
Justicia adhatoda L.	Acanthaceae	Baisingu	S	Lf, Rt,	Leaves extract helps to clear	0.21	Flowers used in ritual,	LKEP
TL-SRTGUH-1732				Fl	mucus from the respiratory		and ceremonies, or as	
					tract, making it easier to breathe		offerings.	
					and also treat tuberculosis (5).			
					Decoction of roots are used to			
					improve digestion (22) and treat			
					gastrointestinal ailment.			
Leucas lanata Benth.	Lamiaceae	Pipswas	Н	Lf, Fl	Paste of leaves are used to treat	0.46	Flowers are used in	LKEP
BB-SRTGUH-1506					septic wounds (58).		religious or spiritual	
							ceremonies.	
Malva parviflora L.	Malvaceae	Soncheli	Н	Lf, Fl	Crushed leaves are applied to	0.54	Flowers extract is used in	LKEP
TL-SRTGUH-1777					wounds (17), cuts (16), and		skin care, helping to	
					insect bites (12). Flowers extract		moisturize and soothe	
					was used to treat sore throats		the skin.	
					(23) and respiratory issues.			

Mirabilis jalapa L.	Nyctaginaceae	Dophriya	Н	Rt, Lf,	Roots are utilized to treat urinary	0.41	Plants are widely	LKEP
BB-SRTGUH-1532				FI	tract infection (13), while leaves		cultivated as ornamental	
					are applied to heal wound (23)		plants in gardens and	
					and manage skin condition (16).		parks for their colorful	
							and fragrant flower. It	
							also helps with coloring	
							the food item.	
Oxalis corniculata L.	Oxalidaceae	Khati-Buti	Н	Lf	Leaves paste is applied to skin	0.78	The leaves are eaten raw	LKEP
TL-SRTGUH-1649					disease (97).		in salads and cooked as	
							vegetables.	
Plantago major L.	Plantaginaceae	Badi Ghass	Н	Sd, Lf	Seeds powder is utilized to treat	0.64	Leaves are used for eye	LKEP
BB-SRTGUH-1534					dysentery (35). While a		wash to relieve irritation	
					decoction of the leaves		and redness.	
					combined with carrier oil is			
					applied to the skin to alleviate			
					eczema (17), dermatitis (15), and			
					rashes (13).			
Potentilla indica (Andrews)	Rosaceae	Jangli	Н	Lf, Fr	Leaves and fruits used to treat	0.60	The fruits are made into	LKEP
Th.Wolf		strawberries			digestive disorder such as		jam, jelly, or eaten raw in	
BB-SRTGUH-1510					diarrhea (37), dysentery (16),		salads, and an infusion of	
					and stomachache (22).		leaves is used as herbal	
							tea.	
Prinsepia utilis Royle	Rosaceae	Bhainkal	S	St, Lf,	Stem, leaves, and fibrous roots	0.28	Fruits are	LKEP
BB-SRTGUH-1523				Rt, Fr	help to treat oral cavity issues		used as vegetable.	
					and support blood circulation			
					(35).			
Ricinus communis L.	Euphorbiaceae	Arandi	S	Lf	The leaves are applied to the	0.79	The plant is used to	LKEP
BB-SRTGUH-1520					breast of nursing mothers to		make biopesticide	
					boost milk production (63) and		effective against various	
					are also used to relieve joint and		pests and insects.	
					muscle pain (35).			

Rosa brunonii Lindl.	Rosaceae	Kunja	S	Lf, Fl	Juice of leaves and flowers is	0.53	Plants cultivated as	VLKEP
BB-SRTGUH-1505					used to treat skin care and		ornamental in distinct	
					wounds (41). Dried flowers		gardens and landscapes.	
					powder was used to treat		Flowers are used in the	
					diarrhea (25).		production of natural	
							perfumes and aromatic	
							oils.	
Rubus ellipticus Sm.	Rosaceae	Hinsar	S	Rt, Fr	Root paste is applied to ulcers	0.53	The fruits are edible and	VLKEP
BB-SRTGUH-1518					and skin sores (25). Decoction of		are consumed fresh or	
					roots and leaves are used to		used to make jams,	
					treat diarrhea (13), dysentery		jellies, and desserts.	
					(12), and stomachache (16).			
Rumex hastatus D.Don	Polygonaceae	Ameldu	Н	Lf, Rt,	Leaves was treating minor	0.97	Infusion of plant (stems,	VLKEP
BB-SRTGUH-1504	, ,			FI	wounds (12), insect bites (15),		leaves, and flowers) used	
					and skin irritation (21). Roots		to make herbal tea.	
					extract is used to treat like		Leaves are used to	
					arthritis (31) and other		prepare chutney.	
					inflammatory disorders (42).			
Rumex nepalensis Spreng.	Polygonaceae	Jangli Palak	Н	Lf, Rt	Leaves extract is used to treat	0.83	Young leaves are used as	LKEP
BB-SRTGUH-1530					digestive issues such as		a vegetable. They can be	
					constipation (35) and stomach		cooked and consumed as	
					pain (17). While roots treat		spinach soups, stews,	
					urinary problems (51).		and curries.	
Salvia lanata Roxb.	Lamiaceae	Bhatkatiya	Н	Rt, Lf	Decoction of roots used to	0.50	Infusion of leaves are	LKEP
TL-SRTGUH-1614					relieve indigestion (63), and		commonly used to	
					other gastrointestinal		prepare herbal tea.	
					discomfort.			
Sonchus asper (L.) Hill	Asteraceae	Bichhu Ghas	Н	Wp	The entire plant is used to	0.21	Leaves are consumed as	LKEP
BB-SRTGUH-1515					increase urine production and		a leafy vegetable and as	
					promote kidney function (27).		an edible source of	
							salads.	

Thalictrum foliolosum DC.	Ranunculaceae	Kirmuli	Н	Rt, Lf	Root extract support liver	0.59	The plant is used in	LKEP
TL-SRTGUH-1827					function and are used to treat		various craft projects and	
					liver disorders, including		decorations.	
					jaundice (35). The leaves are			
					used topically to treat wound			
					(16), cuts (23).			
Valeriana wallichii DC.	Caprifoliaceae	Jatamansi	Н	Rt, Lf,	Roots are used to promote	0.69	Plant extract is used in	LKEP
TL-SRTGUH-1635				FI	relaxation, treat insomnia (52),		skincare products and	
					and reduce blood pressure (13).		perfume production.	
					Leaves and flowers improve			
					digestion (21) and relieve			
					gastrointestinal discomfort.			
Verbascum thapsus L.	Scrophulariaceae	Jakhmvir	Н	Lf, Fl	Infusion of leaves are used to	0.45	Flowers are used in	LKEP
BB-SRTGUH-1512					make herbal tea and treat		cosmetic preparation.	
					respiratory conditions such as			
					cough (18), bronchitis (11), and			
					asthma (27).			
Vitex negundo L.	Lamiaceae	Shiwali/	S	Lf, Fl,	Juice of fresh leaves was used to	0.25	Flowers are used for	LKEP
TL-SRTGUH-1641		Nirgundi		Fr	treat ear disease (7). The		ornamental purposes.	
					consumption of fresh fruit treats			
					the diarrhea (24).			
Woodfordia fruticosa (L.)	Lythraceae	Dhaula	S	Fl, Br	Flowers are used to treat	0.25	Flowers are used as a	LKEP
Kurz					dysentery (15) and diarrhea (17).		refreshing drink.	
TL-SRTGUH-1666					The bark contains tannins and is			
					used in the tanning industry.			

Where, H= "Herbs", S= "Shrubs", C= "Climber", T= "Tree", Rt = "Roots", Lf = "Leaves", Tw= "Twig", St = 'Stem", Fr = "Fruits", Wp = "Whole plant", FI = "Flowers", Br= "Barks", Sd = "Seeds", Lt= "latex", VLKEP= "Very Lesser-Known Economic Plant", LKEP= "Lesser-Known Economic Plant", UV= "use value", U= "total citation", n = "total number of informants"

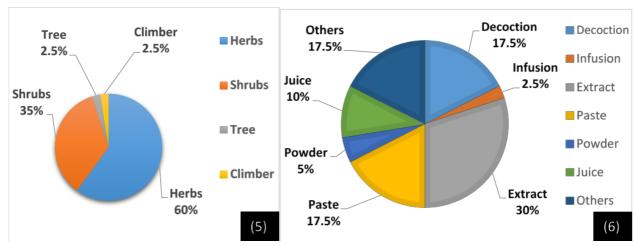


Figure 5 and 6. Pie chart showing the percentage of various habits and several modes of herbal preparation

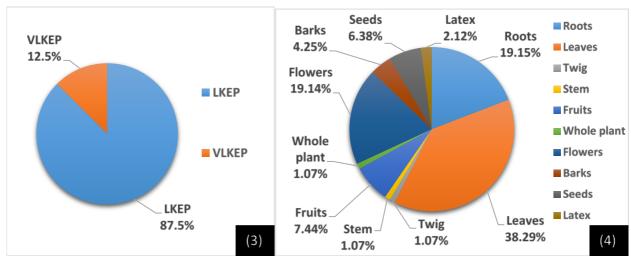


Figure 7 and 8. Pie chart showing the percentage of the economic value of various plants and the percentage of different parts of the plant used

Fidelity index

In this investigation, the fidelity level value was between 5.02% to 100%. To increase the accuracy of cited species, fewer than five respondents were not included in the final study. The fidelity index values for (a). Respiratory disease: Cold viz., Datura stramonium (FI=19.75%), Erigeron emodi (FI=28.39%), Euphorbia helioscopia (FI=33.33%), Gerbera gossypina (FI=18.51%), Cough viz., Datura stramonium (FI=18.64%), Erigeron emodi (FI=21.18%), Ficus palmata (FI=31.35%), Gerbera gossypina (FI=13.55%), Verbascum thapsus (FI=15.25%), Asthma viz., Datura stramonium (FI=28.33%), Euphorbia helioscopia (FI=26.66%), Verbascum thapsus (FI=45%), Bronchitis viz., Erigeron emodi (FI=42.18%), Euphorbia helioscopia (FI=18.75%), Gerbera gossypina (FI=21.87%), Verbascum thapsus (FI=17.18%), (b). Gastrointenstinal disease: Diarrhea viz., Achyranthes aspera (FI=25.94%), Ajuga parviflora (FI=10.87%), Amaranthus caudatus (FI=9.62%), Asparagus racemosus (FI=5.02%), Potentilla indica (FI=15.48%), Rosa brunonii (FI=10.46%), Rubus ellipticus (FI=5.43%), Vitex negundo (FI=10.04%), Woodfordia fruticosa (FI=7.11%), Dysentery viz., Achyranthes aspera (FI=12%), Ajuga parviflora (FI=10%), Plantago major (FI=35%), Potentilla indica (FI=16%), Rubus ellipticus (FI=12%), Woodfordia fruticosa (FI=15%), Stomach Pain viz., Ajuga parviflora (FI=43.33%), Rumex nepalensis (FI=56.66%), Indigestion viz., Ajuga parviflora (FI=13.81%), Indigofera heterantha (FI=17.58%), Salvia lanata (FI=69.23%), Stomach ulcer; Amaranthus spinosus (FI=%100), Tuberculosis; Justicia adhatoda (FI=100%), Constipation; Rumex nepalensis (FI=100%), (c). Cardiovascular disease: Blood Pressure; Valeriana wallichii (FI=100%), (d). Neuro-related disease: Headache; Ajuga bracteosa (FI=100%), Insomnia; Valeriana wallichii (FI=100%), (e). Musculoskeletal and pain: Muscle pain; Ricinus communis (FI=100%), Arthritis; Rumex hastatus (FI=100%), (f). Reproductive health: Menstrual cycle; Asparagus racemosus (FI=100%), Infertility; Asparagus racemosus (FI=100%), (g). Kidney function viz., Amaranthus spinosus (FI=30.76%), Sonchus asper (FI=69.23%), (h). Infection and wound care: Urinary tract infection viz.,

Asparagus racemosus (FI=55.17%), Mirabilis jalapa (FI=44.82%), Bacterial and Fungal Infections; Berberis aristata (FI=100%), Wounds viz., Bidens pilosa (FI=61.66%), Cannabis sativa (FI=38.33%), Cuts; Thalictrum foliolosum (FI=100%), (i). Skin disease: Skin infection viz., Eupatorium adenophorum (FI=43.24%), Gerbera gossypina (FI=56.75%), Eczema; Plantago major (FI=100%), Dermatitis; Plantago major (FI=100%), Rashes; Plantago major (FI=100%), (j). Others: Fever viz., Ajuga bracteosa (FI=30.50%), Ajuga parviflora (FI=28.81%), Cotinus coggygria (FI=40.67%), Diabetes; Ajuga parviflora (FI=100%), Inflammation viz., Amaranthus caudatus (FI=49.09%), Bidens pilosa (FI=45.45%), Cannabis sativa (FI=5.45%), Eye disease; Berberis aristata (FI=100%), Malaria; Bidens pilosa (FI=100%), Insect Bite viz., Cannabis sativa (FI=37.20%), Malva parviflora (FI=27.90%), Rumex hastatus (FI=34.88%), HIV/AIDS; Cannabis sativa (FI=100%), Snake Bite; Euphorbia helioscopia (FI=100%), Cancer; Cannabis sativa (FI=100%), (Table 3, Figure 8).

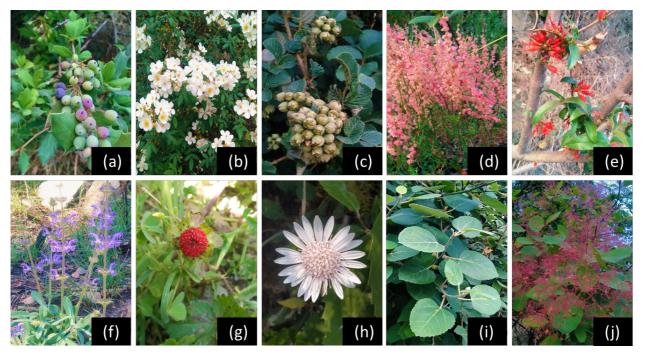


Figure 9. (a). Berberis aristata (b). Rosa brunonii (c). Rubus ellipticus (d). Rumex hastatus (e). Woodfordia fruticosa (f). Salvia lanata (g). Potentilla indica (h). Gerbera gossypina (i). Ficus palmata (j). Cotinus coggygria

Table 2. Ailment category and informant consensus factor (ICF)

Ailment Category	Number of species (Nt)	Use citations (Nur)	Informant consensus factor (ICF) in percentage
(a). Respiratory disease:			
Cold	4	81	0.96
Cough	5	118	0.96
Asthma	3	60	0.96
Bronchitis	4	64	0.95
(b). Gastrointestinal disease:			
Diarrhea	9	239	0.96
Dysentery	6	100	0.94
Stomach pain	2	30	0.96
Indigestion	3	91	0.97
Stomach ulcer	1	5	1
Tuberculosis	1	5	1
Constipation	1	35	1
(c). Cardiovascular disease:			
Blood pressure	1	13	1
(d). Neuro related disease:			
Headache	1	23	1

Insomnia	1	52	1
(e). Musculoskeletal and pain:			
Muscle pain	1	35	1
Arthritis	1	31	1
(f). Reproductive health:			
Menstrual cycle	1	28	1
Infertility	1	52	1
(g). Kidney function	2	39	0.97
(h). Infection and wound care:			
Urinary tract infection	2	29	0.96
Bacterial and fungal infections	2	13	0.91
Wounds	2	60	0.98
Cuts	1	23	1
(i). Skin disease:			
Skin infection	2	74	0.98
Eczema	1	17	1
Dermatitis	1	15	1
Rashes	1	13	1
(j). Others:			
Fever	3	59	0.96
Diabetes	1	45	1
Inflammation	3	55	0.96
Eye disease	1	15	1
Malaria	1	14	1
Insect bite	3	43	0.95
HIV/AIDS	1	15	1
Snake bite	1	7	1
Cancer	1	6	1

Where, **Nt** = "Number of species", **Nur** = "Use citation", and **ICF**= "Informant consensus factor"

Table 3. Fidelity index (FI%) of significant plant species to cure various disease groups

Disease groups	Important species	Fidelity index
(a). Respiratory disease:		
Cold	Datura stramonium L.	19.75%
	Erigeron emodi I.M.Turner	28.39%
	Euphorbia helioscopia L.	33.33%
	Gerbera gossypina (Royle) Beauverd	18.51%
Cough	Datura stramonium L.	18.64%
	Erigeron emodi I.M.Turner	21.18%
	Ficus palmata Forssk.	31.35%
	Gerbera gossypina (Royle) Beauverd	13.55%
	Verbascum thapsus L.	15.25%
Asthma	Datura stramonium L.	28.33%
	Euphorbia helioscopia L.	26.66%
	Verbascum thapsus L.	45%
Bronchitis	Erigeron emodi I.M.Turner	42.18%
	Euphorbia helioscopia L.	18.75%
	Gerbera gossypina (Royle) Beauverd	21.87%
	Verbascum thapsus L.	17.18%
(b). Gastrointestinal disease:		
Diarrhea	Achyranthes aspera L.	25.94%
	<i>Ajuga parviflora</i> Benth.	10.87%
	Amaranthus caudatus L.	9.62%

yaleriana wallichii DC. juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd Plantago major L. Plantago major L. Plantago major L. juga bracteosa Wall. ex Benth. Ajuga parviflora Benth.	100% 100% 100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66% 38.33% 100% 43.24% 56.75% 100% 100% 100% 100% 28.81%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd Plantago major L. Plantago major L. Plantago major L.	100% 100% 100% 100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd Plantago major L. Plantago major L.	100% 100% 100% 100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd Plantago major L. Plantago major L.	100% 100% 100% 100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd Plantago major L.	100% 100% 100% 100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC. patorium adenophorum Spreng. bera gossypina (Royle) Beauverd	100% 100% 100% 100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC.	100% 100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66% 38.33% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L. Thalictrum foliolosum DC.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66% 38.33%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L. Cannabis sativa L.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66% 38.33%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC. Bidens pilosa L.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100% 61.66%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L. Berberis aristata DC.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd. Mirabilis jalapa L.	100% 100% 100% 100% 100% 100% 30.76% 69.23% 55.17% 44.82%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill Asparagus racemosus Willd.	100% 100% 100% 100% 100% 100% 30.76% 69.23%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L. Sonchus asper (L.) Hill	100% 100% 100% 100% 100% 100% 30.76% 69.23%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L.	100% 100% 100% 100% 100% 100% 30.76%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd. Amaranthus spinosus L.	100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd. Asparagus racemosus Willd.	100% 100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don Asparagus racemosus Willd.	100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L. Rumex hastatus D.Don	100% 100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L.	100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC. Ricinus communis L.	100% 100% 100%
juga bracteosa Wall. ex Benth. Valeriana wallichii DC.	100% 100%
juga bracteosa Wall. ex Benth.	100%
juga bracteosa Wall. ex Benth.	100%
Valeriana wallichii DC.	100%
Rumex nepalensis Spreng.	100%
Justicia adhatoda L.	100%
<u> </u>	100%
	69.23%
	17.58%
	13.81%
	56.66%
	43.33%
	15%
<u> </u>	12%
	16%
	35%
	10%
•	12%
	7.11%
	10.04%
·	5.43%
Rosa brunonii Lindl.	10.46%
	15.48%
	Rubus ellipticus Sm. Vitex negundo L. Woodfordia fruticosa (L.) Kurz Achyranthes aspera L. Ajuga parviflora Benth. Plantago major L. Tentilla indica (Andrews) Th.Wolf Rubus ellipticus Sm. Woodfordia fruticosa (L.) Kurz Ajuga parviflora Benth. Rumex nepalensis Spreng. Ajuga parviflora Benth. Tofera heterantha Wall. ex Brandis Salvia lanata Roxb. Amaranthus spinosus L.

Inflammation	Amaranthus caudatus L.	49.09%
	Bidens pilosa L.	45.45%
	Cannabis sativa L.	5.45%
Eye disease	Berberis aristata DC.	100%
Malaria	Bidens pilosa L.	100%
Insect bite	Cannabis sativa L.	37.20%
	Malva parviflora L.	27.90%
	Rumex hastatus D.Don	34.88%
HIV/AIDS	Cannabis sativa L.	100%
Snake bite	Euphorbia helioscopia L.	100%
Cancer	Cannabis sativa L.	100%

Where, FI%= Fidelity Index percentage

Conclusion

The present study of lesser-known economic plants concluded that the research area is rich in plant diversity, cultural legacy, and untapped potential for local economic growth. It also documented the priceless traditional knowledge and various reasons behind the lesser-known economic plants.

The ethnobotanical survey helps to identify and document several lesser-known economic plants with significant potential for various uses, including medicinal, nutritional, cultural, industrial and other applications. The local inhabitants use these plants in various forms including fuelwood, medicine, furniture, fodder, fiber, edible, vegetables, oil, juice, etc. They use some higher economic plants species such as *Cedrus deodara*, *Rhododendron arboreum*, *Pinus roxburghii*, *Quercus leucotrichophora*, *Morus alba* and more for their livelihood, but similarly there are various plants such as *Rumex hastatus*, *Rosa brunonii*, *Woodfordia fruticosa*, *Ficus palmata*, *Valeriana wallichii* and more plants species of this reason have higher medicinal, cultural and other important economic value, but they don't use them as an income purpose, due to lack of knowledge and awareness and their commercial value.

However, the reasons behind the lesser-known status of economic plants are multifaceted. These include a decline in traditional knowledge among younger generations, limited local trade and market access, and a lack of modern techniques. Additionally, environmental changes and overexploitation have made some plants harder to find, and cultivation challenges persist. Lastly, there is a lack of awareness to protect, sustain, and management plan of the lesser-known economic plant. More awareness campaigns will be required to aware and educate the local people to create golden self-employment opportunities, revenue production, and improved livelihoods through the cultivation, and conservation of plant biodiversity of lesser-known economic plants. The economic importance of lesser-known medicinal plants, highlighting their uses, benefits, and sustainable cultivation practices.

Promoting the cultivation and commercialization of lesser-known economic plants can provide new avenues for self-employment and revenue generation in the region and conservation strategies must be implemented to protect the biodiversity. While promoting sustainable use of these plant resources because there are various anthropogenic activities like forest fire, road construction, over exploitation, deforestation, urbanization, pollution, and natural factors such as heavy rainfall, landslides, cloud burst, climate change, etc. are influencing the diversity of this area.

Community engagement and education are essential for the effectiveness of conservation initiatives and the long-term development of plant resources. Further research is needed to explore the full potential of these plants, including phytochemical analysis, agronomic practices, and market value. Collaborative efforts between scientific researchers, local communities, governmental and non-governmental support, and policymakers can drive innovation and support the sustainable utilization of lesser-known economic plants and fulfill the livelihoods of local inhabitants, generate self-employment, value added products, revenue production and preserving cultural heritage through the cultivation of these plant species.

Declarations

List of abbreviations: H= Herbs, S= Shrubs, C= Climber, T= Tree, Rt = Roots, Lf = Leaves, Tw= Twig, St = Stem, Fr = Fruits, Wp = Whole plant, FI = Flowers, Br= Barks, Sd = Seeds, Lt= latex, VLKEP= Very Lesser-Known Economic Plant, LKEP= Lesser-Known Economic Plant

Ethics approval and consent to participate: This study did not involve the export of any animal or plant material. Information was obtained from the participants. All informants were orally consented.

Consent for publication: All participants shown inj images gave their consent to have the images published.

Availability of data and materials: The manuscript contains all the data.

Competing interests: We declare that there is no conflict of interest.

Funding: No funding

Authors' contributions: LRD Supervision, conceptualization and review, BB Conceptualization, investigation, data collection, data analysis and writing, TL data Interpretation and review, MR Interpretation and review, UKS: data collection, AP data collection. All the authors corrected and approved the manuscript for the publication.

Acknowledgements

We are highly thankful to the people of Chamba region, district Tehri Garhwal for openly sharing their rich ethnobotanical knowledge during our field visits.

Literature cited

Abbasi AM, Khan MA, Shah MH, Shah MM, Pervez A, Ahmad M. 2013. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan. Journal of Ethnobiology and Ethnomedicine 9: 1-13.

Adnan M, Hölscher D. 2011. Medicinal plants in old-growth, degraded and re-growth forests of NW Pakistan. Forest Ecology and Management 261(11): 2105-2114.

Alemu M, Asfaw Z, Lulekal E, Warkineh B, Debella A, Sisay B, Debebe E. 2024. Ethnobotanical study of traditional medicinal plants used by the local people in Habru District, North Wollo Zone, Ethiopia. Journal of Ethnobiology and Ethnomedicine 20(1): 4.

Al-Snafi AE. 2016. The Pharmacological and therapeutic importance of Cordia myxa-A review. Journal of Pharmacy 6(6): 47-57.

Anon. 1994. Ethnobotany in India: A Status Report. All India Coordinated Research Project in Ethnobotany. MOEF, GOI, New Delhi.

Azaizeh H, Fulder S, Khalil K, Said O. 2003. Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region. Fitoterapia 74(1-2): 98-108.

Bandow JE, Brötz H, Leichert LIO, Labischinski H, Hecker M. 2003. Proteomic approach to understanding antibiotic action. Antimicrobial Agents and Chemotherapy 47(3): 948-955.

Berkes F. 2004. Rethinking community-based conservation. Conservation Biology 18(3): 621-630.

Bijalwan A. 2011. Structure, Composition, and Diversity of Horticulture Trees and Agricultural Crops Productivity under Traditional Agri-Horticulture System in Mid Hill Situation of Garhwal Himalaya, India. American Journal of Plant Sciences 3: 480-488.

Bisht M, Chandra SK, Mukherjee S, Thapliyal N, Bahukhandi A, Singh D, Dey D. 2022. Influence of anthropogenic pressure on the plant species richness and diversity along the elevation gradients of Indian Himalayan high-altitude protected areas. Frontiers in Ecology and Evolution 10: 751989.

Chakraborty R, Roy S, Mandal V. 2016. Assessment of traditional knowledge of the antidiabetic plants of Darjeeling and Sikkim Himalayas in the context of recent phytochemical and pharmacological advances. Journal of Integrative Medicine 14(5): 336-358.

Choudhary K, Singh M, Pillai U. 2008. Ethnobotanical Survey of Rajasthan-An Update. American-Eurasian Journal of Botany 1(2): 38-45.

Dangwal LR, Lal T. 2024. Diversity, Informant Consensus Factor and Cultural Significance Index of Wild Edible Plants in the Jaunpur region, Tehri Garhwal, Uttarakhand. Ecological Questions 35(2): 1-12.

Dangwal LR, Sharma A, Rana CS. 2010. Ethnomedicinal plants of the Garhwal Himalaya used to cure various diseases: A case study. New York Science Journal 3(12): 28-31.

Dangwal LR. 2016. Self-Employment Through Cultivation of Medicinal Plants in Block Chamba District Tehri Garhwal, Uttarakhand. World Journal of Pharmacy and Pharmaceutical Sciences 6(01): 1167-1180.

Das L, Mishra S, Das A, Dimri R, Kumar S. 2022. Some common flora of temple city of Odisha, India: source for ethno-medico-cultural values. Indian Forester 148(2): 207-212.

Das PK, Misra MK. 1988. Some ethnomedicinal plants of Koraput district Orissa. Ancient Science of Life 8(1): 60-67.

Dobhal A, Sharma D, Rawat S. 2023. Regenerational Analysis of Seedlings and Saplings of Badshahithaul Forest Area of Chamba Block (Near New Tehri Town), District Tehri Garhwal, Uttarakhand, India. International Journal of Environmental Sciences 12(4): 66-73.

FAO. 2023. The State of Food Security and Nutrition in the World: Urbanization, agrifood systems transformation and healthy diets across the rural-urban continuum. https://openknowledge.fao.org/items/a17000a4-6f42-46cf-9eaa-06007970365d. (Accessed May 6, 2024).

Friedman J, Yaniv Z, Dafni A, Palewitch D. 1986. A preliminary classification of the healing potential of medicinal plants, based on the rational analysis of ethnopharmacological field survey among Bedouins in Negev Desert, Israel. Journal of Ethnopharmacology 16(2-3): 275-287.

Garg P, Pundir S, Ali A, Panja S, Chellappan DK, Dua K, Negi P. 2024. Exploring the potential of *Moringa oleifera* Lam in skin disorders and cosmetics: nutritional analysis, phytochemistry, geographical distribution, ethnomedicinal uses, dermatological studies and cosmetic formulations. Naunyn-Schmiedeberg's Archives of Pharmacology 397(6): 3635-3662.

Goyal M, Sharma SK. 2009. Traditional wisdom and value addition prospects of arid foods of desert region of North West India. Indian Journal of Traditional Knowledge 8(4): 581-585.

Guha R. 1983. Forestry in British and post-British India: A Historical Analysis. Economic and Political Weekly 18(44): 1882-1896.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Science and Medicine 47(11): 1859-1871.

Jadhav D. 2006. Commercial Non Timber Forest products collected by the Bhil tribe in Shivgarh town of Ratlam District Madhya Pradesh. Journal of Non -Timber Forest Products 13(4): 295-296.

Jain SK, Rao RR. 1997. Field and Herbarium Methods. Today and tomorrow's Printers and Publishers, New Delhi.

Joshi K, Bhardwaj N. 2017. Traditional health care practices: A women centric study in lesser Himalayan region of Uttarakhand (India). Journal of Pharmacognosy and Phytochemistry 6(3): 617-623.

Kala CP. 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. Journal of Ethnobiology and Ethnomedicine 11(1): 1746-4269.

Kala CP. 2007. Prioritization of cultivated and wild edibles by local people in the Uttaranchal hills of Indian Himalayas. Indian Journal of Traditional knowledge 6: 239-243.

Kamboj VP. 2000. Herbal medicine. Current science 78(1): 35-39.

Katewa SS, Choudhary BL, Jain A, Galav PK. 2003. Traditional uses of plant biodiversity from Aravalli hills of Rajasthan. Indian Journal of Traditional Knowledge 2(1): 27-39.

Khadka D, Kunwar RM, Baral B, Bhatta S, Cui D, Shi S. 2024. Prunus mira Koehne and Prunus armeniaca L. in Nepal Himalaya: distribution, use, and conservation. Genetic Resources and Crop Evolution 71: 4583-4602.

Khond M, Bhosale JD, Arif T, Mandal TK, Padhi MM, Dabur R. 2009. Screening of Some Selected Medicinal Plants Extract for In-vitro Antimicrobial Activity. Middle-East Journal of Scientific Research 4(4): 271-278.

Kumar M, Rawat S, Nagar B, Kumar A, Pala NA, Bhat JA, Bussmann RW, Pinto MC, Kunwar R. 2021. Implementation of the Use of Ethnomedicinal Plants for Curing Diseases in the Indian Himalayas and Its Role in Sustainability of Livelihoods and Socioeconomic Development. International Journal of Environmental Research and Public Health 18: 1509(1-26).

Kuniyal CP, Kuniyal PC, Butola JS, Sundriyal RC. 2013. Trends in the marketing of some important medicinal plants in Uttarakhand, India. International Journal of Biodiversity Science, Ecosystem Services and Management 9(4): 324-329.

Lal T, Dangwal LR, Rawat M. 2024. Treatment of diarrhea and dysentery through ethnomedicinal plants in the Jaunpur region of Garhwal Himalaya, India. Ethnobotany Research and Applications 28: 1-14.

Malik AH, Khuroo AA, Dar GH, Khan ZS. 2011. Ethnomedicinal uses of some plants in the Kashmir Himalaya. Indian Journal of Traditional Knowledge 10(2): 362-366.

Mishra R. 1968. Ecology Work Book Oxford and IBH Publishing Co. New Delhi, 624.

Negi KS. 1986. Edible wild plants of Garhwal Himalaya. An ethnobotanical survey. D. Phil thesis submitted to HNB Garhwal University Srinagar.

Pal RS, Kumar RA, Kant L, Bhatt JC. 2014. Kilmora: a wild edible potential nutraceutical fruit in Indian Himalayan region. Popular Kheti 2(3): 199-203.

Patro L. 2016. Medicinal plants of India: with special reference to Odisha. International Journal of Advanced Research and Innovative Ideas in Education 2(5): 121-135.

Phillips O, Gentry AH, Reynel C, Wilkin P, Gálvez-Durand CB. 2002. Quantitative ethnobotany and Amazonian conservation. Conservation Biology 8(1): 225-248.

Rather MA, Baba SA. 2015. Traditional Use of Medicinal Plants in Kashmir: A Review. Research & Reviews: Journal of Biology 3(4): 26-32.

Samant SS, Dhar U, Rawal RS. 2001. Diversity and distribution of wild edible plants of the Indian Himalaya, plant diversity of the Himalaya. Gyanodaya Prakashan, Nainital. pp. 421-482.

Seth MK. 2003. Trees and their economic importance. The Botanical Review 69(4): 321-376.

Sharma G. 2005. An Economic Analysis of Small Millets in Chamba Block of Tehri-Garhwal District (Uttaranchal) (Doctoral dissertation, GB Pant University of Agriculture and Technology, Pantnagar-263145 (Uttarakhand).

Shrestha PM, Dhillion SS. 2006. Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agroforestry Systems 66: 55-63.

Singh HB, Subramaniyam. 2008. Field Manual on Herbarium Techniques. National Institute of Science Communication and Information Resources.

Singh PA, Dash S, Choudhury A, Bajwa N. 2024. Factors affecting long-term availability of medicinal plants in India. Journal of Crop Science and Biotechnology 27(2): 145-173.

Tomar A, Singh S. 2021. Lesser-known Plants. Walnut Publications.

UNICEF. 2023. The State of Food Security and Nutrition in the World: Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural-Urban Continuum. https://data.unicef.org/wp-content/uploads/2023/07/SOFI-2023.pdf (Accessed May 6, 2024).