

Medicinal flora in Egypt's hyper-arid land: Quantitative insights into distribution, diversity, and conservation status

Monier Abd El-Ghani, Amal Fakhry

Correspondence

Monier Abd El-Ghani1*, Amal Fakhry2

¹Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.

²Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.

*Corresponding Author: mmounir@sci.cu.edu.eg

Ethnobotany Research and Applications 30:75 (2025) - http://dx.doi.org/10.32859/era.30.75.1-40

Manuscript received: 24/03/2025 - Revised manuscript received: 07/06/2025 - Published: 08/06/2025

Research

Abstract

Background: Egypt was not immune to the climatic changes occurred worldwide, especially during the past five decades, these changes may be accompanied by changes in land use, as well as the extinction of many plant species. This review includes the current status of the Egyptian natural plant resources with special reference to distribution, diversity, and conservation status in different biogeographic regions of Egypt. It also represents baseline information for all subsequent studies related to medicinal plants in Egypt and arid regions.

Methods: Databases were reviewed to get information on the medicinal plants utilized in Egypt. The biological spectrum was determined following Raunkiaer's system. Differentiation indices were used to describe the taxonomic degrees of divergence across the recorded species. Besides, plant species were classified according to their used parts. Species diversity was estimated among biogeographic regions of Egypt and then analyzed using the Chao-Jaccard index. Species' conservation status was evaluated using the IUCN Red List of Threatened Species. A hierarchical cluster analysis and Principal Components Analysis were performed to classify and ordinate the reported species in nine Operation Geographical Units (OGUs), and a heatmap was used to visualize the cluster analysis.

Results: A total of 113 medicinal plant species, belonging to 49 families was documented. Brassicaceae, Fabaceae, Lamiaceae, were the families with higher contribution. In terms of species richness and diversity, the Sinai region was the highest diverse followed by the Mediterranean and Nile regions reflecting their ecological richness and diverse habitats. The least diversified regions were Gebel Uweinat and the Western Desert. Therophytes were the dominant life form, while, hydrophytes and parasites were poorly represented. Twenty Wide Range Species was recorded. The predominant plant parts used were leaves, aerial parts, and seeds. Approximately 54% of the recorded species were included in the IUCN Red List of Threatened Species. Most of them were classified as Least Concern, three as Data Deficient and one as Near Threatened.

Conclusions: Protecting and conserving economic medicinal plants is an urgent need, including improving knowledge about the important ecological requirements of these species, and raising awareness among all stakeholders to protect this heritage and avoid biodiversity loss.

Keywords: Arid environments, Biogeography, Climate change, Desert vegetation, Folk medicine, Threats to biodiversity

Background

The Medicinal plants, renowned for their diverse array of secondary metabolites with significant therapeutic potential, thrive globally and provide essential health support to humanity. Ethnobotany, the field examining the relationship between humans and plants, focuses particularly on how different communities utilize plants, especially for medicinal purposes (Domingo-Fernández *et al.* 2023). These plants serve as a vital source of beneficial therapeutic effects in traditional health systems, particularly for indigenous communities, and are a crucial resource for drug discovery. The interaction between humans and nature has led to the accumulation of extensive traditional knowledge regarding the use of medicinal plants, which is recognized as crucial for preserving plant biodiversity and understanding the dynamic relationships between wild plants, social, and cultural systems. However, this traditional knowledge is at risk due to its oral transmission between generations, coupled with modernization, lifestyle changes, and disinterest among younger generations. Additionally, the lack of systematic documentation further contributes to the potential loss of knowledge about medicinal plants, especially those that are neglected or less preferred. Therefore, ethnobotanical surveys are essential for documenting and preserving this valuable knowledge, which can lead to the valorization of priority medicinal plants with high therapeutic potential for new drug discoveries.

Medicinal plants have been used in many cultures for thousands of years. Traditional plant-based medicine systems continue to play an essential role in health care. In fact, the World Health Organization (WHO) estimates that approximately 80% of the world's population rely mainly on traditional remedies for their health care (Gottlieb & Kaplan 1993). Globally, 422,000 flowering plants are reported (Govaerts 2001). Out of these, about 50,000 plants are used for medicinal purposes (Schippmann *et al.* 2002). These plants are most important elements of biodiversity around the world (Klein *et al.* 2008; Okigbo *et al.* 2008) because of their role in ecosystem services such as healthcare, cultural value and heritage, local economics and human wellbeing, especially in poor areas. Conserving and protecting these kinds of species is vital, including improving knowledge about the important ecological requirements of medicinal plants, and raising awareness among all stakeholders to protect this heritage. Consequently, conservation planning and effective management is important in protecting the most threatened species in order to avoid declines in the diversity of medicinal plants.

Human activities are having a strong impact on plant abundance and distribution, with consequent effects on ecosystem services and human well-being (Klein *et al.* 2008). This growing effect of human activities on biodiversity (Chapin *et al.* 2000) creates an urgent need to understand the elements that determine the distribution and abundance of plants in order to enhance their conservation (Dubuis *et al.* 2011). The identification of species-rich regions and those where geographically limited species co-occur can optimise the creation of Protected Areas (Bojórquez-Tapia *et al.* 1995).

Large human population in developing countries is dependent on plant resources for healthcare because allopathic medicine can cure a wide range of diseases, but its high prices and occasional side effects are causing many people to return to herbal medicines which tend to have a fewer side effect (Kala 2005). In last few decades, traditional knowledge on primary healthcare has been widely acknowledged across the world. It is estimated that 60% of the world population and 80% of the population of developing countries rely on traditional medicine, mostly plant drugs, for their primary health care needs (Shrestha & Dhillion 2003). Therefore, there is an urgent need to document the medicinal and aromatic plants associated with traditional knowledge, because this knowledge orally passes on from one generation to the next; thus, have vulnerability to wiped out. The earliest recorded history of civilization from ancient culture of Africa, China, Egypt and Indus valley revealed evidence in support of the use of herbal medicine by dweller of those regions (Baqar 2001). Use of plants as a source of medicine has been inherited and is an important component of the health care system in Egypt. Keeping the traditional inherent knowledge, nowadays, Egyptians still depend on medicinal plants for primary health care needs (AbouZid & Mohamed 2011).

By the middle of the nineteenth century at least 80% of all medicines were derived from plants. Then, after the scientific revolution which leads to development of the pharmaceutical industry, the synthetic drugs dominated (Gilani & Atta-ur-Rahman 2005). This is particularly true in developing countries, where traditional systems of medicine have a long and uninterrupted history of use. Recognition and development of the medicinal and economic benefits of traditional medicinal plants is on the increase in both developing and industrialized countries, although it varies greatly from region to region (Zhang 1998). Herbal drugs are prescribed widely because of their effectiveness, fewer side effects and are relatively low in cost (Odhav et al. 2010).

Most of Egypt's landmass is below 500 m above sea level, which limits potential diversity. About 95% of Egypt land is desert, the Western Desert constitutes one of the most extreme arid desert habitats in the world. Generally, the Nile valley divides Egypt into two geomorphological regions: the eastern dissected plateau and the western flat expanse which form an extension of the Libyan Desert (Figure 1). Although the land to the east of the Nile forms one geomorphological region, it is divided geographically into the Eastern Desert and the Peninsula of Sinai, separated by the Gulf of Suez. Three areas of Egyptian desert may therefore be distinguished: The Eastern Desert, The Western Desert and The Sinai Peninsula. Phytogeographically, Egypt can be divided into 5 main phytogeographic regions: The Western Desert (including the oases and depressions), the Eastern Desert (including Gebel Elba and Red Sea coastal land), the Sinai Peninsula, the Nile Land (including the Nile Valley and the Nile Delta), and the Western Mediterranean Coast (Figure 1).

The hyper-arid land of Egypt has two features relevant to biological diversity: (1) it has been inhabited by active human assemblages since millennia, and (2) it is the home habitat of plant species that are parents and relatives of several foods, crop plants and of hundreds of species that are traditional drug plants. Indigenous species are known for their resistance to disease and drought and their wide range of morphological, physical and chemical adaptation (Bidak *et al.* 2013). The wealth of natural plant resources in Egypt is represented by desert plants that constituted the principal vegetation which composed mainly of xerophytic shrubs, subshrubs and herbs (Zahran & Willis 2009). Ecologically, Egyptian deserts are classified into two types; coastal and inland deserts. These deserts are among the most reproductive systems in the world and provide a disproportionately more services to human well-being than most other systems even those covering larger total areas (Millennium Ecosystem Assessment 2005). However, many of recently recorded human activities result in sever impacts on this desert ecosystem (Hussein *et al.* 2021). The major anthropogenic impacts include over-grazing, over-collection, urbanization, and military activities.

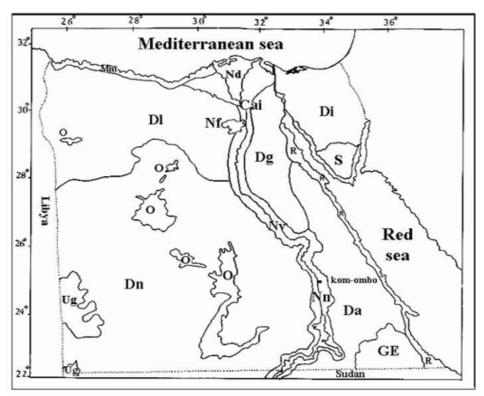


Figure 1. Map indicating the phytogeographical regions in Egypt (after El-Saadawi et al. 2015) Cai: Cairo Area; Da: Arabian Desert; Dg: Galala Desert; Di: Isthmic Desert; Dl: Libyan Desert; Dn: Nubian Desert; GE: Gebel Elba; Mm: Western Mediterranean Coastal Land (Mareotic sector); Nd: Nile Delta; Nf: Nile Fayoum; Nn: Nile Nubia; Nv: Nile Valley; O: Oasis; R: Red Sea Coastal Plains; S: Southern Sinai (Sinai proper); Ug: Gebel Uweinat

The ancient Egyptians recorded much of their knowledge of plant drugs and their uses and many of these drugs are still used in medicine. Historic medicine in Egypt is full of recipes for curing various diseases and the use of plants as medicines are well documented on the walls of temples and in the papyri e.g. the famous Ebers Papyrus, written in 1550 B.C. with 876 prescriptions made of 328 different ingredients derived from many plant species. Some examples of the plant's species identified are: Artemisia absinthium, Vachellia nilotica, Balanites aegyptiaca, Bryonia sp., Hyoscyamus muticus, Myrtus

communis, Onopordon sp., Aloe, gums, myrrh, pomegranate, colocynth, linseed, squil, coriander, cumin, onions, anise, grapes, castor oil and Ziziphus sp. All plant organs such as roots, rhizomes, flowers, leaves, fruits, seeds, as well as oils were used for medicaments in the form of powders, pills, suppositories, creams, pastes and ointments (Haggag 1997).

Since Pharaonic times, the use of medicinal plants has occurred in Egypt (Manniche 1999). This constituted an integral part of the practiced medicine at that time. Nowadays, Egyptians still depend on medicinal plants for treatment. In a recent study conducted by the Information and Decision Support Centre in Egypt, it was found that 23% of the Egyptian use medicinal plants as a remedy; 52% of them are living in urban areas and 48% are living in countryside. Sinai Peninsula is one of the important centers of medicinal plants in the Arabian deserts. Distributions, utilization in folk medicine, and active constituents of medicinal plants in Sinai have attracted the attention of many ecologists, taxonomists and phytochemists (see Abd El-Wahab *et al.* 2008 for more literature). Environmental conditions and human impacts have a significant influence on diversity and distribution of threatened, endemic, and medicinal plants (Abd El-Wahab *et al.* 2004).

The current review aims to provide a comprehensive overview of medicinal plants in Egypt, benefiting the preservation and dissemination of traditional knowledge. It explores the diversity and distribution of these plants across Egypt's different biogeographical regions, as well as their current conservation status and nativity, using techniques of multivariate analyses. It also represents baseline information for all subsequent studies related to medicinal plants in Egypt and arid region.

Materials and Methods

Study area

Egypt is a low-lying country occupies the north-eastern part of the African continent, with total area of a little more than million km2, representing nearly 3% of the total area of Africa (Abd El-Ghani *et al.* 2017). It extends over about 10 degrees of latitude, being bounded between Lat. 22°N and 32°N, i.e. lies mostly within the temperate zone, less than a quarter being south of the Tropic of Cancer. The whole country forms part of the great desert "Sahara" belt that stretches from the Atlantic across the whole of North Africa through Arabia. It is a cross-road territory with its Mediterranean front connecting it with Europe with which it has had biotic exchanges during the Glacials and the Interglacials, and today we know that routes of migratory birds converge through Egypt. Two highway corridors join Egypt with tropical Africa and beyond: The Nile Valley and the basin of the Red Sea. The Sinai Peninsula is the bridge between Africa and Asia.

Egypt is characterized by a hot and almost rainless climate. The average annual rainfall over the whole country is only about 10 mm. Even along the narrow northern strip of the Mediterranean coastal land where most of the rain occurs, the average annual rainfall is usually less than 200 mm and the amount decreases very rapidly inland (southwards). The scanty rainfall accounts for the fact that the greater part of the country is barren and desolate desert.

Literature survey

Various databases were consulted to gather information on the medicinal plants used in Egypt, including published articles from Google Scholar, Scopus, Web of Science, PubMed, DOAJ, and Science Direct. The search terms employed for retrieving relevant articles were "medicinal plants," "ethnobotanical survey," "ethnobotanical study," "folk medicinal plants," "Egypt," and "economic potential of desert plants." Information on the medicinal uses, plant parts utilized, and geographic distribution of these plants was systematically collected. To ensure the accuracy of the recorded plant species, the binomials of recorded plants were validated with the main electronic sources and online global databases such as African Plant Database (APD; http://www.ville-ge.ch/musinfo/bd/cjb/africa), Global Biodiversity Information Facility (GBIF; http://www.gbif.org/occurrence),International Plant Names Index (IPNI; http://www.ipni.org), Plants of the World Online (POWO; http://www.plantsoftheworldonline.org), World Checklist of Selected Plant Families (WCSP; http://wcsp.science.kew.org/home.do), World Flora Online (WFO; https://www.worldfloraonline.org), and WFO Plant List (https://wfoplantlist.org/plant-list).

Distribution in biogeographical regions

This study explored the distribution patterns of medicinal plants across the entire country. The distribution patterns of medicinal plant among the different biogeographical regions of Egypt (Figure 1) were established based on the localities mentioned in the literature (El Hadidi & Fayed 1994/95, Boulos 1995-2009). Each biogeographic region was referred to as an operational geographical unit (OGU) to detect the distribution patterns of the medicinal plants. In this analysis, 10 OGUs were used (see Figure 1 for full names), and presence/absence of each species in different biogeographic regions was

recorded. Distribution maps of some medicinal plants were prepared using ArcGIS 10.4 software (ESRI 2016) and based on the geographical locations attained with GPS for each plant species within its OGU.

Taxonomic differentiation

Differentiation indices, which comprised a species differentiation index (Ds), a genus differentiation index (Dg), and a species—family differentiation index (Dsf), were used to describe the taxonomic degrees of divergence across medicinal plant species (Huang *et al.* 2016). The three indices' respective functions were displayed as follows:

Species differentiation index (Ds)=Ns/Ng; Genus differentiation index (Dg)=Ng/Nf; Species–family differentiation index (Dsf)=Ns/Nf

the numbers Ns, Ng, and Nf represent the number of medicinal plant species, genera, and families of medicinal flora, respectively, within an OGU.

Biological spectrum

For the analysis of the biological spectrum, the life form of each species was determined following Raunkiaer's classification system (Raunkiaer 1937) as follows: phanerophytes (PH), Chamaephytes (CH), Hemicryptophytes (H), Geophytes (G), therophytes (TH), parasites (P), hydrophytes (Hy), and climbers (CI). The t-test feature in SPSS version 16.0 for Windows assessed the significance of the life form distribution patterns in each OGU.

Nativity and endemism

Each of the recorded species was assigned to either native (N) or introduced (NN) using the online global database Plants of the World Online (POWO; http://www.plantsoftheworldonline.org). In this study, the term 'native' (indigenous species) referred to those occur in a given region or ecosystem as a result of only natural processes, with no human intervention (IUCN 2025). They are integral parts of the natural community and play a role in the food web and ecosystem processes. The term 'introduced' (non-indigenous, alien species or exotic plants, non-native) referred to plants that have been brought outside of their original habitats due to deliberately or involuntarily by human activities, and they have an impact on the biodiversity of native plants (Kowarik 1995, Chandra *et al.* 2015). In this investigation, we adopted the definitions proposed by Abd El-Ghani *et al.* (2024) for endemic and near-endemic taxa. Taxa occurring exclusively within the political borders of Egypt are classified as "endemic", whereas those that also occur globally outside Egyptian borders are categorized as "near-endemic". Taxa lacking identification were referred to as "not identified".

Parts of medicinal plants used

Based on data compiled from published literature (Osborn 1968; Boulos, 1983; El-Demerdash 2001; Heneidy & Bidak 2004; Mahmoud & Gairola 2013), the medicinal plant species under study were classified according to their used parts into the following categories: underground (UG), fruit (F), seed (S), leaf (L), inflorescence (IN), aerial part (AP), bark (B), plant secretion (PS), wood (W), and others (O). Each species was assigned to its respective used parts, and its distribution across different biogeographic regions (OGUs) was indicated using a binary system: (+) for used and (-) for not used.

Conservation status

The IUCN, 2025 is the most significant source of information about species conservation worldwide. The conservation status of each species was evaluated using the categories proposed by this system. In this study, a scale of seven categories was used as follows: Data Deficient (DD: there is inadequate information to make assessment of a taxon's risk of extinction), Least Concern (LC: the taxon has been evaluated against the Red List criteria and does not qualify for Threatened or Near-Threatened), Near Threatened (NT: the taxon has been evaluated against the criteria of the Red List criteria and does not qualify for Threatened now, but is close to qualify for the Threatened category in the near future), Vulnerable (VU: the taxon is considered to be facing a high risk of extinction in the wild), Endangered (EN: the taxon is considered to be facing an extremely high risk of extinction in the wild), and Extinct (EX: there is no reasonable doubt that the last individual has died).

Species diversity

The species richness (SR) for each OGU was calculated as the total number of species per a biogeographic region (OGU). Additionally, the Shannon-Wiener diversity index (H') was used to assess relative species evenness, following the formula

H'=-Σpi Inpi; where pi=Ni/N, where Ni is the number of species I in an OGU, and N is the total number of all species in the OGU (Magurran 2021). Species richness (SR) and Shannon-Wiener diversity index (H') represent the α -diversity, and are widely used in ecological studies (Mahdavi *et al.* 2013, Zhang & Zhang 2017). Beta diversity among the 9 OGUs was analyzed using the Chao-Jaccard index; it is more suitable for evaluating the similarity of samples of various sizes with many rare taxa and considers unobserved shared taxa (Chao *et al.* 2005). For this purpose, the program Estimates for Windows version 7.5 (Colwell 2005) was used.

Data processing and analysis

A hierarchical cluster analysis was performed to classify the 68 medicinal plant species recorded in the 9 OGUs using their presence/absence in the corresponding OGU, and a presence percentage (P%) was calculated. Ward's method (minimum variance) as the agglomeration criterion (Orlóci 1978) and squared Euclidean distance dissimilarity matrix in PAST software version 4.03 (Hammer *et al.* 2001) was used as classification tool. To ensure the robustness of the resultant classification of stands, we devised a second classification using Sørensen (Bray-Curtis) as a distance measure and flexible beta at -0.6 as a group linkage method of PC-Ord version 5 for Windows (McCune & Mefford 1999). The latter classification produced nearly identical to the results obtained by the former, which was approved in this study. To visualize the cluster analysis, a heatmap was used using Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap (Metsalu *et al.* 2015). The color intensity in each cell of the heatmap typically represents the strength or frequency of the relationship between an OGU and a species. Darker or more intense colors usually indicate a stronger relationship, while lighter colors suggest a weaker or absent relationship.

A Principal Components Analysis (PCA) was used for ordination of the 9 OGUs along the first two axes, to illustrate the separated species groups. For this purpose, Clustvis (Metsalu *et al.* 2015) was applied to visualize the ordination scatterplot.

All graphs and were performed using RAW Graphs (Mauri *et al.* 2017) which is an open source data visualization framework built with the goal of making the visual representation of complex data. All statistical analyses were performed using SPSS for windows version 16. All photos in this review were taken by the first author (Monier Abd El-Ghani) during several visits to different regions of the country.

Results and Discussion

Taxonomic differentiation

A total of 113 medicinal plant species (included 1 Pteridophyte and 2 Gymnospermae), belonging to 49 families and 97 genera, were documented in Egypt. Among these, 11 families accounted for 64 species, representing over 60% of the total species (Figure 2). Medicinal plant diversity showed that the plant families contributing higher number of medicinal species were Brassicaceae (10 species, (8.8% of the total), followed by Fabaceae and Lamiaceae, each contributing 8 species (7.1% of the total flora). Apiaceae, Asteraceae, and Poaceae were equally represented, with 7 species each (6.2%), while Convolvulaceae and Solanaceae each had 4 species (3.5%). Similarly, Plantaginaceae, Polygonaceae, and Zygophyllaceae each contributed 3 species (2.6%). The small-size families which included 1 or 2 species constituted the majority (38 families) of recorded families forming 49 species (43.4% of the total). Important genera were Cymbopogon (4 species), Plantago (3 species), and Convolvulus (3 species). In North Sinai, Abd El-Wahab *et al.* (2008) documented 281 species of medicinal plants from 52 families of which Asteraceae, Poaceae, Fabaceae, and Brassicaceae, included the highest number of species. Along the coastal Mediterranean region of Egypt, Heneidy & Bidak (2004) indicated that Asteraceae, Fabaceae and Poaceae were the highly represented families. Abdela *et al.* (2022) indicated the dominance of Asteraceae, Fabaceae, Lamiaceae, and Apiaceae among other families in the investigation of medicinal plant species in Nensebo District, southeastern Ethiopia. In Western Sudan, Muhakr *et al.* (2024) reported that Fabaceae, Asteraceae and Poaceae were represented by highest number of species. Similar results were obtained in this review.

Among the biogeographical regions (OGUs), the genus differentiation index (Dg) was highest in the Mediterranean region (M) at 1.7, followed by the Nile region and Sinai (S), both with equal values of 1.6. In contrast, the species-family differentiation index exhibited a distinct pattern (Table 1), with the Nile region recording the highest index (2.1), while the Gebel Uweinat region (Uw) and the entire Western Desert (Dw) had the lowest indices. In terms of family richness, the Sinai region hosted the highest number of families (42), followed by the Mediterranean region (38) and the Nile region (32). Conversely, the Western Desert and Gebel Uweinat regions had the lowest family counts.

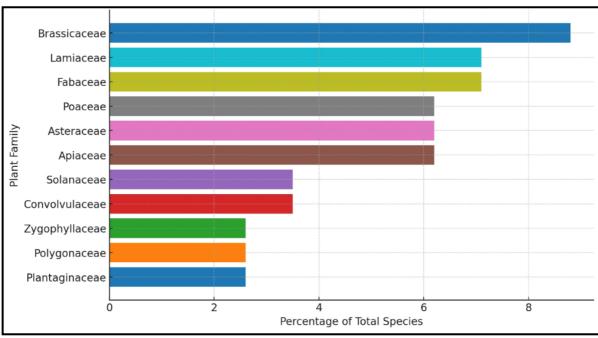


Figure 2. Families with the highest number of species

Table 1. Taxonomic differentiation of medicinal plants for each Operational Geographical Unit (OGU) in Egypt. Ds=Species differentiation index, Dg=Genus differentiation index, Dsf=Species—family differentiation index. For full names of OGUs, see Figure 1.

OGUs	Taxonomic	diversity		Different	iation indice	es
	No. of	No. of genera	No. of species	Ds	Dg	Dsf
	families					
N	32	51	68	1.35	1.6	2.1
0	29	43	45	1.05	1.5	1.5
M	38	64	70	1.09	1.7	1.8
De	18	19	19	1.0	1.05	1.05
Dw	02	02	02	1.0	1.0	1.0
R	16	22	23	1.04	1.37	1.4
GE	20	23	24	1.04	1.15	1.2
S	42	68	77	1.13	1.6	1.8
Uw	03	03	03	1.0	1.0	1.0

Distribution of life forms within families

In general, therophytes were the dominant life form (37 species, 32.7% of the total), hemicyptophytes ranked second (22 species, 19.5%), and equal presentation of chamaephytes and phanerophyte (20 species for each, 17.7% of the total). Hydrophytes and parasites were poorly represented (2 species for each, 1.8%).

Figure 3 illustrated the distribution of the species-richest families within the 4 highly-represented categories of life forms. In context of the number of species, therophytes were represented in all families, with its high presence in Brassicaceae (8 species), chamaephytes included the highest number of species (6 species) in Lamiaceae, the majority of hemicryptophytes (4 species) was included Poaceae, and 3 species of phanerophytes were included in Fabaceae. The most common phanerophytes (6 and 5 OGUs) were *Phoenix dactylifera* L., *Ziziphus spina-christi* (L.) Desf., *Hyphaene thebaica* (L.) Mart., *Pluchea dioscoridis* (L.) DC., *Salix mucronata* Thunb., and *Salvadora persica* L. Common species among the 20 recorded chamaephytes were *Hyoscyamus muticus* L., *Zilla spinosa* (L.) Prantl, *Capparis spinosa* L., and *Senna alexandrina* Mill. Therophytes, which constituted the main bulk of species (37 species), included several common weed species such as

Ammi majus L., Portulaca oleracea L., Urtica urens L., Plantago major L., Papaver rhoeas L., Lepidium sativum L., Matricaria chamomilla L., and Stellaria media (L.) Vill.

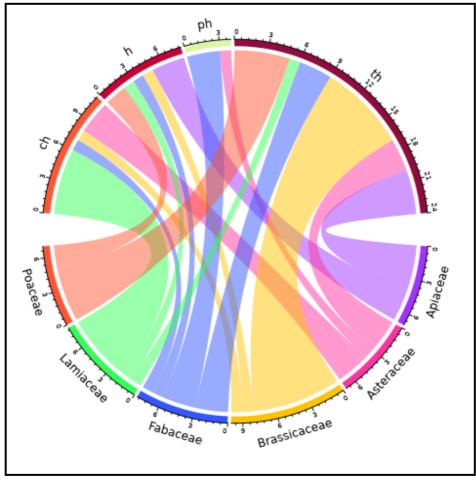


Figure 3. Distribution of the highly-represented categories of life forms within the species-richest families. ph=phanerophytes, ch=chamaephytes, th=therophytes, h=hemicryptophytes. Size of nodes represent the sum of incoming and outgoing links. Relationships are drawn as arcs whose widths represent their values

Distribution of medicinal plants within biogeographic regions (OGUs)

Variations in the distribution of medicinal plants across Egypt's biogeographic regions are striking. Figure 4 illustrates the percentage of medicinal plants found in each region. The Sinai region (S) stands out with the highest percentage at 68.1%, closely followed by the Mediterranean (M) and Nile (N) regions, both at approximately 61%. The Oases (O) region, with a moderate percentage of 39.8%, represents unique habitats within the Western Desert. Together, these regions account for about 70% of Egypt's medicinal flora, reflecting their ecological richness and diverse habitats, including coastal zones, the Nile River and its delta, and mountainous areas like Sinai. In contrast, the Eastern Desert (De), Gebel Elba (GE), and Red Sea (R) regions show lower percentages, ranging from 16.8% to 21.2%. Gebel Elba, known for its unique flora and fauna, benefits from its mountainous terrain and proximity to the Red Sea. The Oases region also contributes significantly to medicinal plant diversity, offering unique desert habitats. The Gebel Uweinat (Uw) region has the lowest percentage at just 2.6%, likely due to its extreme aridity and harsh environmental conditions. This distribution indicated the influence of climatic and environmental factors on diversity of medicinal plants. The Sinai, Mediterranean, and Nile regions, with their favourable conditions and higher moisture levels, support a rich diversity of medicinal plants. In contrast, arid regions like Gebel Uweinat and the Eastern Desert have fewer medicinal plants, consistent with their challenging environments. These findings emphasize the importance of conserving Egypt's biodiverse regions to safeguard its medicinal plant heritage.

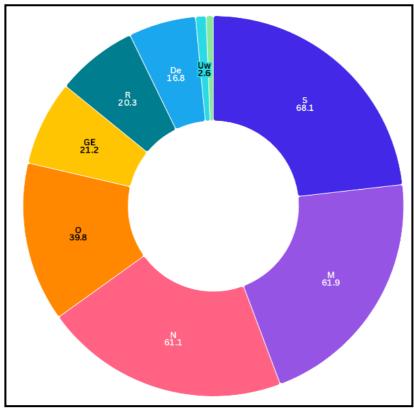


Figure 4. Proportionate of the medicinal plant species in different biogeographical regions of Egypt (OGUs). M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat

Table 2 provides an overview of the distribution of medicinal plant species within 9 Operational Geographic Units (OGUs). These species can be categorized into four groups according to their geographical range: (1) Wide Range Species (WRS), those found in 5 and 6 OGUs; (2) Moderate Range Species (MRS), those found in 3 and 4 OGUs; (3) Narrow Range Species (NRS), those found in 2 OGUs; and (4) Limited Range Species (LRS), those restricted to a single OGU. Figure 5 displayed distribution maps of some medicinal plants in different OGUs.

Wide Range Species (WRS), constituted 20 species recorded in six and 5 OGUs (P=67-55%), indicating a broad distribution range. Examples included *Ziziphus spina-christi*, *Adiantum capillus-veneris*, *Citrullus colocynthis*, *Cyperus rotundus*, *Hyoscyamus muticus*, *Phoenix dactylifera*, and *Zilla spinosa*, which occurred in six OGUs (67%), while *Alhagi graecorum*, *Capparis spinosa*, and *Portulaca oleracea* occurred in five regions (55%). The differences between 67% and 55% highlighted that while many WRS were highly adaptable, some have slightly more restricted ranges, possibly due to specific ecological niches or environmental tolerances.

Moderate Range Species (MRS) comprised a group of 44 species which were recorded in four and three OGUs (P=44-33%). Examples include *Balanites aegyptiaca*, *Ficus carica*, *Trifolium alexandrinum*, *Achillea fragrantissima*, and *Artemisia judaica*. Twenty-one species (47.7% of this group) were among the common weeds of cultivation (Boulos & El-Hadidi, 1994; Abd El-Ghani *et al.* 2015; Hussein *et al.* 2025), amongst others.

Narrow Range Species (NRS) are present in two and three OGUs (22-33%). Examples include *Colchicum autumnale, Marrubium alysson, Teucrium polium, Linum usitatissimum,* and *Nigella sativa*. The decrease from 44% to 22-33% shows a further narrowing of distribution. These species are more specialized and likely require very specific environmental conditions, making them less adaptable and more vulnerable to changes in their habitats.

Limited Range Species (LRS) are present in only one region (11%). Examples include *Capsella bursa-pastoris, Cuscuta epilinum, Cymbopogon citratus, Datura stramonium,* and *Lepidium latifolium*. The sharp decline from 22-33% to 11% underscores the high specialization and limited adaptability of these species. Their restricted range makes them particularly vulnerable to environmental changes and habitat destruction.

Table 2. Distribution of medicinal plants in the OGUs (see Figure 1 for the abbreviations of OGUs). +=present, -=absent. M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat

Species	Species Abb.	N	0	М	De	Dw	R	GE	S	Uw	P(
(1) Wide Range Species (WRS)											
Adiantum capillus-veneris L.	Ac	+	+	+	_	_	+	+	+	_	6
Citrullus colocynthis (L.) Schrad.	Сс	+	+	+	_	_	+	+	+	_	6
Cyperus rotundus L.	Cr	+	+	+	-	-	+	+	+	-	6
Hyoscyamus muticus L.	Hm	+	+	+	-	-	+	+	+	-	6
Phoenix dactylifera L.	Pt	+	+	+	-	-	+	+	+	-	6
Zilla spinosa (L.) Prantl	Zsp	+	-	+	-	+	+	+	+	-	6
Ziziphus spina-christi (L.) Desf.	Zs	+	+	+	-	-	+	+	+	-	6
Alhagi graecorum Boiss.	Ag	+	+	+	-	-	+	-	+	-	5
Capparis spinosa L.	Cs	-	+	+	+	+	-	-	+	-	5
Eruca vesicaria subsp. sativa (Mill.)	Ev	+	+	+	+	-	-	-	+	-	5
Thell.											
Hypericum perforatum L.	Нр	+	+	-	+	-	+	-	+	-	5
Hyphaene thebaica (L.) Mart.	Ht	+	+	-	+	-	+	-	+	-	5
Juncus acutus L.	Ja	+	+	+	+	-	-	-	+	-	5
Pluchea dioscoridis (L.) DC.	Pd	+	+	+	+	-	-	-	+	-	5
Portulaca oleracea L.	Pol	+	+	+	-	-	-	+	+	-	5
Salix subserrata Willd.	Ss	+	+	+	+	-	-	-	+	-	5
Salvadora persica L.	Sp	+	+	-	-	-	+	+	+	-	5
Senna alexandrina Mill.	Sa	+	-	-	+	-	+	+	+	-	5
Tribulus terrestris L.	Tt	+	-	+	-	-	+	+	+	-	5
Urtica urens L.	Ur	+	+	+	+	-	-	-	+	-	5
(2) Moderate Range Species											
(MRS)											
Achillea fragrantissima (Forssk.)	Af	-	+	+	-	-	+	-	+	-	4
Sch. Bip. Ammi majus L.	Am	+	+	+					+	_	4
Annastatica hierochuntica L.	Ah		т.	т.	_	-	+	+	+	+	4
Artemisia judaica L.	Aj	_	-	+	_	-	+	+	+	т.	4
Avena sativa L.	Av	_	_		_	_	•	'		_	4
Balanites aegyptiaca (L.) Delile	Ba	+	+	т	-	-	-	+	+	-	4
Mutarda nigra (L.) Bernh.	Bn	+	+	+	_	_	_	-	+	_	4
Cleome droserifolia (Forssk.) Delile	Cd		т.	т.	_	-	+	+	+	+	4
Convolvulus arvensis L.	Ca	_	+	+	_	-	т.	т	+	т.	4
Coriondrum sativum L.	Ca	+	+	+	-	-	-	-	+	-	
Ficus carica L.	Ca Fc	+			-	-	-	-	+	-	4
Lepidium sativum L.		+	+	+	-	-	-	-		-	
•	Ls	+	+	-	+	-	-	-	+	-	4
Olea europaea L.	Oe Ba	+	+	+	-	-	-	-	+	-	4
Plantago afra L.	Pa	-	-	-	+	-	+	+	+	-	4
Plantago major L.	Pm	+	+	+	-	-	-	-	+	-	4
Salvia aegyptiaca L.	Sa	-	-	+	-	-	+	+	+	-	4
Silybum marianum (L.) Gaertn.	Sm	+	+	+	-	-	-	-	+	-	4
Solanum nigrum L.	Sn	+	+	+	-	-	-	-	+	-	4
Trifolium alexandrum L.	Та	+	+	+	-	-	-	-	+	-	4

Withania sommiferum (L.) Dunal	Ws	+	+	+	-	-	-	+	-	-	44
Vachellia nilotica (L.) P.J.H. Hurter	An	+	+	-	-	+	-	-	-	-	33
& Mabb.											
Ajuga iva (L.) Schreber	Ai	-	-	+	-	-	-	-	+	+	33
Apium graveolens L.	Agr	-	-	+	+	-	-	-	+	-	33
Artemisia herba-alba Asso	Aha	-	-	+	-	-	+	-	+	-	33
Blepharis edulis (Forssk.) Pers.	Be	-	-	-	-	-	+	+	+	-	33
Brassica rapa L.	Br	+	+	+	-	-	-	-	-	-	33
Cichorium intybus L.	Ci	+	+	+	-	-	-	-	-	-	33
Convolvulus althaeoides L.	Cal	-	-	+	+	-	-	-	+	-	33
Cyperus esculentus L.	Ce	+	-	+	-	-	-	+	-	-	33
Ephedra alata Decne.	Ea	-	+	+	-	-	-	-	+	-	33
Foeniculum vulgare Mill.	Fv	+	-	+	-	-	-	-	+	-	33
Malva sylvestris L.	Ms	+	-	+	-	-	-	-	+	-	33
Matricaria chamomilla L.	Mch	+	-	+	-	-	-	-	+	-	33
Mentha spicata L.	Msp	+	+	-	-	-	-	-	+	-	33
Orobanche crenata Forssk.	Oc	+	-	+	-	-	-	_	+	-	33
Papaver rhoeas L.	Pr	+	-	+	-	-	-	_	+	-	33
Peganum harmala L.	Phr	_	_	+	+	_	_	_	+	_	33
Petroselinum crispum (Mill.)	Pcr	+	_	+	_	_	_	_	+	-	33
Nyman ex A.W. Hill											
Plantago ovata Forssk.	Po	+	-	+	-	-	-	-	+	-	33
Rumex vesicarius L.	Rv	-	-	+	-	-	-	+	+	-	33
Solenostemma arghel (Del.) Hayne	Sar	-	-	-	+	-	-	+	+	-	33
Urtica pilulifera L.	Up	+	-	+	-	-	-	-	+	-	33
Verbena officinalis L.	Vof	+	+	+	-	-	-	_	-	-	33
Zygophyllum coccineum L.	Zc	-	+	-	-	-	+	-	+	-	33
(3) Narrow Range Species (NRS)											
Visnaga daucoides Gaertn.	Av	+	_	+	_	_	_	_	_	_	22
Bistorta officinalis Delarbre	Во	+	_	+	_	_	_	_	_	_	22
Colchicum autumnale L.	Cau	_	_	+	_	_	_	_	+	-	22
Cymbopogon schoenanthus (L.)	Cpro	_	_	_	+	_	_	_	+	_	22
Spreng. subsp. <i>proximus</i> (Hochst.	5,010										
ex A. Rich.) Mailler & Weiller											
Drimia maritima (L.) Stearn	Dm	-	-	+	-	-	-	-	+	-	22
Faba vulgaris L.	Fvu	+	+	-	-	-	-	-	-	-	22
Hibiscus sabdariffa L.	Hs	+	+	-	-	-	-	-	-	-	22
Juniperus communis L.	Jc	-	-	-	+	-	-	-	+	-	22
Leonotice leontopetalum L.	Ll	-	-	+	-	-	-	-	+	-	22
Linum usitatissimum L.	Lu	+	+	-	-	-	-	-	-	-	22
Lupinus albus L.	La	+	+	-	-	-	-	-	-	-	22
Marrubium alysson L.	Mal	-	-	+	-	-	-	-	+	-	22
Marrubium vulgare L.	Mv	-	-	+	-	-	-	-	+	-	22
Mentha pulegium L.	Mpu	+	+	-	-	-	-	_	-	-	22
Moringa peregrina (Forssk.) Fiori	Mp	-	-	-	+	-	-	-	+	-	22
Narcissus tazetta L.	Nt	_	_	+	_	_	_	_	+	_	22
Nigella sativa L.	Ns	+	-	+	-	-	-	-	-	-	22
Nymphaea lotus L.	NI	+	_	+	_	_	_	_	_	_	22
Polygonum aviculare L.	Pa	+	_	+	_	_	_	_	_	_	22
,3	-										=

Posidonia oceanica (L.) Delile	Po	-	-	+	-	-	-	-	+	-	22
Ricinus communis L.	Rc	-	-	-	+	-	-	+	-	-	22
Sinapis alba L.	Sa	+	-	+	-	-	-	-	-	-	22
Sisymbrium officinale (L.) Scop.	Sof	+	-	+	-	-	-	-	-	-	22
Teucrium polium L.	Тро	-	-	+	-	-	-	-	+	-	22
(4) Limited Range Species (LRS)											
Capsella bursa-pastoris (L.) Medik.	Cbp	+									11
Cuscuta epilynum Weihe	Ce	+									11
Cymbopogon citratus (DC.) Stapf	Cci	+									11
Cymbopogon nardus (L.) Rendle	Cna	+									11
Datura stramonium L.	Ds	+									11
Lepidium latifolium L.	Lla	+									11
Triticum aestivum L.	Tae	+									11
Zea mays L.	Zm	+									11
Bryonia cretica L.	Bcr		1	+							11
Coridothymus capitatus (L.) Rchb.	Сср			+							11
f.											
Fumaria officinalis L.	Fo			+							11
Pistacia lentiscus L.	Ple			+							11
Stellaria media (L.) Vill.	Smd			+							11
Ziziphus lotus (L.) Lam.	Zl			+							11
Dodonaea viscosa Jacq.	Dvs							+			11
Ceratonia siliqua L.	Csq						•		+		11
Convolvulus scammonia L.	Ccm								+		11
Crataegus x monogyna Jacq.	Cmo								+		11
Cymbopogon schoenanthus (L.)	Ssch								+		11
Spreng.											
Ecballium elaterium (L.) A. Rich.	Eel								+		11
Ferula communis L.	Fco								+		11
Rhus coriaria L.	Rco								+		11
Viola odorata L.	Vod								+		11
Viola tricolor L.	Vt								+		11

The Spearman's correlation coefficients presented in Table 3 revealed several significant relationships between different OGUs of Egypt. The Nile region (N) showed a significant positive correlation with the Oases (O) at the 0.01 level (0.51**), indicating a strong association between these two regions, possibly due to shared environmental conditions or species interactions. However, the Nile region (N) has a significant negative correlation with Sinai (S) at the 0.05 level (-0.22*), suggesting contrasting ecological or environmental characteristics between these regions. The Sinai region (S) also showed significant positive correlations with the Eastern Desert (De) at the 0.01 level (0.25**) and with the Red Sea (R) at the 0.01 level (0.33**), indicating ecological similarities or shared species between these regions. The Red Sea (R) further demonstrated a significant positive correlation with Gebel Elba (GE) at the 0.01 level (0.62**), highlighting a strong ecological connection between these two regions, likely due to their proximity and similar climatic conditions. Interestingly, Gebel Uweinat (Uw) showed a significant negative correlation with the Nile region (N) at the 0.05 level (-0.20*), suggesting ecological differences between these regions. Additionally, Gebel Uweinat (Uw) has a significant positive correlation with the Red Sea (R) at the 0.05 level (0.19*), indicating some level of ecological similarity or interaction. Overall, the correlations suggested that while some regions share significant ecological connections (e.g., Nile and Oases, Red Sea and Gebel Elba), others exhibit distinct ecological characteristics (e.g., Nile and Sinai). These relationships could be influenced by factors such as geographical proximity, climate, and species distribution patterns. The non-significant correlations (NS) between many regions imply that they may have unique ecological dynamics with little interaction or overlap.

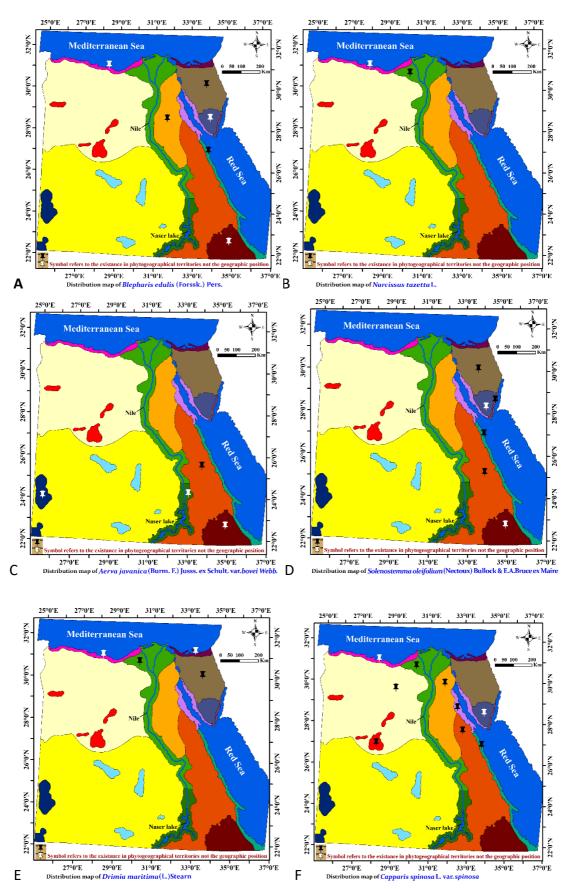


Figure 5. Species distribution maps in the different OGUs. A: *Blepharis edulis*, B: *Narcissus tazetta*, C: *Aerva javanica*, D: *Solenostema arghel*, E: *Drimia maritima*, and F: *Capparis spinosa*

To test the significant differences in the distribution of life form categories across different OGUs, ANOVA results indicated that the Nile biogeographic region showed strong significance at p<0.01 (F-ratio=4.031, p=0.001). In contrast, the Mediterranean (F-ratio=2.461, p=0.029), the Oases (F-ratio=2.762, p=0.16), and the Red Sea region exhibited significant differences at p<0.05 (F-ratio=2.974, p=0.010).

Table 3. Pearson's correlation coefficients between the medicinal plant species recorded in different OGUs. ** Correlation is significant at the 0.01 level, * Correlation is significant at the 0.05 level. M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat

OGUs	N	0	М	De	Dw	R	GE	S
N								
0	0.51**							
M	NS	NS						
De	NS	NS	NS					
Dw	NS	NS	NS	NS				
R	NS	NS	NS	NS	NS			
GE	NS	NS	NS	NS	NS	0.62**		
S	-0.22*	NS	NS	0.25**	NS	0.33**	NS	
Uw	-0.20*	NS	NS	NS	NS	0.19*	NS	NS

Nativity and endemism of medicinal plants

Analysis based on Plants of the World Online (POWO; http://www.plantsoftheworldonline.org) revealed that the flora comprises 113 species, categorized as follows: 81 native species (71.7%, Figure 6), 20 introduced species, and 12 unidentified species. Regarding life forms of medicinal plants, therophytes were dominant, with 24 species in the native group and 12 in the introduced group. Additionally, native species exhibited significant numbers of chamaephytes (18), hemicryptophytes (15), and phanerophytes (14).

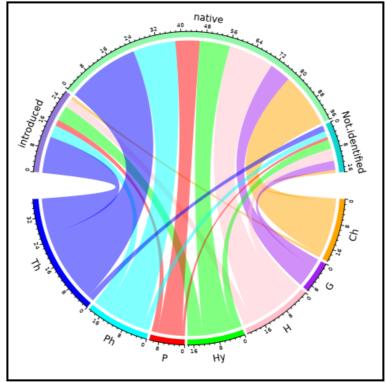


Figure 6. Distribution of categories of nativity within life forms (Th=Therophytes, Ch=Chamaephytes, Ph=Phanerophytes, G=Geophytes, Hy=Hydrophytes, P=Parasites, H=Hemicryptophytes)

The Egyptian endemic plants and their conservation status along the Mediterranean coastal region were evaluated by El-Khalafy *et al.* (2024). On the other hand, Abd El-Ghani *et al.* (2024) assessed the recent situation of endemic and near-endemic taxa in different biogeographic regions of Egypt. Taxa occurring exclusively within the political borders of Egypt are classified as "endemic", whereas those that also occur globally outside Egyptian borders are categorized as "near-endemic". Taxa lacking identification were referred to as "not identified". The latter investigation enumerated 21 taxa as endemic taxa recorded in the Mediterranean region, whereas the former study focused on 15 Mediterranean endemic taxa. It is worthy to note that neither endemic nor near-endemic taxa were included in this study.

Parts of medicinal plants used

As depicted in Figure 7, leaves, aerial parts, and seeds were the predominant plant components used in Egyptian medicinal flora within this study, with usage rates of 26.55%, 25.66%, and 24.78%, respectively. A moderate utilization was observed for fruits (23.89%), inflorescence (21.24%), and underground parts (15.04%). Notably, bark, plant secretions, and wood exhibited significantly lower usage rates, representing only 4.42%, 2.65%, and 1.77% of reported applications, highlighting a clear trend of preference for above-ground, readily accessible plant parts.

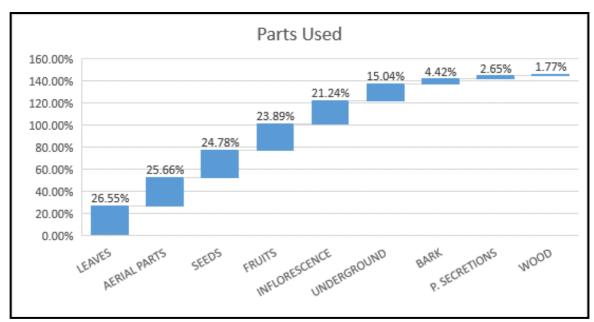


Figure 7. Percentages of plant parts used of the reported medicinal plant species

In terms of OGUs, the distribution of plant parts used varied across the OGUs (Nile, Oases, Mediterranean, Eastern Desert, Red Sea, Gebel Elba, and Sinai), with leaves and fruits generally being prominent (Figure 8). While leaves were among the most frequently used plant parts in most OGUs, fruits are also important across many regions. Specific trends include fruits being most used in the Nile, fruits and leaves in Oases (with relatively high underground part usage), leaves and aerial parts in the Mediterranean (also with relatively high underground part usage), relatively higher seed usage in the Eastern Desert (though overall usage is low), aerial parts in the Red Sea (though numbers are low), fruits and aerial parts in Gebel Elba (though numbers are low), and aerial parts in Sinai. Overall, while leaves and fruits are commonly utilized, the specific patterns of plant part usage differ across OGUs, likely reflecting ecological and cultural variations.

Figure 9 showed the relationships between the commonly used parts of the medicinal plants and the most important life forms. The used underground parts (UG) were mainly from geophytes (G) such as *Cyperus esculentus* L., *Cyperus rotundus* L., *Drimia maritima* (L.) Stearn, and *Narcissus tazetta* L. The majority of used seeds were from therophytes (annuals) such as *Datura stramonium* L., *Linum usitatissimum* L., *Nigella sativa* L., *Urtica pilulifera* L., and *Lupinus albus* L. The the mostly used fruits from (phanerophytes (trees) included, amongst others, *Vachellia nilotica* (L.) Delile, *Ceratonia siliqua* L., *Hyphaene thebaica* (L.) Mart., Phoenix dactylifera L., *Olea europaea* L., and *Ziziphus spina-christi* (L.) Desf. The common used barks were mainly from trees of *Vachellia seyal* Delile, *Capparis spinosa* L., and *Salix subserrata* Willd. Leaves from many annuals were used from plant species such as *Apium graveolens* L., *Coriandrum sativum* L., *Eruca vesicaria* subsp. *sativa* (Mill.) Thell., *Cichorium intybus* L., and *Sisymbrium officinale* (L.) Scop., and sometimes from other chamaephytes

(shrubs) such as Senna alexandrina Mill., Solenostemma arghel (Del.) Hayne, Coridothymus capitatus (L.) Rchb. f., and Withania somnifera (L.) Dunal.

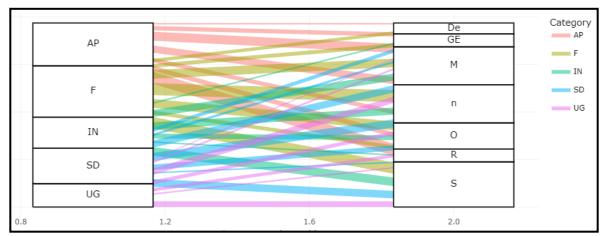


Figure 8. Distribution of the most important parts utilized of the medicinal plants across OGUs. Abbreviations of part used: AP=aerial parts, F=fruits, IN=inflorescences, SD=seeds, UG=underground. Abbreviations of OGUs: M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat

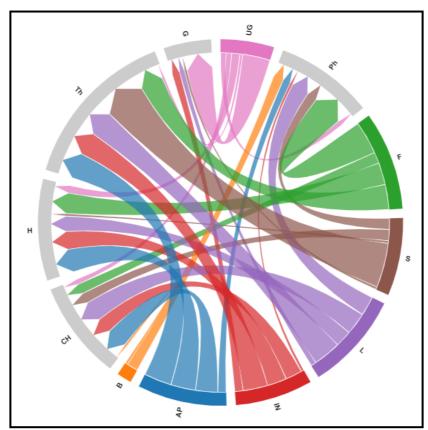


Figure 9. Distribution of the most important parts utilized of the medicinal plants across most important life forms. Abbreviations of part used: AP=aerial parts, F=fruits, IN=inflorescences, SD=seeds, UG=underground. Abbreviations of life forms: Th=Therophytes, Ch=Chamaephytes, Ph=Phanerophytes, G=Geophytes, Hy=Hydrophytes, P=Parasites, H=Hemicryptophytes

IUCN conservation status

The medicinal plant species recorded in this review were assessed using the IUCN Red List of Threatened Species (Version 2024, https://www.iucnredlist.org). The IUCN Red List Categories and Criteria provided a widely accepted system for categorizing species at high risk of global extinction. Results in Table 4 indicated that 61 species, approximately 54% of the

total recorded in this review, were included in the IUCN Red List (IUCN 2025). Of these 61 species, 57 (93%) were classified as Least Concern (LC), three as Data Deficient (DD), and one as Near Threatened (NT). The LC designation signified that a taxon had been evaluated and does not qualify for the Near Threatened or Threatened categories, and this category may include abundant and widespread taxa. A taxon is classified as DD when there is inadequate information to directly or indirectly assess its extinction risk based on distribution and/or population status. Three species in this review were in this category: *Brassica rapa*, *Olea europaea*, and *Withania somnifera*.

Marrubium vulgare (white horehound) was listed as Near Threatened (NT) in Europe in 2013, according to the IUCN Red List of Threatened Species. The number of mature individuals of *M. vulgare* is decreasing, and populations were severely fragmented, contributing to the continued decline of mature individuals (IUCN 2025). The IUCN Red List Categories and Criteria were intended for global taxon assessments. A global category for a specific taxon may differ from a regional or national category. Notably, 50% (31 species) of the species were globally assessed by the IUCN, but some require updating, such as *Ephedra alata* and *Juniperus communis*. It is also noteworthy that almost all plant species assessed in Europe or the Mediterranean need to be updated.

Current population trends were decreasing for seven species: *Ceratonia siliqua, Marrubium vulgare, Moringa peregrina, Olea europaea, Posidonia oceanica, Urtica urens,* and *Zea mays. Posidonia oceanica,* an aquatic plant species endemic to the Mediterranean Sea, has a declining population trend that is a concerning indication of potential biodiversity loss, unless conservation measures are implemented. The decreasing populations of *Zea mays* (LC) and *Olea europaea* (DD) are also particularly worrisome due to their significance as crops. Populations of 16 species were globally stable, five were increasing, and the population trend was unknown for 12 species (Table 4).

Table 4. Status of globally threatened taxa as checked with The IUCN Red List of Threatened Species. LC=Least concern, DD=Data deficit, NT=Near threatened

Species	Family	Status	Population	Scope of
Species	ramily	Status	Trend	Assessment
Adiantum capillus-veneris L.	Pteridaceae	LC	Stable	Global
Ammi majus L.	Apiaceae	LC	Unknown	Europe
Balanites aegyptiaca (L.) Delile	Zygophyllaceae	LC	Stable	Global
Bistorta officinalis Delarbre	Polygonaceae	LC	Increasing	Europe
Brassica rapa L.	Brassicaceae	DD	Unknown	Europe
Capparis spinosa L.	Capparaceae	LC	Stable	Global
Capsella bursa-pastoris (L.) Medik.	Brassicaceae	LC	Stable	Europe
Ceratonia siliqua L.	Fabaceae	LC	Decreasing	Global
Cichorium intybus L.	Asteraceae	LC	Stable	Europe
Coridothymus capitatus (L.) Rchb.f. Thymbra capitata (L.) Cav.	Lamiaceae	LC	Stable	Europe
Crataegus monogyna Jacq.	Rosaceae	LC	Unknown	Global
Cyperus esculentus L.	Cyperaceae	LC	Increasing	Mediterranean
Cyperus rotundus L.	Cyperaceae	LC	Stable	Global
Dodonaea viscosa Jacq.	Sapindaceae	LC	Stable	Global
Drimia maritima (L.) Stearn	Asparagaceae	LC	Unknown	Global & Mediterranean
Ephedra alata Decne.	Ephedraceae	LC	Stable	Global
Ferula communis L.	Apiaceae	LC	Stable	Global
Ficus carica L.	Moraceae	LC	Increasing	Global
Foeniculum vulgare Mill.	Apiaceae	LC	Increasing	Europe
Hypericum perforatum L.	Hypericaceae	LC	Stable	Europe
Hyphaene thebaica (L.) Mart.	Palmae	LC	Unknown	Global
Juncus acutus L.	Juncaceae	LC	Stable	Mediterranean
Juniperus communis L.	Cupressaceae	LC	Increasing	Global
Lepidium latifolium L.	Brassicaceae	LC	Stable	Europe
Lupinus albus L.	Fabaceae	LC	Stable	Global
Malva sylvestris L.	Malvaceae	LC	Stable	Europe

Marrubium vulgare L.	Lamiaceae	NT	Decreasing	Europe
Matricaria chamomilla L.	Asteraceae	LC	Stable	Europe
Mentha pulegium L.	Lamiaceae	LC	Stable	Global
Mentha spicata L.	Lamiaceae	LC	Stable	Global
Moringa peregrina (Forssk.) Fiori	Moringaceae	LC	Decreasing	Global
Mutarda nigra (L.) Bernh.	Brassicaceae	LC	Stable	Global
Nymphaea lotus L.	Nymphaeaceae	LC	Unknown	Global
Olea europaea L.	Oleaceae	DD	Decreasing	Europe
Papaver rhoeas L.	Papaveraceae	LC	Stable	Europe
Pistacia lentiscus L.	Anacardiaceae	LC	Stable	Europe
Plantago afra L.	Plantaginaceae	LC	Unknown	Europe
Plantago major L.	Plantaginaceae	LC	Unknown	Global
Plantago ovata Forssk.	Plantaginaceae	LC	Stable	Europe
Pluchea dioscoridis (L.) DC.	Asteraceae	LC	Stable	Pan-Africa
Polygonum aviculare L.	Polygonaceae	LC	Stable	Europe
Portulaca oleracea L.	Portulacaceae	LC	Unknown	Global
Posidonia oceanica (L.) Delile	Posidoniaceae	LC	Decreasing	Global &
rosidonia oceanica (c.) Deme	rosidomaceae	LC	Decreasing	Mediterranean
Rhus coriaria L.	Anacardiaceae	LC	Unknown	Global
Salix mucronata Thunb.	Salicaceae	LC	Stable	Global
Salvadora persica L.	Salvadoraceae	LC	Stable	Global
Senna alexandrina Mill.	Fabaceae	LC	Stable	Global
Silybum marianum (L.) Gaertn.	Asteraceae	LC	Stable	Global
Sinapis alba L.	Brassicaceae	LC	Stable	Europe
Sisymbrium officinale (L.) Scop.	Brassicaceae	LC	Stable	Europe
Stellaria media (L.) Vill.	Caryophyllaceae	LC	Stable	Europe
Tribulus terrestris L.	Zygophyllaceae	LC	Stable	Global
Urtica urens L.	Urticaceae	LC	Decreasing	Europe
Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	Fabaceae	LC	Unknown	Global
Verbena officinalis L.	Verbenaceae	LC	Stable	Mediterranean
Viola odorata L.	Violaceae	LC	Stable	Europe
Viola tricolor L.	Violaceae	LC	Stable	Europe
Visnaga daucoides Gaertn.	Apiaceae	LC	Unknown	Europe
Withania somnifera (L.) Dunal	Solanaceae	DD	Unknown	Europe
Zea mays L.	Poaceae	LC	Decreasing	Global
Ziziphus spina-christi (L.) Desf.	Rhamnaceae	LC	Stable	Global

Classification and ordination of medicinal plants within OGUs

Based on a presence/absence data matrix consisting of 9 Operational Geographical Units (OGUs) \times 68 plant species (after removing species that occurred in only 1 or 2 OGUs to avoid distortion), classification and ordination analyses were performed. At the first hierarchical level of classification (Figure 10), the 9 OGUs were divided into two major clusters: the first cluster included 4 OGUs (N, O, M, and S), and the second cluster included the remaining 5 OGUs (R, GE, De, Dw, and Uw). At the second hierarchical level, the first cluster was further divided into 2 distinct species groups on the left side of the heatmap, based on their floristic similarity: Group (1) included the Nile (N) and Oases (O) regions, and Group (2) included the Mediterranean (M) and Sinai (S) regions. Most species in these two groups showed strong positive relations (indicated by deep red color in the heatmap), with Group (2) (Mediterranean and Sinai regions) exhibiting strong associations with Colchicum autumnale L., Marrubium alysson L., and Teucrium polium L.

On the right side of the heatmap (Figure 10), the second cluster was separated into 3 groups: Group (3) included the Red Sea (R) and Gebel Elba (GE) regions, Group (4) included the Eastern Desert (De) region, and Group (5) included the Western Desert (Dw) and Gebel Uweinat (Uw) regions. In these groups, a few species showed strong positive relations (varying shades of red), while the majority of species were not related (indicated by varying shades of blue). For example, the Western Desert-Gebel Uweinat group (Group 5) was characterized by strong positive relations with Anastatica hierochuntica L. and Cleome droserifolia (Forssk.) Delile in the Gebel Uweinat region, and with Capparis spinosa L., Vachellia nilotica (L.) P.J.H.Hurter & Mabb., and Zilla spinosa (L.) Prantl in the Western Desert region, while the Eastern

Desert species group (Group 4) showed strong positive relations with Solenostemma arghel (Del.) Hayne, Peganum harmala L., Alhagi graecorum Boiss., and Plantago afra L.

Six species (indicated by dark blue color, representing negative relations) were either absent or rarely found in Groups 4 and 5 (Figure 10): Adiantum capillus-veneris L., Citrullus colocynthis (L.) Schrad., Cyperus rotundus L., Hyoscyamus muticus L., Pluchea dioscoridis (L.) DC., and Ziziphus spina-christi (L.) Desf. In the Nile and Oases regions group (Group 1), Zilla spinosa (L.) Prantl (indicated by dark blue color, representing a negative relation) was absent from these regions. Simiar other comments can be made from other groups.

The separated five groups were separated along the first and second PCA axes (Figure 11). Groups 1 (Nile and Oases OGUs) and 2 (Mediterranean and Sinai OGUs) occupied the negative end of PCA axis 1 which captured 47.6% of the species variace, while the other 3 groups occupied the positive end of this axis. Gebel Elba and Red Sea group (group 3) occupied a lower position along PCA axis 1.

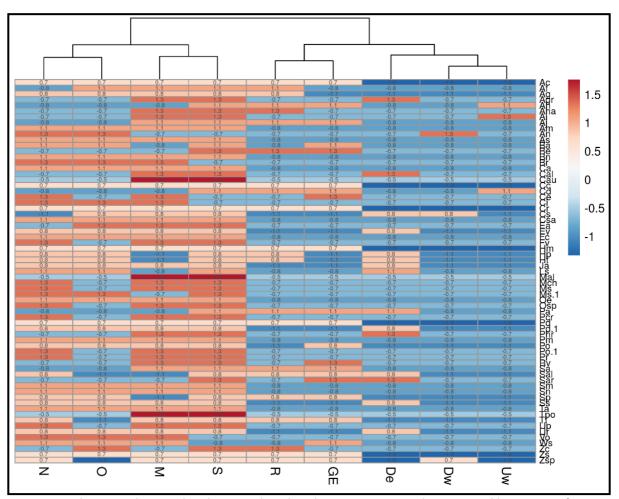


Figure 10. A heatmap showing the cluster analysis based on 68 species and 9 OGUs. Abbreviations of OGUs: M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat. For full species names, see Table 2.

Species diversity

Table 5 summarized the medicinal plant species diversity in the different OGUs. Sinai Peninsula (S) was the most diversified as shown by its highest number of species (77), followed by the Mediterranean region (70 species), and the Nile region (68 species). Shannon-Wiener diversity index showed similar trend. The least diversified OGUs with the lowest number of species were Gebel Uweinat (Uw) and the Western Desert (Dw) with 3 and 2 species, respectively. Similarly, Shannon-wiener index showed the lowest indices.

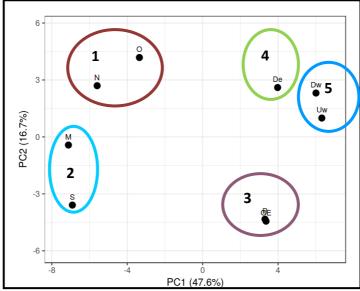


Figure 11. A Principal Components Analysis (PCA) scatterplot showing the separation of the 5 groups along axes 1 and 2. Abbreviations of OGUs: M=Mediterranean, N=Nile, O=Oases, S=Sinai, R=Red Sea, GE=Gebel Elba, De=Eastern Desert, Dw=Western Desert, UW=Gebel Uweinat

Table 5. Summary of species diversity measurements of the used medicinal plants across the 9 OGUs

OGUs	Species richness (SR)	Shannon-Wiener index (H')
N	68	4.22
0	45	3.81
M	70	4.25
De	19	2.94
Dw	02	0.69
R	23	3.13
GE	24	3.18
S	77	4.34
Uw	03	1.09

The Chao-Jaccard similarity index (C-J) and the shared plant species among the 5 cluster groups (1 - 5; Table 7) indicated that the high plant species similarity (0.518) was between the groups (1) and (2), where the similarity index was 0.554. In general, the dissimilarity between other groups was high and ranged between 0.017 and 0.289.

Table 6. Chao-Jaccard similarity index (C-J), and the shared species among the five cluster groups (1 - 5) in the 9 OGUs

Species cluster groups	Shared species	Chao-Jaccard
		similarity index
1 × 2	58	0.554
1 × 3	21	0.259
1 × 4	11	0.14
1 × 5	3	0.017
2 × 3	29	0.289
2 × 4	19	0.182
2 × 5	6	0.055
3 × 4	7	0.127
3 × 5	4	0.121
4 × 5	2	0.046

Medicinal uses

Table (7) demonstrated the medicinal uses of the studied plants, together with their references. It has been shown that they possess substantial antidiabetic, antioxidant, antitussive, anti-inflammatory, antitumor, antiulcer, antibacterial, hepatoprotective, neuroprotective, cardio protective, and wound healing properties. The ethnomedicinal uses of the identified plant species were analyzed to contribute to the broader understanding of traditional healing practices in the region.

Table 7. Medicinal uses of the plant species recorded in the present review

Species	Family	Medicinal Use	References
Achillea fragrantissima (Forssk.) Sch.Bip.	Asteraceae	Anti-inflammatory, antimicrobial, anti- diabetic, sedative	Egyptian Herbal Monograph (2023)
Adiantum capillus-veneris L.	Pteridaceae	Respiratory disorders, gastrointestinal disorders, diuretic and urinary disorders, menstrual problems, hair loss, and for treatment of snake and spider bites	Egyptian Herbal Monograph (2023)
Ajuga iva (L.) Schreb.	Lamiaceae	Antioxidants, antidiabetic, antimicrobial, and anti-inflammatory activities	Lahrizi <i>et al.</i> (2024)
Alhagi graecorum Boiss.	Fabaceae	Antioxidant, cardiovascular, anti-ulcer, hepatoprotective, antispasmodic, antidiarrheal, antinociceptive, antipyretic, anti-inflammatory, anti-rheumatic, antibacterial and antifungal activities	Muhamma d et al. (2015)
Ammi majus L.	Apiaceae	For hypertension, depression, leucoderma, allergic rhinitis and rash, chronic asthma, diaphoretic, carminative, antispasmodic, and antiseptic	Hossain & Al Touby (2020)
Anastatica hierochuntica L.	Brassicaceae	Hypolipidemic activity, antidiabetic, hepatoprotective, antioxidant, antiproliferative, gastroprotective, antiinflammation, and cytotoxic activities	Rostan and Manshoor (2024)
Apium graveolens L.	Apiaceae	Prevention of cardiovascular disease, lowering blood glucose and serum lipid, decrease blood pressure and strengthen the heart, anti- bacterial, anti-fungal and anti- inflammatory Also, has a powerful antioxidant property.	Kooti et al., (2014)
Artemisia herba-alba Asso	Asteraceae	Antioxidants, anti-venom, antifungal, nematicidal, antibacterial, antispasmodic, anthelmintic, antileishmanial, neurological, hypoglycemic, and pesticidal activities	Mohamed et al. (2010)
Artemisia judaica L.	Asteraceae	Anti-inflammatory, analgesic, antioxidant activity and high potential antiangiogenic activity	Awad <i>et al.</i> (2022)
Avena sativa L.	Poaceae	Antioxidants, anti-inflammatory, dermatological, immunomodulatory, antidiabetic, gastrointestinal, hypolipidemic, neurological, cardiovascular and many other biological activities.	Al-Snafi (2015)
Balanites aegyptiaca (L.) Delile	Zygophyllaceae	Good for jaundice, intestinal worm infection, wounds, malaria, syphilis, epilepsy, dysentery, constipation, diarrhea, hemorrhoid, stomach aches, asthma, and	Saboo et al. (2014), Chothani & Vaghasiya

Brassica rapa L. Brassicaceae Antimicrobial activity against skin pathogens, and anti-inflammatory activity Pawfowska pathogens, and anti-inflammatory activity Abid et al. (2024). Abid et al. (2022) Antimicrobial, antioxidant, antidiabetic, activity and successfully lower hypertension Antimicrobial, antioxidant, antidiabetic, activity and anticancer efficiency Benarba & activity and successfully lower efficiency Benarba & activity				
Bistorta officinalis Delarbre Polygonaceae Antimicrobial activity against skin Pawdowska pathogens, and anti-inflammatory activity et al. (2014)			fever	(2011)
Bistorta officinalis Delarbre Polygonaceae Antimicrobial activity against skin pathogens, and anti-inflammatory activity Pawłowskic et al. (2022)	Blepharis edulis (Forssk.) Pers.	Acanthaceae	Antioxidant capacity and antimicrobial	Mahboubi
Brassicaceae Antibacterial activity and successfully lower bypertension and control of the properties of the preference			activity	et al. (2013
Brassica rapa L. Brassicaceae Antibacterial activity and successfully lower hypertension Alto det al. (2022) Bryonia cretica L. Cucurbitaceae Antimicrobial, antioxidant, antidabetic, antinociceptive, and anti-inflammatory functions, along with an anticancer efficiency Capparis spinosa L. Capparaceae Used for rheumatism and gout, as diuretic, astringent, tonic, as appetiter, antidisease, used in sciatica, dropsy, backache, and to relieve toothache, for ulcers, scrofula, and ganglions. Capsella burso-pastoris (L.) Medik. Brassicaceae Antimicrobial, antifungal, acetylcholinesterase and anticancer properties and supportive action in the treatment of gynecological diseases. Ceratonia siliqua L. Fabaceae Antimicrobial, antihelmintic, antimalarial, hepatoprotective, gastroprotective, anti-inflammatory, antigesc, antibabetic, antibalterial, antifungal, acetylcholinesterase and anticancer properties and gasges. Cichorium intybus L. Asteraceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, anti-inflammatory, analgesic, antibabetic, antibalterial, antibalteria, antibalterial, antib	Bistorta officinalis Delarbre	Polygonaceae	Antimicrobial activity against skin	Pawłowska
hypertension			pathogens, and anti-inflammatory activity	et al. (2020
antinociceptive, and anti-inflammatory functions, along with an anticancer efficiency efficiency Capparis spinosa L. Capparaceae Used for rheumatism and gout, as diuretic, astringent, tonic, as appetizer, antidiarrheic, treat hemorrhoids and spleen disease, and as expectorant, and for chest diseases, used in sciatica, dropsy, backache, and to relieve toothache, for ulcers, scrofula, and ganglions. Capsella bursa-pastoris (L.) Medik. Brassicaceae Anti-inflammatory, antioxidant, autivagal, acetylcholinesterase and anticancer properties and supportive action in the treatment of gynecological diseases. Ceratonia siliqua L. Fabaceae Antihypertensive, anti-inflammatory, antioxidant, obesity, and antihypergycemic activities. Afteraceae Antimirrobiali, antienlariai, antimalaria, the patoprotective, gastroprotective, anti-inflammatory, analgesic, antidiabetic, antivalidarit, unmor-inhibitory, and antiallergic Citrulius colocynthis (L.) Schrad. Cucurbitaceae Citrulius colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic. Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, open sores, allergy, dermatitis, open sores, allergy, dermatitis, inflammation, scables, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout Convolvulus althaeoides L. Convolvulaceae Antioxidant and antibacterial Antioxidant and antibacterial Salamatulii (2022)	Brassica rapa L.	Brassicaceae		Abid et al.
Capparis spinosa L. Capparaceae Serial Control C	Bryonia cretica L.	Cucurbitaceae	Antimicrobial, antioxidant, antidiabetic,	Benarba &
Capparis spinosa L. Capparaceae Used for rheumatism and gout, as diuretic, astringent, tonic, as appetizer, antidiarrheic, treat hemorrhoids and spleen disease, and as expectorant, and for chest diseases, used in sciatica, dropsy, backache, and to relieve toothache, for ulcers, scrofula, and ganglions. Capsella bursa-pastoris (L.) Medik. Brassicaceae Anti-inflammatory, antioxidant, antibacterial, antifungal, acetylcholinesterase and anticancer properties and supportive action in the treatment of gynecological diseases. Ceratonia siliqua L. Fabaceae Antihypertensive, antidepressant, antipobesity, and antihyperglycemic activities. Cichorium intybus L. Asteraceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, antioxidant, tumor-inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Cleomaceae Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial Fabaceae Convolvulaceae Treatment of skin diseases, chronic Ansari et al. (2014) Hassine et al. (2014)			functions, along with an anticancer	
Ucers, scrofula, and ganglions. Capsella bursa-pastoris (L.) Medik. Brassicaceae Anti-inflammatory, antioxidant, actylcholinesterase and anticancer properties and supportive action in the treatment of gynecological diseases. Ceratonia siliqua L. Fabaceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, anti-Inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, Li et al. parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Colchicaceae Colchicaceae Colchicaceae Cytotoxic activity against various tumor cell lines al. (2022) Convolvulus arvensis L. Convolvulaceae Treatment of skin diseases, chronic Ansari et al. Ansari et al. Anticrobial, anthelmintic, antimalarial, al. (2022) Teatment of skin diseases, chronic Ansari et al. Colchicaceae Treatment of skin diseases, chronic Ansari et al. Colconolivulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic	Capparis spinosa L.	Capparaceae	Used for rheumatism and gout, as diuretic, astringent, tonic, as appetizer, antidiarrheic, treat hemorrhoids and spleen disease, and as expectorant, and for chest diseases, used in sciatica, dropsy,	& Razavi
Capsella bursa-pastoris (L.) Medik. Brassicaceae Anti-inflammatory, antioxidant, antibacterial, antifungal, acetylcholinesterase and anticancer properties and supportive action in the treatment of gynecological diseases. Ceratonia siliqua L. Fabaceae Antihypertensive, antidepressant, antiobesity, and antihyperglycemic activities. Asteraceae Antimicrobial, anthelminitic, antimalarial, hepatoprotective, gastroprotective, anti-Inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout (2022) Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell lines al. (2014) Altamicrobia diseases, chronic Altamicrobial agent and antibiotterial ince al. (2014) Altamicrobial agent and antibiotterial A				
Citrullus colocynthis (L.) Schrad. Cleome droserifolia (Forssk.) Delile Cleoma droserifolia (Forssk.) Delile Convolvulus althaeoides L. Convolvulus arvensis L. Convolvulus aarvensis L. Convolvulus ceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, anti-inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Cytotoxic activity against various tumor cell lines al. (2012) Convolvulus althaeoides L. Convolvulaceae Antioxidant and antibacterial Salamatulii, h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et al.	Capsella bursa-pastoris (L.) Medik.	Brassicaceae	Anti-inflammatory, antioxidant, antibacterial, antifungal, acetylcholinesterase and anticancer properties and supportive action in	Łukaszyk et al. (2024)
Obesity, and antihyperglycemic activities. al. (2023) Cichorium intybus L. Asteraceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, anti-inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell Hassine et al. (2014) Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et al.	Ceratonia siliaua l	Fahaceae		Dahmani <i>e</i>
Asteraceae Antimicrobial, anthelmintic, antimalarial, hepatoprotective, gastroprotective, anti- Inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and antiallergic Citrullus colocynthis (L.) Schrad. Cucurbitaceae Fruit is used to treat colds, diarrhea, parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout (2012) Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell Hassine et al. (2014) Convolvulus arvensis L. Convolvulaceae Treatment of skin diseases, chronic Ansari et al. (2022)	ceratoma singua E.	Tabaccac		
parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is also used as an antipyretic Cleome droserifolia (Forssk.) Delile Cleomaceae Treatment of hyperglycemia, accelerate wound healing especially for diabetes Herbal mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout (2012) Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell lines al. (2014) Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial Salamatulis in (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et a	Cichorium intybus L.	Asteraceae	hepatoprotective, gastroprotective, anti- Inflammatory, analgesic, antidiabetic, antioxidant, tumor-Inhibitory, and	Street <i>et al</i> (2013)
wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial agent and antibiotic for wounds and burns. Colchicum autumnale L. Colchicaceae Healer of internal injuries, a treatment for gout (2012) Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell lines al. (2014) Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial Salamatulia h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et al.	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae	parasitic worms, the expulsion of wind, tumors, ascites, leukoplakia, ulcers, asthma, bronchitis, diabetes insipidus, jaundice, splenomegaly, neck tuberculosis, constipation, anemia, throat diseases, lephantiasis, and joint pain; it is	
gout (2012) Convolvulus althaeoides L. Convolvulaceae Cytotoxic activity against various tumor cell lines al. (2014) Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial Salamatulla h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et a	Cleome droserifolia (Forssk.) Delile	Cleomaceae	wound healing especially for diabetes mellitus patients, open sores, allergy, dermatitis, inflammation, scabies, as antimicrobial	Herbal Monograph (2022)
lines al. (2014) Convolvulus arvensis L. Convolvulaceae Antioxidant and antibacterial Salamatulli h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et a				Akram <i>et a</i> (2012)
h (2022) Convolvulus scammonia L. Convolvulaceae Treatment of skin diseases, chronic Ansari et a	Convolvulus althaeoides L.	Convolvulaceae	· ·	
	Convolvulus arvensis L.	Convolvulaceae	Antioxidant and antibacterial	Salamatulla h (2022)
	Convolvulus scammonia L.	Convolvulaceae		Ansari <i>et al</i> (2022)

Coriandrum sativum L.	Apiaceae	jaundice Anti-inflammatory, analgesic, antioxidant,	Asgarpanah
Coanaram Satiram L.	, ipiaceae	antidiabetic, hepatoprotective,	and
		antibacterial, and antifungal	Kazemivash
		and and an analysis	(2012)
Crataegus monogyna Jacq.	Rosaceae	Adjunct therapy for heart failure stage II,	Egyptian
3 3, 1		relieve symptoms of temporary nervous	Herbal
		cardiac complaints, relief of mild symptoms	Monograph
		of mental stress and to aid sleep	(2023)
Cuscuta epilinum Weihe	Convolvulaceae	Anti-microbial, cytotoxic, anticonvulsant,	Chabra et
•		anti-urease, immune	al. (2019)
		stimulatory, hepatoprotective effect, and	` ,
		antioxidant activity	
Cymbopogon citratus (DC.) Stapf	Poaceae	Treatment of the nervous condition,	Kassahun <i>e</i> t
		gastrointestinal disturbances, fever,	al. (2020)
		cardiovascular disease, coughs,	
		hypertrophy,flu, gingivitis, headache,	
		leprosy, malaria, ophthalmic, respiratory	
		disease, and vascular disorders	
Cymbopogon nardus (L.) Rendle	Poaceae	Antifungal, antibacterial, antioxidant,	Pandey
		insecticidal, antiparasitic, and food	(2024)
		preservation	
Cymbopogon schoenanthus (L.)	Poaceae	Antioxidant, antimicrobial, anthelmintic,	Al-Snafi
Spreng.		insecticidal, protective, and	(2016)
		acetylcholinesterase inhibitory activity	
Cymbopogon schoenanthus subsp.	Poaceae	Cardiovascular depressant,	El-Tahir &
proximus (Hochst. ex A.Rich.) Maire		antidopaminergic and antiglutamic-aspartic	Abdel-
& Weiller		acids in the antiemetic and anticonvulsant	Kader
		effects	(2008)
Cyperus esculentus L.	Cyperaceae	Antibacterial, antioxidant and insecticidal	Zhang et al.
		activities	(2022)
Cyperus rotundus L.	Cyperaceae	Rhizomes are considered astringent,	Sivapalan
		diaphoretic, diuretic, analgesic,	(2013)
		antispasmodic, aromatic, carminative,	
		antitussive, emmenagogue, litholytic,	
		sedative, stimulant, stomachic, vermifuge,	
		tonic and antibacterial	
Datura stramonium L.	Solanaceae	Spasmolytic, anti-asthmatic,	Egyptian
		anticholinergic, antioxidant, anticancer,	Drug
		analgesic, anti-inflammatory, and wound	Authority
		healing activity	(2022)
Dodonaea viscosa Jacq.	Sapindaceae	Antidiabetic, antimicrobial, insecticidal,	Al-Snafi
		antioxidant, cytotoxic, antifertility, wound,	(2017)
		anti-inflammatory, analgesic, anti-ulcer,	
		antispasmodic, anti-diarrheal and	
		detoxification effects.	
Drimia maritima (L.) Stearn	Asparagaceae	Anti-asthmatic, and expectorant	Egyptian Herbal
			Monograph (2023)
Ecballium elaterium (L.) A.Rich.	Cucurbitaceae	Cytotoxic, anti-inflammatory, and	Anzano et
ECDUITUTTI ETULETTUTTI (L.) A.KICTI.			1 (2024)
Ecoamani elateriani (L.) A.Kicii.		anti-cancer	al. (2024)
Ephedra alata Decne.	Ephedraceae	anti-cancer Anti-cancer,anti- asthmatic, also for	Chroho <i>et</i>

Eruca sativa Mill.	Brassicaceae	Leaves and seeds are used as antimicrobial,	Rozan &
		anticarcinogenic, diuretic, laxatives, to	Boriy
		improve digestion and kidney functions,	(2022)
		antiulcer, and aphrodisiac	6 1 11 0
Ferula communis L.	Apiaceae	Anti-microbial, anti-fungal, antinociceptive,	Sahebkar &
		anti-inflammatory, anti-convulsant,	Iranshahi
		antioxidant, anti-mycobacterial, anti-	(2010)
		spasmodic, and	
		hypotensive activities	· · ·
Ficus carica L.	Moraceae	Treatment of various ailments such as	Badgujar et
		anemia, cancer, diabetes, leprosy, liver	al. (2014)
		diseases, paralysis, skin diseases, and	
Caming de una contrara a NA:II	Aninana	ulcers	Dathanat
Foeniculum vulgare Mill.	Apiaceae	Antifungal, antibacterial, antioxidant,	Rather et
		antithrombotic and hepatoprotective	al. (2016)
		activities	
Fumaria officinalis L.	Papaveraceae	Anti-diabetic, analgesic, anti-inflammatory,	Aguiar
		antimicrobial, anticancer, diuretic and skin	(2023)
		protective effects. It has potential against	
		Alzheimer's disease.	
Hibiscus sabdariffa L.	Malvaceae	Medications for high blood pressure, and	Jalalyazdi e
		antihypertensive.	al. (2019)
Hyoscyamus muticus L.	Solanaceae	Antioxidant, and antimicrobial	Elsharkawy
			et al. (2018
Hypericum perforatum L.	Hypericaceae	Antidepressant, antioxidant,	Asgarpanal
		anticonvulsant, analgesic, anti-	(2012)
		inflammatory, cytotoxic and antidiabetic	
		activities	
Hyphaene thebaica (L.) Mart.	Arecaceae	Anti-inlammatory, antioxidant,	El-Beltagi e
		antimicrobial, anticancer, and in the	al. (2018)
		treatment of hypertension, bilharzias and	
		as a hematinic agent. Fruits can reduce	
ton and another I	1	hyperlipidemia	
Juncus acutus L.	Juncaceae	Antidiabetic, antibacterial, and antifungal	Hammouti
Lucia anno a anno anta l	C	activities	et al. (2023
Juniperus communis L.	Cupressaceae	Antidiarrhoeal, anti-inflammatory,	Bais et al.
		astringent, and antiseptic and in the	(2014)
Lagratica lagratura terlum l	Danhauidaaaa	treatment of various abdominal disorders	Al-Snafi
Leontice leontopetalum L.	Berberidaceae	Anti-oxidant, anti-diabetic, cytotoxic and smooth muscle contractile effect	
Landidium latifalium l	Dunasianana		(2019)
Lepidium latifolium L.	Brassicaceae	Antioxidant, as stomach tonics, diuretic,	Verma et al
		hypertension, diabetes and anti-tumor.	(2019)
Lepidium sativum L.	Brassicaceae	Effective in asthma, cough, gastrointestinal	Shah et al.
		track disorders, cardiac disease, diabetes,	(2021)
Lincoln code add t	lia	hepatic function, infections	C: 4 -1!
Linum usitatissimum L.	Linaceae	Reduce blood pressure, improve digestion,	Siddiquee
Leading allows	r-l	and prevent certain types of cancer	et al. (2023
Lupinus albus L.	Fabaceae	Anti-diabetic, anti-convulsant, antioxidant,	Abdul
		antimicrobial and antihyperlipidemic	Qaiyyum &
		activities. It shows efficiency in controlling	Nawab
		serum glucose and dyslipidaemia.	(2020)
Malva sylvestris L.	Malvaceae	Antioxidant, anti-inflammatory, anticancer,	Mousavi et
		wound-healing, hepatoprotective,	aol. (2021)
		antinociceptive, and antimicrobial	

Marrubium alysson L.	Lamiaceae	Lipid lowering, anti-inflammation and anti- oxidation activities, managing Alzheimer's disease	Essawy et al. (2014), Eltahawy et al. (2023)
Marrubium vulgare L.	Lamiaceae	Anti-inflammatory, wound-healing, antihypertensive, hypolipidemic, and sedative potential antioxidant, hepatoprotective, antiproliferative, anti-inflammatory, antidiabetic, and antimicrobial activity	Aćimović et al. (2020)
Matricaria chamomilla L.	Asteraceae	For treatment of atopic dermatitis, colic, and diarrhea	Zadeh <i>et al.</i> (2014)
Mentha pulegium L.	Lamiaceae	Antioxidant and anti-tumor properties	Abood & Humadi (2023)
Mentha spicata L.	Lamiaceae	Antimicrobial, antioxidant, anticancer, anti- inflammatory and hepatoprotective activities.	Mahendran et al. (2021)
Moringa peregrina (Forssk.) Fiori	Moringaceae	Treatment of a wide range of conditions, such as inflammation, gastrointestinal, hematological, cardiovascular, hepato and renal disorders. Also, it has been used for diabetes and hypertension as well as liver protection	Said-Al Ahl et al. (2017)
<i>Mutarda nigra</i> (L.) Bernh.	Brassicaceae	Cytotoxic, mutagenic, hepato-protective, nephroprotective, lung protective, antiobesity, antidiabetic, antioxidant, immunological, anti-inflammatory, cardiovascular and hypolipidemic effects	Al-Snafi (2015)
Narcissus tazetta L.	Amaryllidaceae	Antibacterial and antifungal, antiviral, antimalerial, anticancer, antioxidant, dermatological, cardiovascular, immunomodulatory and acetylcholinesterase inhibitory effects	Al-Snafi (2020)
Nigella sativa L.	Ranunculaceae	Antidiabetic, antioxidant capacity, hypolipidemic, antiatherosclerotic, or antihypertensive properties, treat various gastrointestinal disorders, used in treating respiratory and allergic disorders, plays a role in cancer prevention and treatment, and has neuroprotective effects and memory improvement	Alberts <i>et al.</i> (2024)
Nymphaea lotus L.	Nymphaeaceae	Management of inflammation and diabetes, beside its nutritional value	Abelti <i>et al.</i> (2024)
Olea europaea L.	Oleaceae	Antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties.	Elhrech <i>et al.</i> (2024)
Orobanche crenata Forssk.	Orobanchaceae	For tonifying the kidney, against impotence and spermatorrhea, dermatological problems and wounds, as well as infantile diarrhoea.	Shi <i>et al.</i> (2020)
Papaver rhoeas L.	Papaveraceae	Treat nervousness, insomnia, digestive and respiratory disorders, baldness, eye	Grauso <i>et</i> <i>al.</i> (2021)

		infections, as well as measles treatment.	
Peganum harmala L.	Nitrariaceae	Anti-inflammatory, analgesic, antibacterial,	Akramova
		and possibly psychoactive effects	(2024)
Petroselinum crispum (Mill.) Fuss	Apiaceae	Carminative, gastro tonic, diuretic,	Farzaei <i>et</i>
		antiseptic of urinary tract, anti-urolithiasis,	al. (2013)
		anti-dote and anti-inflammatory and for	
		the treatment of amenorrhea,	
		dysmenorrhea,	
		gastrointestinal disorder, hypertension,	
		cardiac disease, urinary disease, otitis,	
		sniffle, diabetes and also various dermal	
		diseases .	
Phoenix dactylifera L.	Arecaceae	The fruits were used traditionally as	Al-Snafi
		general tonic, for the treatment of liver	&Thuwaini
		diseases, memory disturbances, fever,	(2023)
		inflammation, paralysis, loss of	
		consciousness, nervous disorders and	
		consumed by pregnant women before and	
		after delivery. However, all parts of the	
		plant were used for some purpose. Dates	
		fruits were considered a complete diet and	
		a very important item of food, possessed	
		many pharmacological effects including	
		anticancer, antidiabetic, anti-inflammatory,	
		antimicrobial, antiparasitic, antioxidant,	
		anti-toxin, cardiovascular, hypolipidemic,	
		gastrointestinal, immunomodullatory,	
		neural, hepato and reno-protective,	
		reproductive and wound healing effects	
Pistacia lentiscus L.	Anacardiaceae	Anti-inflammatory, antioxidative and	Milia et al.
		antimicrobial activities.	(2021)
Plantago afra L.	Plantaginaceae	Emollient, laxative for chronic constipation	Egyptian
			Herbal
			Monograph
			(2023)
Plantago major L.	Plantaginaceae	For respiratory complications and digestive	Nazarizade
5	· ·	system affections, wound healing and as an	h <i>et al</i> .
		anti-inflammatory, anti-microbial and anti-	(2013)
		tumor agent.	, ,
Plantago ovata Forssk.	Plantaginaceae	Lowering cholesterol, prevent constipation,	Khan et al.
		improving cancer cells and reduce obesity	(2021)
Pluchea dioscoridis (L.) DC.	Asteraceae	Antifungal, and anticancer activity against a	Madboly et
(=, = =		colon carcinoma cell line	al. (2023)
Polygonum aviculare L.	Polygonaceae	Antioxidant, anti-inflammatory,	Benrahou
, go a riculare Li	. 5.7001145646	antidiabetic, anti-cancer, and dermato-	et al. (2023
		protective activities	ct un (2023
Portulaca oleracea L.	Portulacaceae	Neuroprotective, antimicrobial,	Zhou <i>et al.</i>
. ortaliaca ofcilacea L.	i oi tuiacaceae	antidiabetic, antioxidant, anti-	(2015)
			(2013)
		inflammatory, antiulcerogenic, and	
0.11	D :1 :	anticancer activities	
Posidonia oceanica (L.) Delile	Posidoniaceae	Antioxidant, anti-inflammatory,	Vasarri et a
		antidiabetic, and anti-glycation properties	(2021)
Rhus coriaria L.	Anacardiaceae	Antioxidant capacities that have	Alsamri <i>et</i>
		ameliorative and therapeutic benefits for	al. (2021)

		many common diseases including cardiovascular disease, diabetes, and cancer	
Ricinus communis L.	Euphorbiaceae	Anticancer, anti-diabetic, antioxidant, leishamicidial, insecticidal, hepatoprotective, acaricidal, lipolytic activity, larvicidal and mosquitocidal activity, laxative and uterine contracting, anticonvulsant activity, anti-asthmatic	Chouhan et al. (2021)
	Polygonaceae	activity, bone regeneration, antimicrobial and anti-inflammatory properties, ophthalmic properties, and antiulcer Antioxidant, antiproliferative and anti-	Gomaa &
Rumex vesicarius L.	Тотудописсис	microbial potential	Saleh (2014)
<i>Salix mucronata</i> Thunb.	Salicaceae	Analgesic, anti-inflammatory, antioxidant, anticancer, cytotoxic, antidiabetic, antimicrobial, antiobesity, neuroprotective and hepatoprotective activities	Tawfeek <i>et</i> al. (2021)
Salvadora persica L.	Salvadoraceae	Antibacterial, antiviral, antifungal, antioxidant, and even antiulcer effects, promising for dental and fields	Aljarbou et al. (2022)
Salvia aegyptiaca L.	Lamiaceae	Antiseptic, carminative, digestive, analgesic, antioxidant, anticancer, and antiproliferative effect	Singh (2021), Hosseini <i>et</i> <i>al.</i> (2024)
Senna alexandrina Mill.	Fabaceae	Remedies for waterborne diseases including typhoid, also joint, tendon ligaments and bone related diseases, pneumonia, reducing fever, bacterial, viral and fungal long-term infections, leukemia, jaundice, intestinal worms and use as healer for splenic enlargement	Abbas & Rani (2020)
Silybum marianum (L.) Gaertn.	Asteraceae	Renal protection, hypolipidemic and anti- atherosclerosis activities, cardiovascular protection, prevention of insulin resistance, especially in cirrhotic patients, cancer, and Alzheimer prevention	Bahman <i>et</i> <i>al.</i> (2015)
Sinapis alba L.	Brassicaceae	Used in the treatment of common cold, bronchitis, rheumatism and in the treatment of inflammation of the respiratory tract and the gastrointestinal tract in homeopathy	Khatib & Al- Makky (2021)
Sisymbrium officinale (L.) Scop.	Brassicaceae	Strong antimutagenic effect suggesting anticancer properties	Di Sotto <i>et al.</i> (2010)
Solanum nigrum L.	Solanaceae	Larvicidal, anti-inflammatory, antioxidant, antitumor promoting, and hepatoprotective agent	Saleem <i>et al.</i> (2009)
Solenostemma arghel (Delile) Hayne	Apocynaceae	Anti-inflammatory, antioxidant, hypoglycemic, hypolipidemic, and anti-obesity activities	Abdel- Sattar & El- Shiekh (2024)
Stellaria media (L.) Vill.	Caryophyllaceae	Antiobesity, antifungal, antibacterial, antioxidant, anti-proliferative, anti-	Oladeji & Oyebamiji

		inflammatory, analgesic, antidiabetic and anxiolytic activities.	(2020)
Teucrium polium L.	Lamiaceae	Antioxidant, antibacterial, and	Sharifi-Rad
reactiant ponant 2.	Larriaceae	antiinflammatory activity	et al. (2022)
Thymbra capitata (L.) Cav.	Lamiaceae	Anti-Inflammatory, wound Healing,	Alves-Silva
(2, 52		and anti-aging	et al. (2023
Tribulus terrestris L.	Zygophyllaceae	It has analgesic, diuretic and uricosuric	Akram <i>et al</i>
		effects, anti-hyperglycaemic, anti-	(2011),
		inflammatory, antioxidant, and	Ştefănescu
		antibacterial.	et al. (2020
Trifolium alexandrinum L.	Fabaceae	Antioxidant, anti-inflammatory, and	Abdou &
		antidiabetic effects.	Abd Elkade
			(2022)
Triticum aestivum L.	Poaceae	Anticancer, antimicrobial, antidiabetic,	Moshawih
		hypolipemic, antioxidant, laxative, and	et al. (2022
		moisturizing effects	
Urtica pilulifera L.	Urticaceae	Antioxidant activity against various	Mahmoud
		oxidative systems	et al. (2005
Urtica urens L.	Urticaceae	Significant antioxidant activity	Elsherif et
			al. (2023)
Vachellia nilotica (L.) P.J.H.Hurter &	Fabaceae	Anti-cancer, antimutagenic, spasmogenic,	Ali (2012),
Mabb.		vasoconstrictor, anti-pyretic, anti-	Egyptian
		asthamatic, cytotoxic, anti-diabetic, anti-	Herbal
		platelet agregatory, anti-plasmodial,	Monograph
		molluscicidal, anti-fungal, inhibitory activity	(2023)
		against Hepatitis C virus (HCV) and human	
		immunodeficiency virus (HIV)-I,	
		antioxidant, anti-bacterial,	
		antihypertensive, anti-spasmodic activities	
Vachellia seyal (Delile) P.J.H.Hurter	Fabaceae	Antibacterial, antimalarial,	Ashour <i>et</i>
		antimycobacterial, cyclooxygenase	al. (2022)
		inhibition effect, molluscicidal activity,	
		anticancer, hypoglycemic, antidiabetic,	
		antioxidant, immunomodulatory,	
		cytoprotective antiulcer, prebiotic	
60.4		properties	
Verbena officinalis L.	Verbenaceae	Treating cryptosporidiosis with a possible	El-Wakil et
		reduction of inflammatory changes in the	al. (2022)
		small intestine.	
Vicia faba L.	Fabaceae	Hypocholesterolemia, antioxidants, and	Feng et al.
		anti-cancer properties, also improved	(2024)
		blood sugar, cholesterol levels, and gut	
		health, contributing to health advantage for cardiovascular diseases and other	
		chronic conditions.	
Viola odorata L.	Violaceae	It is used for stress, fatigue, insomnia	Abdullah &
viola daorata L.	violacede	symptoms of menopause, depression,	Abdullali & Akram
		common cold, and influenza. Chewed	Khan
		Leaves are used for anticancer, diaphoretic,	(2023),
		febrifuge, infantile disorder, and lung	Batiha <i>et al</i>
		troubles, and	(2023)
		leaves and flowers are used for respiratory	(2023)
		disorders	
Viola tricolor L.	Violaceae	The stem, leaves, flowers, fruits, and seeds	Batiha <i>et al</i> .
VIOLA LI ICOLOT L.	VIOIACCAE	The stern, reaves, nowers, truits, and seeds	בי מנווום כנ מו.

		are used against skin conditions, cystitis, rheumatism, bronchitis and against inflammation, cough, and diuretic.	(2023)
Visnaga daucoides Gaertn.	Apiaceae	Kidney diseases, antispasmodic and vasodilating, antidiabetic, anti-inflammatory, antimicrobial, antioxidant, hair Loss, antimutagenic, cardiovascular, and immunostimulatory	Khalil <i>et al.</i> (2020)
Withania somnifera (L.) Dunal	Solanaceae	It treats ulcers, emaciation, colds, coughs, diabetes, conjunctivitis, insomnia, senile dementia, epilepsy, leprosy, Parkinson's disease, nervous disorders, rheumatism, arthritis, intestinal infections, bronchitis and asthma	Sharma <i>et</i> <i>al.</i> (2024)
Zea mays L.	Poaceae	It possesses diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti- inflammatory, anti-cancer, plant protection activity, and other activities.	Zhang <i>et al.</i> (2023)
Zilla spinosa (L.) Prantl	Brassicaceae	Treatment of gall bladder and kidney stones and/or ailments, antifungal, anticancer, and antirheumatic	Alsamahy et al (2025)
Ziziphus lotus (L.) Lam.	Rhamnaceae	Teating diabetes, obesity, dyslipidemia, ulcers, and spasms. Additionally, it was found to have an anti-urolithic effect, preventing the formation of kidney stones.	Bencheikh et al. (2023)
Ziziphus spina-christi (L.) Desf.	Rhamnaceae	Antihyperglycemic, antibacterial, antifungal, antioxidant and antinociceptive activities	Asgarpanah & Haghighat (2012)
Zygophyllum coccineum L.	Zygophyllaceae	The plant extract has efficient and safe anti-inflammatory potential, with promising antifungal and insecticidal actions. It was also reported to control elevated blood pressure and heart rate in induced rats	Yosri <i>et al.</i> (2022)

Figure 12. Datura innoxia (left), Schouwia thebaica (right), Wadi El-Assiuty, Eastern Desert

Figure 13. Limonium axillare (left), Cleome droserifolia (right), Red Sea coast

Figure 14. Lycium shawii (left), Anabasis articulata (right), Gebel Musa, South Sinai

Figure 15. Hyphaene thebaica (left), Gossypium arboreum (right), Dakhla Oasis

Conclusion and recommendations

Extreme drought conditions, scarcity of water and high temperature were among the harsh environmental conditions in the hyper arid desert of Egypt. Besides, it is subjected to severe disturbances such as urbanization, overgrazing, disposal of waste products, over-collection of economic plants, road construction and others have their negative impacts on the vegetation and species diversity.

Medicinal plants are one of the most important elements of biodiversity around the world (Klein *et al.* 2008; Okigbo *et al.* 2008) because of their role in ecosystem services such as healthcare, cultural value and heritage, local economics and human wellbeing, especially in poor areas. Conserving and protecting these kinds of species is vital, including improving knowledge about the important ecological requirements of medicinal plants, and raising awareness among all stakeholders to protect this heritage. Consequently, conservation planning and effective management is important in protecting the most threatened species to avoid declines in the diversity of medicinal plants (Moustafa *et al.* 1999; Bidak *et al.* 2013).

Although Egypt has the potential for being an excellent source for aromatic and medicinal plants production, Egyptian exports of aromatic and medicinal plants is declining. The application of tissue culture micropropagation techniques among other measures might lead to new technologies for restoring the high brand production of medicinal plant products as well as maintenance of sustainable use for these valuable plants (El-Demerdash, 2001). Many activities aiming at the conservation of the aromatic and medicinal plants including in situ, ex situ conservation and micropropagation are recommended.

It is recommended to establish a national database for medicinal plants to integrate and enhance information management in the different related fields starting by field surveys and ending with market value of each species (El-Gazzar and El-Demerdash 1998). The implementation of marketing strategies which adopt the international codes for quality control measures, proper advertising policies, and coordinates between the different acting partners in medicinal plants (Fadl Allah 1998). The objective of the current review is to provide a comprehensive overview of medicinal plants in Egypt, diversity and distribution of these plants across Egypt's different biogeographical regions, as well as their current conservation status and nativity.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: All the authors agreed to publish the content. This paper does not include any individual person's data and further permission for publication is not required.

Availability of data and materials: All the collected data are given in the manuscript itself.

Competing interests: The authors declare that they have no conflict of interest.

Funding: No funding was received from any organization.

Author contributions: Both authors conceived the idea, wrote the initial version of the manuscript, revised the manuscript and approved the final version of the manuscript.

Literature cited

Abbas SR, Rani G. 2020. Medicinal significance of Alexandrian senna. Journal of Natural Sciences 8(1): 24-29.

Abd El-Ghani MM, Hamdy RS, Farahat AB. 2015. Habitat diversity and floristic analysis of Wadi El-Natrun Depression, Western Desert, Egypt. Phytologia Balacanica 21(3): 351-366.

Abd El-Ghani MM, Hosni H, Shamso E, Ellmouni F. 2024. New perspectives, additions, and amendments to plant endemism in a North African flora. Botanical Studies 65: 21.

Abd El-Ghani MM, Huerta-Martínez FM, Hongyan L, Qureshi R. 2017. Plant Responses to Hyperarid Desert Environments. Springer, ISBN: 978-3-319-59134-6.

Abd El-Wahab RH, Zaghloul MS, Kamel WM, Moustafa AA. 2008. Diversity and distribution of medicinal plants in North Sinai, Egypt. African Journal of Environmental Science and Technology 2(7): 157-171.

Abd El-Wahab RH, Zaghloul MS, Moustafa AA. 2004. Conservation of medicinal plants in St. Catherine Protectorate, South Sinai. I. Evaluation of ecological status and human impact. Proceedings of 1st International Conference on Strategy of Egyptian Herbaria, Giza, Egypt.

Abdel-Sattar E, El-Shiekh RA. 2024. A Comprehensive Review on *Solenostemma argel* (Del.) Hayne, an Egyptian Medicinal Plant. Bulletin of Faculty of Pharmacy Cairo University 62(1): 3.

Abdela G, Girma Z, Awas T. 2022. Ethnobotanical study of medicinal plant species in Nensebo District, south-eastern Ethiopia. Ethnobotany Research & Applications 24: 6.

Abdou HM, Abd Elkader H-TAE. 2022. The potential therapeutic effects of *Trifolium alexandrinum* extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3 β and apoptosis in male rats. Chemico-Biological Interactions 352: 109781.

Abdul Qaiyyum I, Nawab M. 2020. A Review on Pharmacological and Therapeutic Profile of Turmus (*Lupinus albus* L.). Hippocratic Journal of Unani Medicine 15(1): 11-24.

Abdullah A, Akram Khan W. 2023. Sweet Violet (*Viola odorata* L.) Banafsha a medicinal plant in Himalayan region of Jammu and Kashmir: A review. The Pharma Innovation Journal 12(7): 149-153.

Abelti AL, Teka TA, Bultosa G, Vermeir P. 2024. Characterization of water lily (*Nymphaea lotus*) for nutrients, anti-nutrients, phytochemicals, and antioxidant capacities. Food Bioscience 61: 104588.

Abid R, Islam M, Saeed H, Ahmad A, Imtiaz F, Yasmeen A, Rathore HA. 2022. Antihypertensive potential of *Brassica rapa* leaves: An in vitro and in silico approach. Frontiers in Pharmacology 13: 996755.

Abood WN, Humadi AA. 2023. Anti-Cancer Effect of *Mentha pulegium* L. The Egyptian Journal of Hospital Medicine 90(1): 1781-1788.

AbouZid SF, Mohamed AA. 2011. Survey on medicinal plants and spices used in Beni-Sueif, Upper Egypt. Journal of Ethnobiology and Ethnomedicine 7: 18.

Aćimović M, Jeremić K, Salaj N, Gavarić N, Kiprovski B, Sikora V, Zeremski T. 2020. *Marrubium vulgare* L.: A phytochemical and pharmacological overview. Molecules 25 (12): 2898.

Aguiar R. 2023. *Fumaria officinalis* L. active compounds and biological activities: A review. International Journal of Herbal Medicine 11(5): 144-151.

Akram M, Alam O, Usmanghani K, Akhter N, Asif H. 2012. *Colchicum autumnale*: A review. Journal of Medicinal Plants Research 6(8): 1489-1491.

Akram M, Asif H, Akhtar N, Shah PA, Uzair M, Shaheen G, Shamim T, Shah SA, Ahmad K. 2011. *Tribulus terrestris* Linn.: a review article. Journal of Medicinal Plants Research 5 (16): 3601-3605.

Akramova G. 2024. Medicinal properties of "Peganum harmala" plant. In: BIO Web of Conferences 93: 02018.

Al-Snafi A. 2016. The chemical constituents and pharmacological activities of *Cymbopagon schoenanthus*: A review. Chemistry Research Journal 1(5): 53-61.

Al-Snafi AE, Thuwaini MM. 2023. *Phoenix dactylifera*: Traditional uses, chemical constituents, nutritional benefit and therapeutic effects. Traditional Medicine Research 8 (4): 20.

Al-Snafi AE. 2015. The nutritional and therapeutic importance of *Avena sativa*-An Overview. International Journal of Phytotherapy 5(1): 48-56.

Al-Snafi AE. 2015. The pharmacological importance of Brassica nigra and *Brassica rapa* grown in Iraq. Journal of Pharmaceutical Biology 5(4): 240-253.

Al-Snafi AE. 2017. A review on Dodonaea viscosa: A potential medicinal plant. IOSR Journal of Pharmacy 7(2): 10-21.

Al-Snafi AE. 2019. Constituents and pharmacological effects of *Leontice leontopetalum*-a review. Chemistry Journal 3: 103-108.

Al-Snafi AE. 2020. Constituents and pharmacology of Narcissus tazetta. IOSR Journal of Pharmacy 10(9): 44-53.

Alberts A, Moldoveanu E-T, Niculescu A-G, Grumezescu AM. 2024. *Nigella sativa*: A Comprehensive Review of Its Therapeutic Potential, Pharmacological Properties, and Clinical Applications. International Journal of Molecular Sciences 25(24): 13410.

Ali A, Akhtar N, Khan BA, Khan MS, Rasul A, Zaman S, Khalid N, Waseem K, Mahmood T, Ali L. 2012. *Acacia nilotica*: a plant of multipurpose medicinal uses. Journal of Medicinal Plants Research 6(9): 1492-1496.

Aljarbou F, Almobarak A, Binrayes A, Alamri HM. 2022. Salvadora Persica's Biological Properties and Applications in different Dental specialties: a narrative review. Evidence-Based Complementary and Alternative Medicine 2022(1): 8667687.

Alsamahy AA, Elliethy MZ, Mohamed AA, Bedair RI, Khafagi OMA. 2025. Plants with medicinal and economic importance in Nabq protectorate, South Sinai, Egypt. International Journal of Theoretical and Applied Research 3(2): 442-454.

Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R. 2021. Pharmacological and antioxidant activities of *Rhus coriaria* L. (Sumac). Antioxidants 10(1): 73.

Alves-Silva JM, Pedreiro S, Cruz MT, Salgueiro L, Figueirinha A. 2023. Exploring the Traditional Uses of *Thymbra capitata* Infusion in Algarve (Portugal): Anti-Inflammatory, Wound Healing, and Anti-Aging. Pharmaceuticals 16(9): 1202.

Ansari H, Ansari AP, Qayoom I, Reshi BM, Hasib A, Ahmed NZ, Anwar N. 2022. Saqmunia (*Convolvulus scammonia* L.), an important drug used in Unani system of medicine: A review. Journal of Drug Delivery and Therapeutics 12(5): 231-238.

Anzano A, Falco Bd, Grauso L, Lanzotti V. 2024. Squirting Cucumber, *Ecballium elaterium* (L.) A. Ritch: An Update of Its Chemical and Pharmacological Profile. Molecules 29(18): 4377.

Asgarpanah J, Haghighat E. 2012. Phytochemistry and pharmacologic properties of *Ziziphus spina-christi* (L.) Willd. African Journal of Pharmacy and Pharmacology 6 (31): 2332-2339.

Asgarpanah J, Kazemivash N. 2012. Phytochemistry, pharmacology and medicinal properties of *Coriandrum sativum* L. African Journal of Pharmacy and Pharmacology 6 (31): 2340-2345.

Asgarpanah J. 2012. Phytochemistry, pharmacology and medicinal properties of *Hypericum perforatum* L. African Journal of Pharmacy and Pharmacology 6(19): 1387-1394.

Ashour MA, Fatima W, Imran M, Ghoneim MM, Alshehri S, Shakeel F. 2022. A review on the main phytoconstituents, traditional uses, inventions, and patent literature of gum Arabic emphasizing *Acacia seyal*. Molecules 27(4): 1171.

Awad BM, Godab MS, Eltamanyb EE, Ibrahimb AK, Badrb JM. 2022. Chemistry and biological activities of *Artemisia judaica*: A mini review. Records of Pharmaceutical and Biomedical Sciences 6: 29-59.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. 2014. Traditional uses, phytochemistry and pharmacology of *Ficus carica*: A review. Pharmaceutical Biology 52 (11): 1487-1503.

Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M. 2015. *Silybum marianum*: beyond hepatoprotection. Journal of Evidence-Based Complementary and Alternative Medicine 20(4): 292-301.

Bais S, Gill NS, Rana N, Shandil S. 2014. A phytopharmacological review on a medicinal plant: *Juniperus communis*. International Scholarly Research Notices 2014(1): 634723.

Baqar SR. 2001. Text Book of Economic Botany. Ferozsons Pvt. Ltd. Rawalpindi, Karachi, Pakistan 23-100.

Batiha GE-S, Lukman HY, Shaheen HM, Wasef L, Hafiz AA, Conte-Junior CA, Al-Farga A, Chamba MV, Lawal B. 2023. A systematic review of phytochemistry, nutritional composition, and pharmacologic application of species of the genus *Viola* in noncommunicable diseases (NCDs). Evidence-Based Complementary and Alternative Medicine 2023(1): 5406039.

Benarba B, Belhouala K. 2024. The genus *Bryonia* L. (Cucurbitaceae): A systematic review of its botany, phytochemistry, traditional uses, and biological activities. Sci 6(1): 7.

Bencheikh N, Radi FZ, Fakchich J, Elbouzidi A, Ouahhoud S, Ouasti M, Bouhrim M, Ouasti I, Hano C, Elachouri M. 2023. Ethnobotanical, phytochemical, toxicological, and pharmacological properties of *Ziziphus lotus* (L.) Lam.: a comprehensive review. Pharmaceuticals 16(4): 575.

Benrahou K, Driouech M, El Guourrami O, Mrabti HN, Cherrah Y, El Abbes Faouzi M. 2023. Medicinal uses, phytochemistry, pharmacology, and taxonomy of *Poygonum aviculare* L.: a comprehensive review. Medicinal Chemistry Research 32(3): 409-423.

Bidak LM, Heneidy SZ, Shaltout KH, Al-Sodany Y. 2013. Current Status of the Wild Medicinal Plants in the Western Mediterranean Coastal Region, Egypt. The Journal of Ethnobiology and Traditional Medicine, Photon 120: 566-584.

Bojórquez-Tapia LA, Azuara I, Ezcurra E, Flores-Villela O. 1995. Identifying conservation priorities in Mexico through geographic information systems and modeling. Ecological Applications 5: 215e231.

Boulos L, El-Hadidi MN. 1994. The weed flora of Egypt. Revised Edition. The American University in Cairo Press, Cairo.

Boulos L. 1983. Medicinal plants of North Africa. Reference Publication, Inc., Algonas Michigan. 286 pp.

Boulos L. 1995. Flora of Egypt. Checklist. Al Hadara Publishing, Cairo.

Boulos L. 1999-2005. Flora of Egypt. Vols 1, 2, 3 & 4. Al Hadara Publishing, Cairo.

Boulos L. 2009. Flora of Egypt checklist, revised annotated edition. Al Hadara Publishing, Cairo.

Chabra A, Monadi T, Azadbakht M, Haerizadeh SI. 2019. Ethnopharmacology of *Cuscuta epithymum*: A comprehensive review on ethnobotany, phytochemistry, pharmacology and toxicity. Journal of Ethnopharmacology 231: 555-569.

Chandra SK, Pandey A, Srivastava S, Giri L. 2015. Invasive alien plants of Himachal Pradesh, India. Indian Forestry 141(5): 520-527.

Chao A, Chazdon RL, Colwell RK, Shen TJ. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8(2): 148–159.

Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S. 2000. Consequences of changing biodiversity. Nature 405: 234e242.

Chothani DL, Vaghasiya H. 2011. A review on *Balanites aegyptiaca* Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacognosy Reviews 5(9): 55.

Chouhan HS, Swarnakar G, Jogpal B. 2021. Medicinal properties of Ricinus communis: A review. International Journal of Pharmaceutical Sciences and Research 12(7): 3632-3642.

Chroho M, Bailly C, Bouissane L. 2024. Ethnobotanical Uses and Pharmacological Activities of Moroccan Ephedra Species. Planta Medica 90: 336–352.

Colwell RK. 2005. Estimate S: Statistical estimation of species richness and shared species from samples. Version 7.5.

Dahmani W, Elaouni N, Abousalim A, Akissi ZLE, Legssyer A, Ziyyat A, Sahpaz S. 2023. Exploring carob (*Ceratonia siliqua* L.): A comprehensive assessment of its characteristics, ethnomedicinal uses, phytochemical aspects, and pharmacological activities. Plants 12 (18): 3303.

Di Sotto A, Vitalone A, Nicoletti M, Piccin A, Mazzanti G. 2010. Pharmacological and phytochemical study on a *Sisymbrium officinale* Scop. extract. Journal of Ethnopharmacology 127(3): 731-736.

Domingo-Fernández D, Gadiya Y, Mubeen S, Bollerman TJ, Healy MD, Chanana S, Colluru V. 2023. Modern drug discovery using ethnobotany: a large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. IScience 26(9): 107729.

Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JOP, Guisan A. 2011. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distribution 17: 1122e1131.

Egyptian Herbal Monograph. 2022. Traditional wild medicinal plants, Egyptian Drug Authority (EDA) Egypt. pp 545.

Egyptian Herbal Monograph. 2023. Traditional wild medicinal plants, Egyptian Drug Authority (EDA) Egypt. pp 431.

El Hadidi MN, Fayed AA. 1994/95. Materials for Excursion Flora of Egypt (EFE). Taeckholmia 15: 233pp.

El Hadidi MN. 2000. The main features of the natural vegetation. In: El Hadidi MN, Hosni HA (eds.) Flora Aegyptiaca, Vol. 1, Cairo Univ Herbarium and The Palm Press.

El-Beltagi HS, Mohamed HI, Yousef HN, Fawzi EM. 2018. Biological activities of the doum palm (*Hyphaene thebaica* L.) extract and its bioactive components. Antioxidants in Foods and its Applications 49: 49-66.

El-Demerdash M. 2001. Medicinal Plants of Egypt. In: Saxena, PK. (eds) Development of Plant-Based Medicines: Conservation, Efficacy and Safety. pp. 69-93. Springer, Dordrecht.

El-Gazzar A, El-Demerdash MA. 1998. Grazing and other Ecological pressures in the southern sector of the gulf of Aqaba Area (S. Sinai, Egypt). Terminal Report, The Department of Protectorates of the Egyptian Environmental Affairs Agency (EEAA), Cairo, Egypt.

El-Saadawi W, Shabbara HM, Khalil MI, Taha MA. 2015. An annotated checklist of Egyptian mosses. Taeckholmia 35: 1-23.

El-Tahir K, Abdel-Kader M. 2008. Chemical and pharmacological study of *Cymbopogon proximus* volatile oil. Research Journal of Medicinal Plant 2(2): 53-60.

El-Wakil ES, El-Shazly MA, El-Ashkar AM, Aboushousha T, Ghareeb MA. 2022. Chemical profiling of *Verbena officinalis* and assessment of its anti-cryptosporidial activity in experimentally infected immunocompromised mice. Arabian Journal of Chemistry 15(7): 103945.

El-Khalafy MM, Al-Sodany MY Ahmed DA, Bedair H, Haroun SA, Shaltout SK. 2024. Evaluation of Conservation status of the Egyptian endemic plants along the Mediterranean coastal strip region. Journal of Coastal Conservation 28: 16.

Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. 2024. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 14(6): 722.

Elsharkawy ER, Ed-dra A, Abdallah EM, Ali AM. 2018. Antioxidant, antimicrobial and antifeedant activity of phenolic compounds accumulated in *Hyoscyamus muticus* L. African Journal of Biotechnology 17(10): 311-321.

Elsherif KM, Sulaiman MA, Mlitan A. 2023. Phytochemical analysis and antioxidant activity of *Urtica urens* leaves from Msallata, Libya. Mediterranean Journal of Chemistry 13(3): 299-312.

Eltahawy NA, Ali Al, Ibrahim SA, Nafie MS, Sindi AM, Alkharobi H, Almalki AJ, Badr JM, Elhady SS, Abdelhameed RF. 2023. Analysis of marrubiin in *Marrubium alysson* L. extract using advanced HPTLC: Chemical profiling, acetylcholinesterase inhibitory activity, and molecular docking. Metabolites 14 (1):27.

Essawy SS, Abo-Elmatty DM, Ghazy NM, Badr JM, Sterner O. 2014. Antioxidant and anti-inflammatory effects of *Marrubium alysson* extracts in high cholesterol-fed rabbits. Saudi Pharmaceutical Journal 22 (5):472-482.

Fadl Allah SA. 1998. The economic importance of the aromatic and medicinal plants in Egypt. In The 6th Egyptian Conference on The Potential of Medicinal and Aromatic plants in Upper Egypt. Cairo, pp. 143-158.

Farzaei MH, Abbasabadi Z, Ardekani MRS, Rahimi R, Farzaei F. 2013. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. Journal of Traditional Chinese Medicine 33(6):815-826

Feng Z, Morton JD, Maes E, Kumar L, Serventi L. 2024. Exploring faba beans (*Vicia faba* L.): bioactive compounds, cardiovascular health, and processing insights. Critical Reviews in Food Science and Nutrition 3: 1-14.

Gilani AH, Atta-ur-Rahman. 2005. Trends in ethnopharmacology. Journal of Ethnopharmacology 100: 43-49.

Gomaa SB, Saleh NM. 2014. Medicinal attributes of *Rumex vesicarius* (Polygonaceae) growing in Sakaka, AlJouf, Saudi Arabia. Medical Journal of Cairo University 82(1): 917-926.

Gottlieb OR, Kaplan MAC. 1993. Das plantas medicinais aos fármacos naturais. Ciência Hoje 89: 51-54.

Govaerts R. 2001. How many species of seed plant are there? Taxon 50: 1085–1090.

Grauso L, de Falco B, Motti R, Lanzotti V. 2021. Corn poppy, *Papaver rhoeas* L.: a critical review of its botany, phytochemistry and pharmacology. Phytochemistry Reviews 20: 227-248.

Haggag MY. 1997. Herbal Medicine in Egypt. Wild food and Non-food Plants. In Identification of wild food and non-food plants of the Mediterranean Region. Proc 1st International workshop MEDUSA Network. CIHEAM Publications 23: 45-55.

Hammer \emptyset , Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.

Hammouti Y, Elbouzidi A, Taibi M, Bellaouchi R, Loukili EH, Bouhrim M, Noman OM, Mothana RA, Ibrahim MN, Asehraou A. 2023. Screening of phytochemical, antimicrobial, and antioxidant properties of *Juncus acutus* from Northeastern Morocco. Life 13(11): 2135.

Hassine M, Zardi-Berguaoui A, Znati M, Flamini G, Ben Jannet H, Hamza M. 2014. Chemical composition, antibacterial and cytotoxic activities of the essential oil from the flowers of Tunisian *Convolvulus althaeoides* L. Natural Product Research 28(11): 769-775.

Heneidy SZ, Bidak LM. 2004. Potential uses of plant species of the coastal Mediterranean region, Egypt. Pakistan Journal of Biological Sciences 7(6): 1010-1023.

Hossain M, Al Touby S. 2020. Ammi majus an endemic medicinal plant: a review of the medicinal uses, pharmacological and phytochemicals. Annual toxicology 2: 9-14.

Hosseini A, Moein M, Sabahi Z, Moein S, Ghoran SH, Naderian M, Zebarjad Z. 2024. Antioxidant Potentials, Protease Inhibitory, and Cytotoxic Activities of Various Isolated Extracts from *Salvia aegyptiaca*. Iranian Biomedical Journal 29(1-2): 57.

Huang J, Huang J, Lu MK. 2016. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning. Scientific Reports 6(1): 33913.

Hussein EA, Abd El-Ghani MM, Hamdy R, Shalabi L. 2021. Do anthropogenic activities affect floristic diversity and vegetation structure more than natural soil properties in hyper-arid desert environments? Diversity 13: 157.

IUCN. 2025. The IUCN Red List of Threatened Species. Version 2025-1.

Jalalyazdi M, Ramezani J, Izadi-Moud A, Madani-Sani F, Shahlaei S, Ghiasi SS. 2019. Effect of *Hibiscus sabdariffa* on blood pressure in patients with stage 1 hypertension. Journal of Advanced Pharmaceutical Technology & Research 10(3): 107-111

Kala CP. 2005. Current status of medicinal plants used by traditional Vaidyas in Uttaranchal state of India. Ethnobotany Research & Applications 3: 267-278.

Kassahun T, Girma B, Joshi RK, Sisay B, Tesfaye K, Taye S, Tesema S, Abera T, Teka F. 2020. Ethnobotany, traditional use, phytochemistry and pharmacology of *Cymbopogon citratus*. International Journal of Herbal Medicine 8: 80-87.

Khalil N, Bishr M, Desouky S, Salama O. 2020. Ammi visnaga L., a potential medicinal plant: A review. Molecules 25(2): 301.

Khan AW, Khalid W, Safdar S, Usman M, Shakeel MA, Jamal N, Prakash R, Jha MB, Shehzadi S, Khalid MZ. 2021. Nutritional and therapeutic benefits of psyllium husk (*Plantago ovata*). Acta Scientific Microbiology 4(3): 43-50.

Khatib R, Al-Makky K. 2021. Anti-oxidant and anti-bacterial activities of *Sinapis alba* L. (leaves, flowers and fruits) grown in Syria. Bulletin of Pharmaceutical Sciences Assiut University 44(2): 339-346

Klein JA, Harte J, Zhao X-Q. 2008. Decline in medicinal and forage species with warming is mediated by plant traits on the tibetan plateau. Ecosystems 11: 775e789.

Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary-Larky D. 2014. A review on medicinal plant of *Apium graveolens*. Advanced Herbal Medicine 1(1): 48-59.

Kowarik I. 1995. Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmanek M, Wade M (eds.), Plant Invasions - General Aspects and Special Problems, pp. 15-38. SPB Academic Publ., Amsterdam.

Lahrizi L, Errachidi F, Nekhla H, El Ghadraoui L. 2024. Ajuga iva L.: An overview of phytochemical profile and biological functionalities. Chemical Review and Letters 7: 31-44.

Li Q-Y, Munawar M, Saeed M, Shen J-Q, Khan MS, Noreen S, Alagawany M, Naveed M, Madni A, Li C-X. 2022. *Citrullus colocynthis* (L.) Schrad (Bitter Apple Fruit): Promising traditional uses, pharmacological effects, aspects, and potential applications. Frontiers in Pharmacology 12: 791049.

Łukaszyk A, Kwiecień I, Szopa A. 2024. Traditional uses, bioactive compounds, and new findings on pharmacological, nutritional, cosmetic and biotechnology utility of *Capsella bursa-pastoris*. Nutrients 16 (24):4390.

Madboly WS, Saleh HA, El Khawas SA, Hassanin R, Marzouk M, Hussein SR. 2023. Chemical composition of *Pluchea dioscoridis* (L.) DC. essential oils from different natural habitats with their anticancer and antimicrobial potential. Egyptian Journal of Chemistry 66(4): 425-433.

Magurran AE. 2021. Measuring biological diversity. Current Biology 31(19): R1174-R1177.

Mahboubi M, Haghi G, Kazempour N, Hatemi AR. 2013. Total phenolic content, antioxidant and antimicrobial activities of *Blepharis edulis* extracts. Songklanakarin Journal of Science & Technology 35(1): 11-16.

Mahdavi P, Akhani H, Van der Maarel E. 2013. Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobotanica 48: 7-22.

Mahendran G, Verma SK, Rahman L-U. 2021. The traditional uses, phytochemistry and pharmacology of spearmint (*Mentha spicata* L.): A review. Journal of Ethnopharmacology 278: 114266.

Mahmoud A, Motawa H, Wahba H, Ebrahim A. 2005. Study of some antioxidant parameters in mice livers affected with Urtica pilulifera extracts. The Egyptian Journal of Hospital Medicine 21(1): 33-42.

Mahmoud T, Gairola S. 2013. Traditional knowledge and use of medicinal plants in the Eastern Desert of Egypt: a case study from Wadi El-Gemal National Park. Journal of Medicinal Plants 1(6): 10-17.

Manniche L. 1999. An Ancient Egyptian Herbal. Texas, University of Texas Press.

Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. 2017. RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (p. 28:1–28:5). New York, NY, USA: ACM.

McCune B, Mefford MJ. 1999. PC-ORD for windows. Multivariate Analysis of Ecological Data. Version 4.14. User's Guide. MjM Software, Oregon, USA.

Metsalu T, Jaak V. 2015. Clustvis-a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heat map. Nucleic Acids Research, 43(W1): W566–W570, 2015.

Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. 2021. Leaves and fruits preparations of *Pistacia lentiscus* L.: a review on the ethnopharmacological uses and implications in inflammation and infection. Antibiotics 10(4): 425.

Millennium Ecosystem Assessment. 2005. Ecosystems and Human WellObeing, Biodiversity Synthesis, Washington, DC (World Resources Institute).

Mohamed AE-HH, El-Sayed M, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS. 2010. Chemical constituents and biological activities of *Artemisia herba-alba*. Records of Natural Products 4(1): 1-25.

Moshawih S, Abdullah Juperi RaNA, Paneerselvam GS, Ming LC, Liew KB, Goh BH, Al-Worafi YM, Choo C-Y, Thuraisingam S, Goh HP. 2022. General health benefits and pharmacological activities of *Triticum aestivum* L. Molecules 27(6): 1948.

Mousavi SM, Hashemi SA, Behbudi G, Mazraedoost S, Omidifar N, Gholami A, Chiang W-H, Babapoor A, Pynadathu Rumjit N 2021. A review on health benefits of *Malva sylvestris* L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evidence-Based Complementary and Alternative Medicine 2021(1): 5548404.

Moustafa AA, Abd El-Wahab RH, Zaghloul MS. 1999. Conservation and sustainable use of medicinal plants in arid and semiarid ecosystems of Egypt (Saint Catherine, Sinai). Egyptian Environmental Affairs Agency, Cairo, 134 pp.

Muhakr MAYM, Ahmed IM, El hassan GOM, Sakina Yagi S. 2024. Ethnobotanical study on medicinal plants in Melit area (North Darfur), Western Sudan. Journal of Ethnobiology and Ethnomedicine 20: 3.

Muhammad G, Hussain MA, Anwar F, Ashraf M, Gilani AH. 2015. Alhagi: a plant genus rich in bioactives for pharmaceuticals. Phytotherapy Research 29(1): 1-13.

Nazarizadeh A, Mikaili P, Moloudizargari M, Aghajanshakeri S, Javaherypour S. 2013. Therapeutic uses and pharmacological properties of *Plantago major* L. and its active constituents. Journal of Basic and Applied Scientific Research 3(9): 212-221.

Odhav B, Kandasamy T, Khumalo N, Baijnath H. 2010. Screening of African traditional vegetables for their alpha-amylase inhibitory effect. Journal of Medicinal Plants Research 4(14): 1502-1507.

Okigbo RN, Eme UE, Ogbogu S. 2008. Biodiversity and conservation of medicinal and aromatic plants in Africa. Biotechnology and Molecular Biology Review 3: 127e134.

Oladeji OS, Oyebamiji AK. 2020. *Stellaria media* (L.) Vill.-A plant with immense therapeutic potentials: phytochemistry and pharmacology. Heliyon 6(6): e04150.

Orloci L. 1978. Multivariate Analysis in Vegetation Research. 451 pp.

Pandey S. 2024. An Exploration of *Cymbopogon nardus* or *Cymbopogon winterianus* and its Oil. International Journal of Novel Research and Development (IJNRD) 9(8): 860-874.

Pawłowska KA, Hałasa R, Dudek MK, Majdan M, Jankowska K, Granica S. 2020. Antibacterial and anti-inflammatory activity of bistort (*Bistorta officinalis*) aqueous extract and its major components. Justification of the usage of the medicinal plant material as a traditional topical agent. Journal of Ethnopharmacology 260: 113077.

Rahnavard R, Razavi N. 2017. A review on the medical effects of Capparis spinosa L. Future Natural Products 3(1): 44-53.

Rather MA, Dar BA, Sofi SN, Bhat BA, Qurishi MA. 2016. *Foeniculum vulgare*: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arabian Journal of Chemistry 9: S1574-S1583.

Raunkiaer C. 1937. The plant life forms and statistical plant geography. Clarendon Press, Oxford, UK.

Rostan NA, Manshoor N. 2024. Traditional uses and pharmacological properties of *Anastatica hierochuntica*. Research Journal of Pharmacognosy 11(4): 67-78.

Rozan MAA-G, Boriy EG. 2022. Chemical composition, phytochemical Profile, antioxidant activity of *Eruca sativa* seeds, and utilization of defatted seeds in the production of functional biscuits. Egyptian Journal of Food Science 50(1): 99-115.

Saboo SS, Chavan RW, Tapadiya GG, Khadabadi S. 2014. An Important Ethnomedicinal Plant *Balanites aegyptiaca* Del. American Journal of Ethnomedicine 1(3): 122-128.

Sahebkar A, Iranshahi M. 2010. Biological activities of essential oils from the genus *Ferula* (Apiaceae). Asian Biomedicine 4(6): 835-847.

Said-Al Ahl HA, Hikal WM, Mahmoud AA. 2017. Biological activity of Moringa peregrina: a review. American Journal of Food Science and Health 3 (4):83-87.

Salamatullah AM. 2022. *Convolvulus arvensis*: antioxidant, antibacterial, and antifungal properties of chemically profiled essential oils: an approach against nosocomial infections. Life 12(12): 2138.

Saleem TM, Chetty C, Ramkanth S, Alagusundaram M, Gnanaprakash K, Rajan VT, Angalaparameswari S. 2009. Solanum nigrum Linn. -A review. Pharmacognosy Reviews 3 (6): 342.

Schippmann U, Leaman DJ, Cunningham AB. 2002. Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. In: Proceedings of the Biodiversity and the Ecosystem Approach in Agriculture, Forestry and Fisheries. 9th Regular Session of the Commission on Genetic Resources for Food and Agriculture. FAO, Rome, Italy, pp.143–167.

Serrano C, Oliveira MC, Lopes VR, Soares A, Molina AK, Paschoalinotto BH, Pires TC, Serra O, Barata AM. 2024. Chemical Profile and Biological activities of *Brassica rapa* and *Brassica na*pus Ex Situ Collection from Portugal. Foods 13(8): 1164.

Shah MB, Dudhat VA, Gadhvi KV. 2021. *Lepidium sativum*: A potential functional food. Journal of Ayurvedic and Herbal Medicine 7(2): 140-149.

Sharifi-Rad M, Pohl P, Epifano F, Zengin G, Jaradat N, Messaoudi M. 2022. *Teucrium polium* (L.): phytochemical screening and biological activities at different phenological stages. Molecules 27 (5):1561.

Sharma V, Sehgal R, Gupta R. 2024. Withania somnifera: A potential rejuvenator of medicinal system for healthcare. Journal of Drug Delivery & Therapeutics 14(4): 145-154.

Shi R, Zhang C, Gong X, Yang M, Ji M, Jiang L, Leonti M, Yao R, Li M. 2020. The genus *Orobanche* as food and medicine: An ethnopharmacological review. Journal of Ethnopharmacology 263: 113154.

Shrestha PM, Dhillion SS. 2003. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal Journal of Ethnopharmacology 86: 81-96.

Siddiquee M, Pandey P, Raza W. 2023. A Comprehensive Review on *Linum usitatissimum* Medicinal Plant: Its Phytochemistry, Pharmacology and Ethnomedicinal Uses. Journal of Advancement in Pharmacognosy 4(1): 29-36.

Singh J. 2021. Salvia aegyptiaca: A detailed Morphological and Phytochemical study. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) 10(8): 11512- 11516.

Sivapalan SR. 2013. Medicinal uses and pharmacological activities of Cyperus rotundus Linn-A Review. International Journal of Scientific and Research Publications 3 (5):1-8.

Ștefănescu R, Tero-Vescan A, Negroiu A, Aurică E, Vari C-E. 2020. A comprehensive review of the phytochemical, pharmacological, and toxicological properties of *Tribulus terrestris* L. Biomolecules 10(5): 752.

Street RA, Sidana J, Prinsloo G. 2013. Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evidence-based Complementary and Alternative Medicine 2013(1): 579319.

Tawfeek N, Mahmoud MF, Hamdan DI, Sobeh M, Farrag N, Wink M, El-Shazly AM. 2021. Phytochemistry, pharmacology and medicinal uses of plants of the genus *Salix*: An updated review. Frontiers in Pharmacology 12: 593856.

Vasarri M, De Biasi AM, Barletta E, Pretti C, Degl'Innocenti D. 2021. An overview of new insights into the benefits of the seagrass *Posidonia oceanica* for human health. Marine Drugs 19(9): 476.

Verma A, Goyal Y, Dev K. 2019. Medicinal value and mechanism of light adaptation in *Lepidium latifolium* in Ladakh region. Environment Conservation Journal 20(3): 49-55.

Yosri M, Elaasser MM, Abdel-Aziz MM, Hassan MM, Alqhtani AH, Al-Gabri N, Ali AB, Pokoo-Aikins A, Amin BH. 2022. Determination of therapeutic and safety effects of *Zygophyllum coccineum* extract in induced inflammation in rats. BioMed Research International 2022(1): 7513155.

Zadeh JB, Kor NM, Kor ZM. 2014. Chamomile (*Matricaria recutita*) as a valuable medicinal plant. International journal of Advanced Biological and Biomedical Research 2(3): 823-829.

Zahran MA, Willis AJ. 1992. The Vegetation of Egypt. Chapman & Hall. London.

Zhang HX, Zhang ML. 2017. Spatial patterns of species diversity and phylogenetic structure of plant communities in the Tianshan Mountains, arid Central Asia. Frontiers in Plant Science 8: 2134.

Zhang S, Li P, Wei Z, Cheng Y, Liu J, Yang Y, Wang Y, Mu Z 2022. Cyperus (*Cyperus esculentus* L.): a review of its compositions, medical efficacy, antibacterial activity and allelopathic potentials. Plants 11(9): 1127.

Zhang X. 1998. Regulatory Situation of Herbal Medicines. A Worldwide Review. WHO, Geneva, Switzerland. 49 pp.

Zhang Y, Liu J, Guan L, Fan D, Xia F, Wang A, Bao Y, Xu Y. 2023. By-Products of *Zea mays* L.: A Promising Source of Medicinal Properties with Phytochemistry and Pharmacological Activities: A Comprehensive Review. Chemistry & Biodiversity 20(3): e202200940.

Zhou Y-X, Xin H-L, Rahman K, Wang S-J, Peng C, Zhang H. 2015. *Portulaca oleracea* L.: a review of phytochemistry and pharmacological effects. BioMed Research International 2015(1): 925631. doi: 10.1155/2015/925631