

The Role of exotic medicinal plants in the treatment of modern diseases: A study at public markets on a global scale

Maria Lorena da Silva, Patricia Muniz de Medeiros, Washington Soares Ferreira Júnior, Jhonathan Gomes dos Santos, Ulysses Paulino de Albuquerque, Bruna Ferreira de Barros, Larissa Monteiro Rafael, Taline Cristina da Silva

Correspondence

Maria Lorena da Silva^{1,2*}, Patricia Muniz de Medeiros³, Washington Soares Ferreira Júnior⁴, Jhonathan Gomes dos Santos⁵, Ulysses Paulino de Albuquerque⁶, Bruna Ferreira de Barros^{1,2}, Larissa Monteiro Rafael⁷, Taline Cristina da Silva²

¹Programa de Pós-graduação em Etnobiologia e Conservação da Natureza, Universidade Federal Rural de Pernambuco – UFRPE, Recife, Pernambuco, Brazil.

²Laboratório de Etnobiologia e Conservação de Ecossistemas (LAEC), Universidade Estadual de Alagoas, Campus III, Palmeira dos Índios, Alagoas, Brazil.

³Laboratório de Ecologia, Conservação e Evolução Biocultural (LECEB), Universidade Federal de Alagoas – UFAL, Rio Largo, Alagoas, Brazil.

⁴Universidade de Pernambuco – UPE, Campus Mata Norte, Nazaré da Mata, Pernambuco, Brazil.

⁵Universidade Federal de Alagoas - UFAL, Departamento de Ciências Agrárias, Rio Largo, Alagoas, Brazil.

⁶Labaratório de Ecologia e Evolução de Sistemas Socioecológicos, Universidade Federal de Pernambuco – UFPE, Recife, Pernambuco, Brazil.

⁷Universidade Federal de Pernambuco – UFPE, Departamento de Ciências Geograficas, Recife, Pernambuco, Brazil.

*Corresponding author: lorenasilvalore@gmail.com

Ethnobotany Research and Applications 32:23 (2025) - http://dx.doi.org/10.32859/era.32.23.1-23 Manuscript received: 24/04/2025 - Revised manuscript received: 15/10/2025 - Published: 16/10/2025

Research

Abstract

Background: It is important to understand treatment strategies for modern illnesses that arise from social and environmental transformation associated with the process of modernization, including those that are new or becoming more common, in order to understand how local medical systems are evolving and facing the challenges associated with diagnosing and treating these diseases. Moreover, changes brought about by modernization, such as urbanization, may influence both the knowledge and the availability of resources for treating these diseases, including the use of exotic plants, which are becoming increasingly accessible in the context of globalization, particularly through local public markets, thereby enhancing access to such resources. The present study aimed to investigate the representation of exotic species in the treatment of modern diseases and whether the rate of urbanization explains the proportion of exotic and native species used in treatments for these diseases provided in local public markets of medicinal plants on a global scale.

Methods: A systematic review was conducted, following the PRISMA protocol, of studies on local public markets, to assess whether traded exotic species are preferentially used in the treatment of modern diseases compared to other ailments. We also examined whether the local rate of urbanization influenced the composition of traded exotic species compared to native species for the treatment of modern diseases. We used odds ratios, random-effects models, and simple linear regressions to analyze the data.

Results: Our findings suggest that traded exotic species are equally likely to be used to treat both modern and other diseases. Furthermore, the rate of urbanization does not influence the composition of traded exotic species for the treatment of these diseases when compared to native species.

Conclusions: Local public markets present complex dynamics that make them more homogeneous, which may explain the same proportion of exotic and native species used to treat modern diseases, as well as the same proportion of exotic species treating modern diseases and other diseases.

Keywords: medicinal plants; modern diseases; local public markets; medical systems; globalization; urbanization.

Background

The process of modernization began in 17th-century Western Europe, intensified during the Industrial Revolution, and subsequently expanded on a global scale (Corbett *et al.* 2018). This phenomenon has transformed the environment by driving urbanization, deforestation, pollution, and climate change (Martine & Alves 2015, Mashi & Shuaibu 2018). It has also altered cultural habits within society. For instance, it has fostered sedentary lifestyles characterized by increased consumption of processed foods and greater ease of daily mobility (Gurven & Lieberman 2020), while simultaneously generating pressure to achieve a healthy and idealized body. This issue has become a major global mental health concern (Rodgers *et al.* 2023).

Excessive connectivity, productivity demands, the pervasive influence of social media, and heightened competitiveness have likewise contributed to the rising incidence of mental disorders (Koutsimani et al. 2019, Lopes et al. 2022). These transformations have been linked to the emergence and progression of various conditions, classified in the literature as modern diseases owing to their direct association with modernization (Gurven & Lieberman 2020, Fernandes et al. 2020, Souza 2020).

Mismatch diseases have spread globally alongside modernization. This phenomenon occurs when rapid environmental changes driven by human activity outpace the body's biological adaptive capacity, creating a misalignment between organism and environment (Corbett et al. 2018, Gurven & Lieberman 2020, Manus 2018). Research indicates that the human body reflects evolutionary adaptations suited to the lifestyle of our hunter-gatherer ancestors, which was characterized by natural diets, high levels of physical activity, and intermittent exposure to environmental stressors. The transition to urbanized societies, marked by high-calorie diets, sedentary behaviors, and reduced contact with nature, has exacerbated this biological mismatch (Corbett et al. 2018, Gurven & Lieberman 2020, Griffiths & Bourrat 2023). Consequently, conditions such as diabetes, cancer, and cardiovascular illnesses, which account for more than half of global mortality and morbidity, have become increasingly prevalent (Corbett et al. 2018, Gurven & Lieberman 2020).

In addition to mismatch diseases, modernization has facilitated the emergence of illnesses that vary across time and space, being present in a given environment at one moment and absent at another (Silva *et al.* 2022). Such illnesses arise or resurface due to environmental and cultural transformations resulting from human activity. They are often linked to environmental degradation, climate change, and altered interactions between humans, animals, and pathogens. Examples include emerging diseases such as SARS-CoV-2 (the virus responsible for "Covid-19"), and reemerging diseases such as monkeypox (Andersen *et al.* 2020, Fernandes *et al.* 2020, Patterson 2016, Zhou *et al.* 2020).

It is important to emphasize, however, that framing these conditions solely through biological or behavioral lenses, whether related to cultural changes or environmental transformations, risks a reductionist understanding of health. Such an approach tends to depoliticize the role of structural and social determinants in health and disease. Poverty, racism, forced displacement, economic inequalities, and unequal access to healthcare services are among the many factors that profoundly shape the distribution and impact of disease (Bailey *et al.* 2017, Stanaway *et al.* 2019, Singer *et al.* 2017). For instance, in the case of climate-related and zoonotic diseases, communities in the Global South are disproportionately affected despite contributing the least to environmental degradation (Romanello *et al.* 2021, WHO 2022).

These modern diseases pose serious risks to populations, including threats to life, increased morbidity, and significant sequelae (Fernandes *et al.* 2021, Gurven & Lieberman 2020, Souza 2020). They typically involve a complex array of symptoms, including common ailments such as coughs, diarrhea, influenza, and inflammation, which complicates diagnosis (Feijó *et al.* 2012, Fernandes *et al.* 2021, Gomes *et al.* 2019).

Moreover, modernization does not advance at the same pace in all regions (Corbett et al. 2020). Consequently, the

occurrence and impact of modern diseases may vary across localities. The frequency and distribution of diseases differ according to the cultural, environmental, and socioeconomic context of each setting, whether at the regional, national, or global level (Adachi *et al.* 2022, Carmo *et al.* 2003, Corbett *et al.* 2018, Gaddy 2020). Thus, certain diseases may be unknown in some areas but not in others, or more prevalent in some regions and less common in others.

As modern diseases progress, globalization facilitates the exchange of information and resources for their treatment through local public markets, the internet, and migration (Abreu 2015, Leonti 2013, Leonti *et al.* 2015, Fonseca & Balick 2018). Historically, the dissemination of resources via human migration occurred at a slower pace, dating back to the colonial era. Over time, this process led to the worldwide distribution of certain resources owing to their commercial, nutritional, and therapeutic value (McBride *et al.* 2020, Voeks 2013). However, globalization has markedly accelerated this exchange, influencing both the composition and knowledge of resources in local pharmacopoeias (Fonseca & Balick 2018, Vandebroek & Balick 2012, Leonti *et al.* 2015).

This dynamic can add complexity to medical systems, particularly those that employ medicinal plants to treat disease, since they require knowledge of symptoms, diagnosis, and appropriate treatment, which may be unfamiliar to local populations (Gomes *et al.* 2019, Feijó *et al.* 2015, Silva *et al.* 2021). We argue that exotic species are often prioritized in the treatment of modern diseases because they are more readily accessible in the context of globalization. When introduced into a system, such species bring culturally validated information constructed by other cultures through processes including the observation of symptoms, plant experimentation via associations, and trial and error until treatment efficacy is confirmed (Feijó *et al.* 2012, Kleinman 1978, Medeiros *et al.* 2017). It is important to stress that medical systems are dynamic and capable of creating, modifying, and adapting knowledge to address such diseases (Ferreira Júnior *et al.* 2018). However, from an evolutionary perspective, it is more advantageous to seek information on culturally validated plants for these diseases than to generate new knowledge (Rendell *et al.* 2010).

Urbanization may also influence the use of exotic plants in the treatment of modern diseases. It is a complex economic, social, and environmental process that unfolds over short periods, bringing profound transformations to lifestyles, social organization, and natural landscapes (Arjona-García *et al.* 2021). Urbanization alters land use through deforestation and the conversion of natural areas into human settlements. Furthermore, it can directly affect knowledge of and access to natural resources by distancing people from the natural environment and weakening cognitive and experiential connections with nature (Arjona-García *et al.* 2021, Mashi & Shuaibu 2018, Pochettino *et al.* 2012).

Research suggests that populations living in proximity to areas with greater plant resource availability, such as rural environments, and who engage in nature-related activities, tend to possess more extensive knowledge of local resources. This may encourage the use of native species, as such areas, unlike urban centers, are more likely to preserve a greater diversity of native plants that remain accessible to communities (Arjona-García *et al.* 2021, Bortolotto *et al.* 2015, Reyes-García *et al.* 2005, Silva *et al.* 2018). Conversely, urbanization may restrict access to areas rich in native resources, as urban populations tend to become more distant from such environments, thereby affecting both their knowledge of and access to these resources (Arjona-García *et al.* 2021).

Although urban areas may contain green spaces, such as forest restoration projects aimed at improving air quality and regulating temperature, or urban horticulture initiatives, these areas often feature a predominance of exotic species. This is largely due to the greater adaptability of these species to disturbed environments (Andrade & Massi 2024, Dylewski *et al.* 2023, Tartaglia & Aronson 2024). Urbanization facilitates access to exotic resources through multiple channels, such as local public markets, which can broaden knowledge of these resources. In addition to reflecting the native flora, these markets showcase species from other regions (Arjona-García *et al.* 2021, Pochettino *et al.* 2012, Silva *et al.* 2019).

Local public markets constitute key environments for understanding the dynamics of plant use in the treatment of modern diseases. They reflect a region's cultural and biological diversity, serving as valuable sources of information on the prevalence and use of particular plant species in local medical systems (Cavalcanti & Albuquerque 2013, Leonti 2013, Monteiro *et al.* 2010). The exchange of knowledge in these spaces can facilitate the adoption of medicinal plants in local medical systems, including exotic species, which may be introduced to diversify treatment options or to address therapeutic gaps (Abreu 2015, Leonti 2013, Vandebroek & Balick 2012). In this way, information about plants used to treat modern diseases can be readily disseminated through these markets.

The present study, based on a systematic review, investigated the representation of exotic species in the treatment of

modern diseases, as well as the patterns that may explain the incidence of exotic and native species in medicinal plant treatments within local public markets on a global scale. To this end, we tested the following hypotheses: (H1) The commercialization of exotic species is favored in the treatment of modern diseases, with the expectation that (P1) a higher proportion of exotic species are commercialized for such purposes than for other conditions. We further hypothesized that (H2) the rate of urbanization positively affects the commercialization of exotic species in comparison with native species used to treat modern diseases. Accordingly, we expect that (P2) the higher the rate of urbanization, the greater the proportion of exotic species sold for the treatment of modern diseases compared with native species.

Materials and Methods

The research was conducted through a systematic review, following the PRISMA recommendation (Moher *et al.* 2015) (see Figure 1). The review aimed to identify and select ethnobiological articles on the commercialization of medicinal plants in local markets, including open-air and closed establishments, on a global scale. The following keyword combinations were used: "Medicinal plants + market", "Ethnobotany + market", "Ethnopharmacology + market", and "Medicinal plants + traditional market". These searches were conducted in July 2023 using Google Scholar, Scopus, and Web of Science, all recognized for their extensive journal coverage. The subsequent stages of the systematic review were carried out between August 2023 and March 2024, as detailed below.

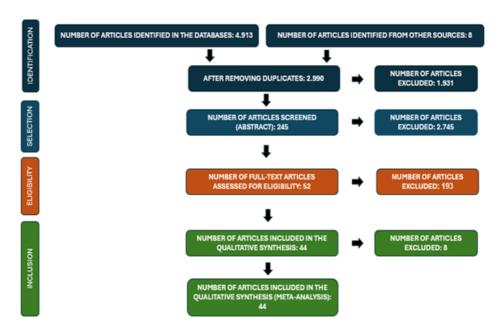


Figure 1. PRISMA Protocol Flowchart, showing each stage of the systematic review, in which we included eligible studies for the construction of the database for the present study.

Studies were selected for inclusion in the database based on the following criteria: they were written in English, as the universal language of science; they were peer-reviewed; they presented original research data (categorized as "research articles"); and they listed species and their therapeutic targets (diseases). The studies were then imported into a Microsoft Excel spreadsheet and refined according to exclusion criteria. These criteria encompassed studies with a different thematic focus, studies addressing only single species or disease, articles presenting only lists of the most commercialized species, systematic reviews, and studies that did not collect botanical material (voucher samples) for species identification in herbaria.

Each study included in the database was also assessed for risk of bias related to sample quality and methodology. Studies were classified as having a low, moderate, or high risk of bias according to an adaptation of Medeiros *et al.* (2014). Only studies assessed as having a low or moderate risk of bias were considered eligible for inclusion. Following this process, 44 articles covering the period from 2000 to 2023 were included in the database (see Table 1).

The extracted information included: authors, scientific names of medicinal species, species families, therapeutic indications, market names, and complete addresses, including the cities and countries in which the studies were conducted.

Table 1. Author(s), name, city, and countries where the analyzed local public markets are located.

Abmod at al. (2017)	COUNTRY	MARKETS Commonwell Market Duriels Market of Douglaindi Duriels
Ahmad <i>et al.</i> (2017)	Pakistan	Commercial Market - Punjab; Market of Rawalpindi - Punjab;
All	D!1	Cantt Market Murree - Punjab; Kotli Sattian – Punjab.
Albuquerque <i>et al</i> . (2007)	Brazil	São José Market in Recife.
Amiri & Joharchi (2013)	Iran	Markets of Mashhad City.
Asra et al. (2023)	Indonesia	Angso Duo Market and Talang Banjar Market in Jambi city.
Betti (2002)	Camaroon	Markets of Yaoundé.
Bitu <i>et al.</i> (2015)	Brazil	Mercados do Crato – Região do Cariri.
Bussmann (2016)	Bolivia	Rodriguez Market - La Paz; Calle Market - Santa Cruz; El Alto Market – La Paz.
Bussmann et al. (2018)	Colombia	Bogotá Makets: Armenia Market, Boyacá Market, Central de
		Corabastos Market, El Carmen Market, Fontibón Market,
		Girardot Market, Kennedy Market, La Concordia Market, La
		Perseverancia Market, Las Cruces Market, Las Ferias Market,
		Lucero Market, Municipality of Pacho Market
		(Cundinamarca), Paloquemao Market, Plaza del 12 de
		Octubre Market, Plaza del 7 de Agosto Market, Plaza del
		Quirigua Market, Restrepo Market, Samper Mendoza
		Market, San Benito Market, San Carlos Market, Santander
		Market, Trinidad-Galán Market and Plaza del 20 of Julio
		Market.
Delbanco <i>et al</i> . (2017)	Kenya	Markets in Marsabit town and Moyale town.
Ferreira et al. (2021)	Brazil	Public markets in seven municipalities of the state of Paraíba
		João Pessoa, Sapé, Guarabira, Solânea, Monteiro, Patos, and
		Itaporanga.
Hanlidou et al. (2004)	Greece	Herbal market of Thessalonik - Solania.
Hilonga <i>et al</i> . (2018)	Tanzania	Markets in the cities: Arusha, Morogoro, Mbeya, Mwanza,
		and Dodoma.
Idu <i>et al</i> . (2010)	Nigeria	Mida, Itoku, Adatan, Kuto, and Lafenwa markets in
		Abeokuta, Ogun State, Nigeria.
Idu <i>et al.</i> (2014)	Nigeria	Markets of Abeokuta City – Ogum.
Iskandar et al. (2020)	Indonesia	Market of Karangwangi Village - Southern Cianjur, West Java
Jin <i>et al</i> . (2018)	China	Traditional medicinal markets at the Dragon Boat Festival in
		Jianghua, Hunan Province.
Jusu & Sanchez (2013)	Sierra Leone	Markets in the cities of Freetown, Bo, Kenema, Golahun, and
		Gegbwema.
Karousou & Deirmentzoglou (2010)	Cyprus	Markets in the citys of Nicosia, Limassol and Paphos.
La cruz <i>et al</i> . (2014)	Peru	Mayorista Market in Challwa – Huaraz; Central Market of
		Carhuaz – Carhuaz; Model Market of Yungay – Yungay.
Lee <i>et al.</i> (2008)	China	Markets in Honghe Prefecture - Yunnan province.
Lev & Amar (2000)	Israel	Markets in Israel.
Li <i>et al.</i> (2017)	China	Markets of Chaoshan – Guangdong.
Liu <i>et al</i> . (2021)	China	Kaili market – Guizhou.
Mati & Boer (2011)	Iraq	Qaysari Market – Erbil.
Monteiro et al. (2011)	Brazil	Free Fairs in Caruaru city.
Mwaura <i>et al</i> . (2020)	Kenya	Markets in Kajiado, Narok and Nairobi counties.
	Armenia	Market of Yerevan city.
Nanagulyan et al. (2020)		
	Vietnam	Markets in districts of Son La province.
Nguyen <i>et al</i> . (2019)	Vietnam Brazil	Markets in districts of Son La province. Open market in the city of Oeiras, semiarid region of Piauí.
Nanagulyan et al. (2020) Nguyen et al. (2019) Oliveira et al. (2021) Ouédraogo et al. (2020)	Vietnam Brazil Burkina Faso	Markets in districts of Son La province. Open market in the city of Oeiras, semiarid region of Piauí. Markets in the cities: Ouagadougou, Ouahigouya, Fada

Petrakou et al. (2019)	Greece	Markets of Peloponeso.
Randriamiharisoa et al.	Madagascar	Markets of Antananarivo.
(2015)		
Rasethe et al. (2019)	South Africa	Informal Herbal Medicine Markets of the Limpopo Province.
Rios et al. (2017)	Ecuador	Markets of Loja Province.
Shah et al. (2020) Pakistan N		Matta Bazzar, Swat district - Khyber Pakhtunkhwa; Topi
		Bazzar district - Khyber Pakhtunkhwa; Qissa Khawni Bazzar,
		Peshawar district - Khyber Pakhtunkhwa; Punjabi Bazar,
		kurram district - Khyber Pakhtunkhwa; Main Bazzar, Mardan
		district - Khyber Pakhtunkhwa; Main Bazar, Dir Upper district
		- Khyber Pakhtunkhwa; Chwok Bazzar, Bannu district -
		Khyber Pakhtunkhwa.
Shah et al. (2021)	Pakistan	Market of Bunnu district - Khyber Pakhtunkhwa.
Silalahi <i>et al</i> . (2015)	Indonesia	Tradicional Kabanjahe Market – Sumatra.
Sulaini & Sabran (2018)	Malaysia	Local Markets in Batu Pahat, Johor.
Suma <i>et al</i> . (2017)	India	Thilagar Thidal Market - Tamil Nadu.
Uzun & Bozdag (2022)	Turkey	Grand Bazaar Market.
Uzun & Koca (2020)	Turkey	Markets of Kahramanmaraş Grand Bazaar - Kahramanmaras.
Zahoor et al. (2021)	Pakistan	Markets in Punjab province.
Zangh et al. (2020)	Myanmar	Markets of the Mandalay Region, Magway Region, Yangon
		Region and Nay Pyi Taw Union Territory.
Zangh <i>et al.</i> (2022)	China	Markets in the Lijiang area.

Biogeographic origin of species

To standardize the scientific names of the species, a review was performed on World Flora Online (WFO 2022). Regarding the biogeographic origin of the species, the national level was considered; that is, whether they are exotic or native to the countries in which they are sold. The origin of a species may be defined at different scales - region, ecosystem, country, or continent (Medeiros *et al.* 2017). Accordingly, we reviewed the species on websites with extensive biodiversity databases, including the International Union for Conservation of Nature (IUCN) (https://www.iucnredlist.org/) (IUCN 2022), the Missouri Botanical Garden (https://www.missouribotanicalgarden.org/) (Missouri Botanical Garden 2021), the Royal Botanic Gardens, Kew (POWO) (http://www.plantsoftheworldonline.org/) (POWO 2022), and Reflora (https://reflora.jbrj.gov.br/) (Flora e Fungos do Brasil 2022). Four species were not recognized in any of the databases and were therefore excluded from this study.

Classification of modern diseases

A bibliographic search was conducted using the keywords "modern diseases" or "diseases of modernity" in the same search engines used to identify studies on local public markets: Google Scholar, Scopus, and Web of Science. Modern diseases were classified according to literature supporting this category. These diseases are associated with modern advancements and include newly emergent diseases (such as SARS-CoV-2 and Zika) as well as diseases that have progressed and become more prevalent (such as depression, anxiety, and cancer) (Corbett *et al.* 2020, Griffiths & Bourrat 2023, D'avila 2020, Gurven & Lieberman 2020, Silva *et al.* 2019).

The analysis included studies from 2000 to 2023, aligning with the timeframe of research on local public markets included in the review. This period marks the beginning of the new century and a phase of significant global expansion characterized by accelerating urbanization and intensifying social and environmental changes. Consequently, the incidence of diseases associated with these changes has increased, including pandemics (Baker *et al.* 2022, Martine & Shuaibu 2018, Yocoub *et al.* 2011).

A total of 41 studies were identified that addressed the topic, specifying modern diseases, their emergence, and their impact on society. These studies were used to classify modern and non-modern diseases in the local public markets examined (Table 1). Diseases were categorized according to body systems using the ICD-11, a classification system developed by the World Health Organization (WHO 2023). It serves as a global standard for the identification and classification of diseases, health conditions, and other causes of death. Due to the lack of scientific evidence and the absence of an official classification, our analyses did not consider cultural diseases related to beliefs, such as the evil eye (Rios *et al.* 2017).

Georeferencing of markets and urbanization rate

The location of the local public markets was extracted from the pair of coordinates (LAT/LONG) on Google Earth and imported into ArcGIS Pro (Personal User license) (ESRI 2022) using the Geographic Coordinate System WGS 84. Based on the georeferenced location of the markets, the corresponding table was updated with the following attributes: market name, country, administrative region (city/province), quantity of exotic and native species sold for the treatment of modern diseases, number of exotic and native species sold for the treatment of other diseases, total population, and urban population of the district or province in which the market was located.

To calculate the urbanization rate of the district or province, the standard formula was applied: Urban Population / Total Population \times 100 (UN 2018), using the Raster Calculator tool in ArcGIS Pro. Data on total and urban populations were collected from the official websites of the demographic agency of the respective countries, corresponding to the locality nearest to the market coordinates, which could be at the city or provincial level, depending on data availability.

Not all studies on commercialization of medicinal plants were included at this stage because some authors studied more than one market in different locations but provided a general species table without specifying which species corresponded to which market, making it impossible to identify the exact location of commercialization. In other cases, the information provided in the text was insufficient to determine precise market locations. In such instances, we contacted the authors by email to obtain further details. Ultimately, 20 articles were included, enabling the analysis of 74 local public markets at this stage.

Data analysis

To assess whether the proportion of commercialized exotic species is greater for the treatment of modern diseases than other conditions, we first analyzed the proportion of native and exotic species used to treat modern and other diseases. For each study, we calculated the effect size based on the Odds Ratio (OR), a case-control measure that estimates the likelihood of exotic and native species being used to treat modern and non-modern diseases. Modern diseases were the case, and non-modern diseases were the control. We then applied a random effects model to analyze whether heterogeneity existed among the study results. In this analysis, we considered that certain species tend to be repeated in medical systems. This occurs frequently with exotic species, as some of these species are widely traded globally. By contrast, the composition of native species in medical systems tends to be more heterogeneous, which could mask the data. Thus, measuring the effect of exotic and native species on modern diseases provided a clearer analytical framework.

To test the hypotheses of the second research question, we established the urbanization rate as the predictor variable and considered the proportion of exotic species sold for the treatment of modern diseases relative to native species as the response variable. For comparison, we also analyzed the predictor variables for the proportion of exotic species sold for the treatment of other diseases. In the R programming environment, we conducted a simple linear regression analysis to assess the relationship between the predictor variable and the outcome.

Results

Modern diseases identified in the literature and observed in markets

According to the reviewed literature on modern diseases, mismatch diseases such as cancer, depression, diabetes, and hypertension have been extensively studied. These diseases are frequently identified as some of the leading causes of rising mortality and morbidity in contemporary society (see Figure 2). Furthermore, these conditions are associated with long-term sequelae that significantly impair quality of life. Many of the diseases classified as modern have treatments available through local public healthcare systems (see the supplementary material for further details).

About diseases whose occurrence varies over time and space, temporal analysis reveals the presence of various illnesses, including those that have led to pandemics, such as dengue, SARS, MERS, Zika, and H1N1. For further details, please refer to the supplementary material.

Exotic species used in the treatment of modern diseases

When analyzing our first hypothesis, we discovered that the proportions of exotic and native species commercialized for treating modern diseases do not differ significantly from those used for other diseases in the examined studies (Q = 52.7652, p = 0.1461). This finding suggests that the proportion of exotic species is similar for both types of diseases (Q = 0.9877; 95% Q = 0.9877; 0.461). However, this result does not support our initial hypothesis (Figure 2).

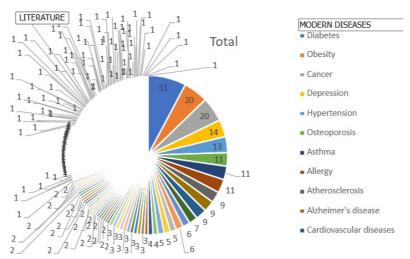


Figure 2. Distribution of literature studies on modern diseases. The image highlights the frequency with which modern diseases are addressed in scientific publications.

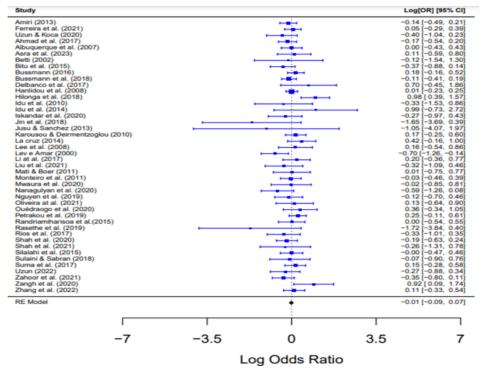


Figure 3. Forest plot showing the odds ratios (OR) and 95% confidence intervals (95% CI) for the proportion of exotic versus native species marketed for the treatment of modern diseases and other diseases. Each line represents an individual study, with the central point indicating the OR for that study, and the horizontal bars representing the 95% CI. The dotted vertical line indicates the combined OR for all studies (OR = 0.9877; 95% CI = 0.9127 to 1.0685), suggesting no significant difference in proportions between the analyzed groups (p = 0.7567).

Influence of the urbanization rate on the commercialization of exotic species for the treatment of modern diseases

Regarding Hypothesis 2, we did not observe a significant relationship between urbanization rates and the proportion of native species relative to exotic species (p = 0.91; Figure 3). A lack of relationship was also observed between the urbanization rate and the proportion of exotic to native species for the treatment of other diseases (p = 0.40). Thus, the urbanization rate does not explain the commercialization of exotic species compared to native species for treating modern diseases or other diseases.

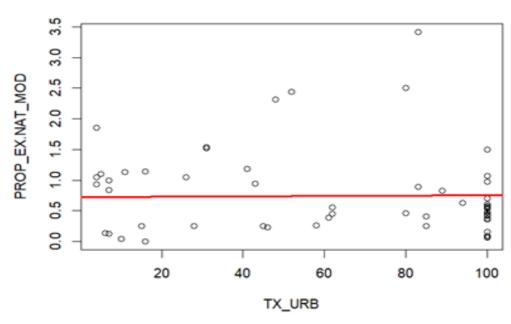


Figure 4. shows the result of the simple linear regression analysis to determine whether the urbanization rate explains the number of exotic species commercialized in the studied markets for treating modern diseases ($R^2 = 0.06524$, p = 0.9125).

Discussion

Our findings refute the hypothesis (H1) that exotic species are favored for the treatment of modern diseases. This suggests that modern and non-modern diseases are equally likely to be treated with exotic species. To better understand these results, it is important to recognize that markets function as a "showcase" of local resources and knowledge. They are also dynamic, incorporating species from other cultures through regional and global exchanges, which may render them more homogeneous (Monteiro *et al.* 2010). Although information integration has accelerated in recent times, facilitating the exchange of resources between populations, many medicinal species now widely commercialized were introduced during the colonial period. Over time, these species became extensively used for disease treatment and acquired cultural significance at the local level (Fonseca & Balick 2018, McBride *et al.* 2020, Voeks 2013). This historical process may also have contributed to the homogenization of medicinal plant species traded in markets.

From a local perspective, modern diseases may be unfamiliar to certain medical systems. However, their symptoms can resemble those of non-modern diseases. Consequently, traders and patients use commercialized plants to treat these conditions based on symptom similarities. This generates overlap in the plants employed to treat modern and other diseases (Feijó et al. 2012, Ferreira Júnior et al. 2016, Silva et al. 2021). Such patterns have been reported in various studies of traditional and local communities (Cock & Van Vuuren 2020, Cock et al. 2018, Ferreira Júnior et al. 2016), including those involving more recent modern diseases such as Covid-19 (Cavalcanti et al. 2020, Pavão et al. 2020, Silva et al. 2021).

It is therefore often more advantageous to replicate pre-existing, culturally validated information about plants and their therapeutic targets (Rendell *et al.* 2010), especially as many modern diseases have gradually been incorporated into medical systems, rather than generating entirely new information for their treatment. As experts on medicinal plants, local vendors may engage in experimental practices with commercially available species. They can build therapeutic knowledge based on the characteristics of particular diseases and subsequently disseminate this information within the local community (Ferreira Júnior *et al.* 2016, Monteiro *et al.* 2010). Another possibility is that exotic species introduced through intercultural exchanges to treat modern diseases may also be tested for other local diseases. Such species may persist within medical systems due to their adaptive traits, including efficacy, ease of local adaptation, and accessibility (Ferreira Júnior *et al.* 2016, Medeiros *et al.* 2017).

Regarding the second hypothesis, which examined how urbanization rates in market locations influence the knowledge and use of exotic and native plants for treating modern diseases, the results provided no support. This indicates that factors such as urbanization rate do not explain the presence of exotic and native species in the market for the treatment of modern diseases. The same result was observed in the case of other diseases. We believe that other factors may shape the dynamics

of exotic plant selection, including migration flows (Vandebroek and Balick 2012) and the degree of population isolation, itself influenced by port dynamics. Although we lack sufficient data set to explore these aspects in greater depth, we suggest that future studies should address them.

Our results contrast with previous research in local communities, which has shown that urbanization influences both knowledge of and access to exotic food and medicinal resources (Arjona-García *et al.* 2021, Bortolotto *et al.* 2015, Reyes-García *et al.* 2005). These studies demonstrate that urban expansion transforms the natural environment, leading to loss of native vegetation and reduced areas for collecting and managing plant resources. As a result, populations become increasingly distanced from such resources. At the same time, the introduction of exotic species may be facilitated by markets, the internet, and migration (Abreu *et al.* 2015, Arjona-García *et al.* 2021, Reyes-García *et al.* 2005).

To interpret our findings, it is essential to acknowledge that public markets are dynamic spaces where the trade of exotic and native species for therapeutic purposes is facilitated. Markets selling medicinal plant resources are typically located in urban centers, serving not only local populations but also rural communities and residents of neighboring town. This broadens their reach and importance in healthcare systems (Rios 2017, Tinitana *et al.* 2016). However, their urban location distances them from primary forests, the main source of native resources. Traders are thus compelled to cultivate species in disturbed environments or rely on external suppliers to maintain a steady supply (Albuquerque *et al.* 2007, Towns *et al.* 2014). This scenario may favor the trade of exotic plant resources.

Nevertheless, although urbanization reduces traders' direct access to native resources while facilitating the introduction of exotic species, alternative strategies are often employed to ensure a continuity of native species supply. One such strategy is cultivating in readily accessible areas. For instance, Van Andel and Havinga (2008) observed in Surinamese markets that over 80% of traded species were native, yet fewer than half were collected directly from forests. Instead, many were cultivated in nearby villages, agricultural fields, and urban gardens, and subsequently harvested for sale.

Similarly, Towns *et al.* (2014) found that increasing distance from primary forests often led to the cultivation of native species in adjacent areas. Their study further revealed that some species regarded as extinct in the wild were being maintained and managed through cultivation, thereby ensuring their continued availability in urban markets. Thus, just as exotic species expand into urban areas owing to their adaptability and ease of cultivation (Gama *et al.* 2018, Santos *et al.* 2014, Schneider 2007), native species may also be cultivated and adapted for commercial purposes in these environments (Van Andel & Havinga 2008).

Another factor motivating access primary vegetation is demand for particular local species of cultural and medicinal significance (Medeiros *et al.* 2017, Silva *et al.* 2019, Towns *et al.* 2014). Vendors therefore obtain these resources through multiple channels, such as harvesting in forested and fragmented areas cultivation, or sourcing via intermediaries without accessing these areas themselves (Van Andel & Havinga 2008, Towns *et al.* 2014, Albuquerque *et al.* 2007). These varied acquisition strategies help sustain both exotic and native species in medicinal markets.

Markets exhibit highly complex dynamics, with resources originating from multiple regions. In some cases, this diversity may surpass that of the local flora. However, this complexity may not accurately reflect local knowledge of medicinal plants or their use in treating modern diseases. It is therefore plausible that local and traditional communities present different realities which merit further investigation.

Limitations

For our systematic review, we carefully selected articles that examined the patterns of use of medicinal plants sold in global markets. While this approach has its benefits, it also has negative implications. By discarding studies with bias review, we lose valuable information. However, we recognize that this loss is less concerning than including studies with a high risk of bias. Additionally, our keywords covered numerous studies. For future systematic reviews on this topic, however, we recommend including the keyword "trade," as it may be useful for identifying studies related to the commercialization of natural resources. Another important factor is that belief-based diseases were not included in our study, highlighting the limitations of official bodies in classifying diseases grounded in local knowledge. Furthermore, the context of markets may have limited our findings since markets are biocultural complexes. The knowledge of sellers, the surrounding population, and the diversity of commercialized medicinal plants is dynamic and may not reflect local therapeutic choices for treating modern diseases due to external factors influencing the trade of these plants. Local and traditional communities may have different realities that require additional investigation.

Conclusion

From a theoretical perspective, we have advanced our understanding of the role of exotic plants in treating modern diseases in local public markets. People seek out these plants to address symptoms, resulting in noticeable similarities between exotic and native plants in the treatment of modern diseases. However, regarding the influence of urbanization on the proportion of exotic and native species used to treat modern diseases, the market context may have slightly constrained our interpretation because it does not always accurately reflect local ecological knowledge dynamics. Therefore, we recommend that future studies focus on the communities themselves. From a practical standpoint, understanding how populations adapt their medicinal plant-based medical systems to treat modern diseases in the context of ongoing environmental and lifestyle changes is crucial, as it highlights the vulnerabilities of these systems and their adaptive processes.

Declarations

List of abbreviations: PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses; IUCN - International Union for Conservation of Nature; OR - Odds Ratio measure; COVID-19 - Coronavirus disease 2019; MERS - Middle East Respiratory Syndrome; SARS - Severe Acute Respiratory Syndrome.

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and materials: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests: The authors declare no conflicts of interest.

Funding: This study was funded by FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco) [http://www.facepe.br].

Author contributions: TCS, PMM, and WSFJ provided the idea, with methodological adjustment, analyzed the data, and wrote the manuscript; MLS collected the data, with methodological adjustment, and wrote the manuscript; BFB collected the data and wrote the manuscript; LMR and JGS contributed with methodological adjustment, data analyses and wrote the manuscript; UPA assisted in the discussion and wrote the manuscript. All authors read and approved of the final manuscript.

Acknowledgements

We would like to thank the Laboratory of Ethnobiology and Conservation of Ecosystems (LAEC) - UNEAL and the partner laboratories: Laboratory of Ecology, Conservation, and Biocultural Evolution (LECEB) - UFAL, and the Laboratory of Biocultural Investigations in the Semi-Arid (LIB) - UPE, that were fundamental in the development this study. We would also like to thank the Fundação de Amparo à Ciência e a Tecnologia do Estado de Pernambuco (FACEPE) for their trust and funding. And finally, I would like to thank Professor Xavier Arnan for his support in the final stage of the research.

Literature cited

Abreu DBO, Santoro FR, Albuquerque UP. 2015. Medicinal plant knowledge in a context of cultural pluralism: a case study in Northeastern Brazil. Journal of Ethnopharmacology 175: 124-130. doi: 10.1016/j.jep.2015.09.019

Adachi M, Murakami M, Yoneoka D, Kawashima T, Hashizume M, Sakamoto H, Eguchi A, Ghaznavi C, Gilmour S, Kaneko S, Kunishima H, Maruyama-Sakurai K, Tanoue Y, Yamamoto Y, Miyata H, Nomura S; 2022. Factors associated with the risk perception of COVID-19 infection and severe illness: A cross-sectional study in Japan. *SSM* - Population Health 18:101105. doi:10.1016/j.ssmph.2022.101105

Albuquerque UP, Monteiro JM, Ramos MA, Amorim LC. 2007. Medicinal and magic plants from a public market in northeastern Brazil. Journal of Ethnopharmacology 110(1): 76-91. doi: 10.1016/j.jep.2006.09.010

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The proximal origin of SARS-CoV-2. Nature Medicine 26(4): 450-452. doi: 10.1038/s41591-020-0820-9

Andrade ILF, Massi KG. 2024. Richness of native and exotic plants in parks in São Paulo is determined by urban park size and age. Brazilian Archives of Biology and Technology 67(3):e24220696. doi:10.1590/1678-4324-2024220696.

ArcGIS Pro: software de mapeamento GIS 2D, 3D e 4D. Versão 3.3.0. [S.I.]: ESRI, 2022. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. (23 June 2024).

Arjona-García C, Blancas J, Beltrán-Rodríguez L, López Binnqüist C, Colín Bahena H, Moreno-Calles Al, Sierra-Huelsz JA, López-Medellín X. 2021. How does urbanization affect perceptions and traditional knowledge of medicinal plants? Journal of ethnobiology and ethnomedicine, 17(1), 48. doi: 10.1186/s13002-021-00473-w

Bailey ZD, Krieger N, Agénor M, Graves J, Linos N, Bassett MT. 2017. Structural racism and health inequities in the USA: evidence and interventions. The Lancet 389(10077):1453–1463. DOI: 10.1016/S0140-6736(17)30569-X

Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang L, Wesolowski A, Metcalf CJE. 2022. Infectious disease in an era of global change. Nature Reviews Microbiology 20(4): 193-205. doi: 10.1038/s41579-021-00639-z

Bortolotto IM, Amorozo MCM, Neto GG, Oldeland J, Damasceno-Júnior GA. 2015. Knowledge and use of wild edible plants in rural communities along Paraguay River, Pantanal, Brazil. Journal of Ethnobiology and Ethnomedicine 11(1): 46. doi: 10.1186/s13002-015-0026-2

Carmo EH, Barreto ML, Silva JB Jr. 2003. Mudanças nos padrões de morbimortalidade da população brasileira: os desafios para um novo século. Epidemiologia e Serviços de Saúde 12(2):63-75

Cavalcanti DR, Albuquerque UP. 2013. The "hidden diversity" of medicinal plants in northeastern Brazil: diagnosis and prospects for conservation and biological prospecting. Evidence-Based Complementary and Alternative Medicine 2013:102714. doi: 10.1155/2013/102714

Cavalcanti IMF. 2020. Plantas medicinais e seus possíveis benefícios no enfrentamento da Covid-19. Belém: RFB Editora. doi: 10.46898/rfb.9786599175176

Cock IE, Selesho MI, Van Vuuren SF. 2018. A review of the traditional use of southern African medicinal plants for the treatment of selected parasite infections affecting humans. Journal of Ethnopharmacology 220: 250-264. doi: 10.1016/j.jep.2018.04.001

Cock IE, Van Vuuren SF. 2020. The traditional use of southern African medicinal plants for the treatment of bacterial respiratory diseases: A review of the ethnobotany and scientific evaluations. Journal of Ethnopharmacology 263: 113204. doi: 10.1016/j.jep.2020.113204

Corbett S, Courtiol A, Lummaa V, Moorad J, Stearns S. 2018. The transition to modernity and chronic disease: mismatch and natural selection. Nature Reviews Genetics 19(7): 419-430. doi: 10.1038/s41576-018-0012-3

D'Ávila, C. 2020. Modernização arriscada: doenças, epidemias e ciência em meio ao avanço do homem sobre a floresta. *Café História*. https://www.cafehistoria.com.br/modernizacao-arriscada-doencas-florestas-ferrovias/ (Accessed 26/06/2023)

Dylewski, Ł., et al. (2023). How do urbanization and alien species affect the plant diversity of urban habitats? Environmental Sciences Europe, 35(1), 1-14. DOI: 10.1007/s11356-023-28808-y

Feijó AM, Bueno MEN, Ceolin T, Linck CL, Schwartz E, Lange C, Meincke SMK, Heck RM, Barbieri RL, Heiden G. 2012. Plantas medicinais utilizadas por idosos com diagnóstico de Diabetes mellitus no tratamento dos sintomas da doença. Revista Brasileira de Plantas Medicinais 14: 50-56. doi: 10.1590/S1516-05722012000100008

Fernandes AC. 2021. As grandes pandemias da história da Europa e os seus impactos na nossa civilização: desafios da moderna saúde pública. Cadernos Ibero-Americanos de Direito Sanitário 10(2): 19-30. doi: 10.17566/ciads.v10i2.780

Fernandes TP, Abreu CM, Rocha JO, Bianchetti LO, Sales LA, Alves MQ, Prates ME, Lemes NM, Vieira SD, Corrêa MI. 2021. Infecções secundárias em pacientes internados por COVID-19: consequências e particularidades associadas. Revista Eletrônica Acervo Científico 34: e8687. doi: 10.25248/reac.e8687.2021

Ferreira Júnior WS, Silva TG, Menezes IRA, Albuquerque UP. 2016. The role of local disease perception in the selection of medicinal plants: A study of the structure of local medical systems. Journal of Ethnopharmacology 181: 146-157. doi: 10.1016/j.jep.2016.01.038

Ferreira Júnior, W. S.; Santoro, F. R.; Albuquerque, U. P. Nossa história evolutiva: plantas medicinais e a origem e evolução da medicina. Recife: NUPEEA, 2022.

Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/ (Accessed 06/02/2025).

Fonseca FN, Balick MJ. 2018. Plant-Knowledge Adaptation in an Urban Setting: Candomblé Ethnobotany in New York City. Economic Botany 72: 56-70. doi: 10.1007/s12231-018-9405-7

Gaddy HG. 2020. Using local knowledge in emerging infectious disease research. *Social Science & Medicine* 258:113107. DOI: 10.1016/j.socscimed.2020.113107

Gama ADS, Paula M, Silva RRV, Ferreira-Júnior WS, Medeiros PM. 2018. Exotic species as models to understand biocultural adaptation: challenges to mainstream views of human-nature relations. PLOS ONE 13(4): e0196091. doi: 10.1371/journal.pone.0196091

Gomes GC, Moreira MAJ, Silva CD, Mota MS, Nobre CMG, Rodrigues EF. 2019. Vivências do familiar frente ao diagnóstico de diabetes mellitus na criança/adolescente. Journal of Nursing and Health 9(1). doi: 10.15210/jonah.v9i1.13393

Griffiths PE, Bourrat P. 2023. Integrating evolutionary, developmental and physiological mismatch. Evolution, Medicine, and Public Health 11(1):277–286. doi:10.1093/emph/eoad023

Gurven MD, Lieberman DE. 2020. WEIRD bodies: Mismatch, medicine and missing diversity. Evolution and Human Behavior 41(5): 330-340. doi: 10.1016/j.evolhumbehav.2020.04.001

IUCN. 2022. A Lista Vermelha de Espécies Ameaçadas da IUCN. Versão 2022-1. https://www.iucnredlist.org (Accessed 10/01/2024).

Kleinman A. 1978. Clinical relevance of anthropological and cross-cultural research: concepts and strategies. The American Journal of Psychiatry 135(4): 427-431. doi: 10.1176/ajp.135.4.427

Koutsimani P, Montgomery A, Georganta K. 2019. The relationship between burnout, depression, and anxiety: A systematic review and meta-analysis. Journal of Affective Disorders 233:134-149. doi: 10.3389/fpsyg.2019.00284

Leonti M, Staub PO, Cabras S, Castellanos ME, Casu L. 2015. From cumulative cultural transmission to evidence-based medicine: evolution of medicinal plant knowledge in Southern Italy. Frontiers in Pharmacology 6: 207. doi: 10.3389/fphar.2015.00207

Leonti M. 2013. Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Frontiers in Pharmacology 4: 92. doi: 10.3389/fphar.2013.00092

Lopes LS, Valentini JP, Monteiro TH, Costacurta MCDF, Soares LON, Telfar-Barnard L, Nunes PV. 2022. Problematic social media use and its relationship with depression or anxiety: a systematic review. Cyberpsychology, Behavior, and Social Networking 25(11):691–702. DOI: 10.1089/cyber.2021.0300

Manus MB. 2018. Evolutionary mismatch. Evolution, Medicine, and Public Health 2018(1): 190-191. doi: 10.1093/emph/eoy023

Martine G, Alves JED. 2015. Economia, sociedade e meio ambiente no século 21: tripé ou trilema da sustentabilidade? Revista Brasileira de Estudos de População 32: 433-460. doi: 10.1590/S0102-309820150000002

Mashi SA, Shuaibu HS. 2018. People and sustainable land management: assessment of stakeholders' knowledge of the nature of land use/cover change in Abuja, Nigeria. GeoJournal 83(3): 545-562. doi: 10.1007/s10708-017-9782-y

McBride JR, Cavero RY, Cheshire AL, Calvo MI, McBride DL. 2020. Exchange of medicinal plant information in California missions. Journal of Ethnobiology and Ethnomedicine 16: 1-36. doi: 10.1186/s13002-020-00388-y

Medeiros PM, Ferreira-Júnior WS, Ramos MA. 2017. Why do people use exotic plants in their local medical systems? A systematic review based on Brazilian local communities. PLOS ONE 12(9): e0185358. doi: 10.1371/journal.pone.0185358

Medeiros PM, Ladio AH, Albuquerque UP. 2014. Sampling problems in Brazilian research: a critical evaluation of studies on medicinal plants. Revista Brasileira de Farmacognosia 24(2): 103-109. doi: 10.1016/j.bjp.2014.01.010

Missouri Botanical Garden. https://www.missouribotanicalgarden.org/ (Accessed 20/08/2021)

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. 2015. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery 8(5): 336-341. doi: 10.1371/journal.pmed.1000097

Monteiro JM, Lima Araújo E, Amorim ELC, Albuquerque UP. 2010. Local markets and medicinal plant commerce: a review with emphasis on Brazil. Economic Botany 64(4): 4-18. doi: 10.1007/s12231-010-9132-1

Patterson J, Sammon M, Garg M. 2016. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. Western Journal of Emergency Medicine 17(6): 671-679. doi: 10.5811/westjem.2016.9.30904

Pavão S, Lopes I, Vilharva KN, Pedro MDS, Gisloti LJ. 2020. Plantas medicinais dos povos Kaiowá e Guarani como possível prática complementar no enfrentamento dos sintomas da COVID-19: conhecimento tradicional como arma contra a pandemia. Revista Brasileira de Agroecologia 15(4): 14-14. doi: 10.33240/rba.v15i4.23271

Pochettino ML, Puentes JP, Buet Costantino F, Arenas PM, Ulibarri EA, Hurrell JA. 2012. Functional foods and nutraceuticals in a market of Bolivian immigrants in Buenos Aires (Argentina). Evidence-Based Complementary and Alternative Medicine 2012: 320193. doi: 10.1155/2012/320193

POWO (Plants of the World Online). Facilitado pelo Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (Accessed 20/08/2022).

Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K, Feldman MW, Fogarty L, Ghirlanda S, Lillicrap T, Laland KN. 2010. Why copy others? Insights from the social learning strategies tournament. Science 328(5975): 208-213.

Reyes-García V, Vadez V, Huanca T, Leonard W, Wilkie D. 2005. Knowledge and consumption of wild plants: a comparative study in two Tsimane' villages in the Bolivian Amazon. Ethnobotany Research and Applications 3: 201-208. http://dx.doi.org/10.17348/era.3.0.201-208

Rios M, Tinitana F, Jarrín-V P, Donoso N, Romero-Benavides JC. 2017. "Horchata" drink in Southern Ecuador: medicinal plants and people's wellbeing. Journal of Ethnobiology and Ethnomedicine 13: 18. doi: 10.1186/s13002-017-0145-z

Rodgers RF, Laveway K, Campos P, de Carvalho PHB. 2023. Body image as a global mental health concern. Cambridge Prisms: Global Mental Health 10:e9. doi: 10.1017/gmh.2023.2

Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. 2021. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The Lancet 398(10311):1619–1662. DOI: 10.1016/S0140-6736(21)01787-

Santos LL, Nascimento ALB, Vieira FJ, Silva VA, Voeks R, Albuquerque UP. 2014. The cultural value of invasive species: a case study from semi-arid northeastern Brazil. Economic Botany. doi: 10.1007/s12231-014-9281-8

Schneider AA. 2007. A flora naturalizada no estado do Rio Grande do Sul, Brasil: herbáceas subespontâneas. Biociências 15(2): 257-268.

Sengupta P, Dutta S. 2021. Coronavirus Disease-19 (COVID-19) and Modern Lifestyle Diseases. Biomedical and Pharmacology Journal 14(4): 2245-2247. http://dx.doi.org/10.13005/bpj/2323

Silva ED, Matias SMS, Barros BGA, Oliveira FJV. 2021. A importância do uso das plantas medicinais frente ao cenário atual da pandemia causada pelo SARS-CoV-2. Research, Society and Development 10(11). doi: 10.33448/rsd-v10i11.19834

Silva NA, Alves ÂGC, Albuquerque UPD, Ramos MA. 2019. A biocultural approach to the use of natural resources in Northeast Brazil: A socioeconomic perspective. Acta Botanica Brasilica 33: 315-330. doi: 10.1590/0102-33062018abb0346

Silva RH, Moura JMB, Ferreira Júnior WS, Nascimento ALB, Albuquerque UPD. 2022. Previous experiences and regularity of occurrence in evolutionary time affect the recall of ancestral and modern diseases. Evolutionary Psychological Science: 1-11. doi: 10.1007/s40806-022-00325-0

Silva TC, Silva JM, Ramos MA. 2018. What factors guide the selection of medicinal plants in a local pharmacopoeia? A case study in a rural community from a historically transformed Atlantic Forest landscape. Evidence-Based Complementary and Alternative Medicine 2018: 2519212. doi: 10.1155/2018/2519212

Singer M, Bulled N, Ostrach B, Mendenhall E. 2017. Syndemics and the biosocial conception of health. The Lancet 389(10072):941–950. doi: 10.1016/S0140-6736(17)30003-X

Souza LP. 2020. A pandemia da COVID-19 e os reflexos na relação meio ambiente e sociedade. Revista Brasileira de Meio Ambiente 8(4): 068-073.

Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. 2019. Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *The Lancet* 393(10190):e44. doi:10.1016/S0140-6736(19)31429-1

Sudano M, Gregorio F. 2011. Ancestral diets and modern diseases. Mediterranean Journal of Nutrition and Metabolism 4(3): 181-189. doi: 10.3233/s12349-011-0067-6

Tartaglia ES, Aronson MF. 2024 Plant native: comparing biodiversity benefits, ecosystem services provisioning, and plant performance of native and non-native plants in urban horticulture. Urban Ecosystems 27(6):2587–2611. DOI: 10.1007/s11252-024-01610-5

Tinitana F, et al. 2016. Medicinal plants sold at traditional markets in southern Ecuador. Journal of Ethnobiology and Ethnomedicine 12(1): 1-18. doi: 10.1186/s13002-016-0100-4

Towns AM, Ruysschaert S, Van Vliet E, Van Andel T. 2014. Evidence in support of the role of disturbance vegetation for women's health and childcare in Western Africa. Journal of Ethnobiology and Ethnomedicine 10: 42. doi: 10.1186/1746-4269-10-42

UN-United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.

Van Andel T, Havinga R. 2008. Sustainability aspects of commercial medicinal plant harvesting in Suriname. Forest Ecology and Management 256(8): 1540-1545. doi: 10.1016/j.foreco.2008.06.031

Vandebroek I, Balick MJ. 2012. Globalization and loss of plant knowledge: challenging the paradigm. PLOS ONE 7(5): e37643. doi: 10.1371/journal.pone.0037643

Voeks R. 2013. Ethnobotany of Brazil's African diaspora: the role of floristic homogenization. In: African Ethnobotany in the Americas, eds. R. Voeks and J. Rashford, 395-416. New York: Springer. doi: 10.1007/978-1-4614-0836-9 14

WFO (World Flora Online). http://www.worldfloraonline.org/ (Accessed 05/08/2023)

WHO (World Health Organization). 2023. ICD-11 for Mortality and Morbidity Statistics. https://icd.who.int/browse/2025-01/mms/en (Accessed 09/07/2023).

World Health Organization. 2022. Climate change and health – Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (Accessed 16/06/2025).

Zhou P, Yang XL, Wang XG, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. doi: 10.1038/s41586-020-2012-7

Literature cited in Table 1

Ahmad M, Zafar M, Shahzadi N, Yaseen G, Murphey TM, Sultana S. 2018. Ethnobotanical importance of medicinal plants traded in herbal markets of Rawalpindi-Pakistan. Journal of Herbal Medicine 11: 78-89. doi: 10.1016/j.hermed.2017.10.001

Albuquerque UP, Monteiro JM, Ramos MA, Amorim LC. 2007. Medicinal and magic plants from a public market in northeastern Brazil. Journal of Ethnopharmacology 110(1): 76-91. doi: 10.1016/j.jep.2006.09.010

Amiri MS, Joharchi MR. 2013. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna Journal of Phytomedicine 3(3): 254-71.

Asra R, Ihsan M, Andriani F, Silalahi M, Fijridiyanto IA, Maryani AT. 2023. Diversity of medicinal plants sold in the traditional markets in Jambi, Indonesia. Biodiversitas Journal of Biological Diversity 24(3). doi: 10.13057/biodiv/d240326

Betti JL. 2002. Medicinal plants sold in Yaoundé markets, Cameroon. African Study Monographs 23(2): 47-64. doi: 10.14989/68215

Bitu VDCN, Bitu VDCN, Matias EFF, de Lima WP, Portelo AC, Coutinho HDM, de Menezes IRA. 2015. Ethnopharmacological study of plants sold for therapeutic purposes in public markets in Northeast Brazil. Journal of Ethnopharmacology 172: 265-272. doi: 10.1016/j.jep.2015.06.022

Bussmann RW, Paniagua Zambrana NY, Romero C, Hart RE. 2018. Astonishing diversity: the medicinal plant markets of Bogotá, Colombia. Journal of Ethnobiology and Ethnomedicine 14: 1-47. doi: 10.1186/s13002-018-0241-8

Bussmann RW, Zambrana NYP, Huanca LAM, Hart R. 2016. Changing markets—medicinal plants in the markets of La Paz and El Alto, Bolivia. Journal of Ethnopharmacology 193: 76-95. doi: 10.1016/j.jep.2016.07.074

Delbanco AS, Burgess ND, Cuni-Sanchez A. 2017. Medicinal plant trade in Northern Kenya: economic importance, uses, and origin. Economic Botany 71: 13-31. doi: 10.1007/s12231-017-9368-0

Ferreira EC, Lucena RFP, Bussmann RW, Paniagua-Zambrana NYP, Cruz DD. 2021. Temporal assessment of the medicinal plants trade in public markets of the state of Paraíba, northeastern Brazil. Journal of Ethnobiology and Ethnomedicine 17: 1-24. doi: 10.1186/s13002-021-00496-3

Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S. 2004. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. Journal of Ethnopharmacology 91(2-3): 281-299. doi: 10.1016/j.jep.2004.01.007

Hilonga S, Otieno JN, Ghorbani A, Pereus D, Kocyan A, Boer H. 2019. Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. South African Journal of Botany 122: 214-224. doi: 10.1016/j.sajb.2018.08.012

Idu M, Erhabor J, Timothy O, Ovuakporie-Uvo O. 2014. Market survey and heavy metal screening of selected medicinal plants sold in some markets in Benin City, Nigeria. International Journal of Humanities, Arts, Medicines and Sciences 2(2): 7-16. ISSN(E): 2348-0521

Idu M, Omonigho SE, Erhabor JO, Efijuemue HM. 2010. Microbial load of some medicinal plants sold in some local markets in Abeokuta, Nigeria. Tropical Journal of Pharmaceutical Research 9(3): 251-256 doi: 10.4314/tjpr.v9i3.56285

Iskandar BS, Iskandar JOHAN, Partasasmita R, Irawan BUDI. 2020. Various medicinal plants traded in the village market of Karangwangi Village, Southern Cianjur, West Java, Indonesia. Biodiversitas 21(9): 4440-4456. doi: 10.13057/biodiv/d210963

Jin B, Liu Y, Xie J, Luo B, Long C. 2018. Ethnobotanical survey of plant species for herbal tea in a Yao autonomous county (Jianghua, China): results of a 2-year study of traditional medicinal markets on the Dragon Boat Festival. Journal of Ethnobiology and Ethnomedicine 14: 1-21. doi: 10.1186/s13002-018-0257-0

Jusu A, Sanchez AC. 2014. Medicinal plant trade in Sierra Leone: threats and opportunities for conservation. Economic Botany 68(1): 16-29. doi: 10.1007/s12231-013-9255-2

Karousou R, Deirmentzoglou S. 2011. The herbal market of Cyprus: Traditional links and cultural exchanges. Journal of Ethnopharmacology 133(1): 191-203. doi: 10.1016/j.jep.2010.09.034

La Cruz MG, Malpartida SB, Santiago HB, Jullian V, Bourdy G. 2014. Hot and cold: Medicinal plant uses in Quechua speaking communities in the high Andes (Callejón de Huaylas, Ancash, Perú). Journal of Ethnopharmacology 155(2): 1093-1117. doi: 10.1016/j.jep.2014.06.042

Lee S, Xiao C, Pei S. 2008. Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. Journal of Ethnopharmacology 117(2): 362-377. doi: 10.1016/j.jep.2008.02.001

Lev E, Amar Z. 2002. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. Journal of Ethnopharmacology 82(2-3): 131-145. doi: 10.1016/s0378-8741(02)00182-4

Li DL, Zheng XL, Duan L, Deng SW, Ye W, Wang AH, Xing FW. 2017. Ethnobotanical survey of herbal tea plants from the traditional markets in Chaoshan, China. Journal of Ethnopharmacology 205: 195-206. doi: 10.1016/j.jep.2017.02.040

Liu S, Zhang B, Zhou J, Lei Q, Fang Q, Kennelly EJ, Long C. 2021. Herbal plants traded at the Kaili medicinal market, Guizhou, China. Journal of Ethnobiology and Ethnomedicine 17: 1-37. doi: 10.1186/s13002-021-00495-4

Mati E, de Boer H. 2011. Ethnobotany and trade of medicinal plants in the Qaysari Market, Kurdish Autonomous Region, Iraq. Journal of Ethnopharmacology 133(2): 490-510. doi: 10.1016/j.jep.2010.10.023

Monteiro JM, Ramos MA, Lima Araújo E, Amorim ELC, Albuquerque UP. 2011. Dynamics of medicinal plants knowledge and commerce in an urban ecosystem (Pernambuco, Northeast Brazil). Environmental Monitoring and Assessment 178: 179-202. doi: 10.1007/s10661-010-1681-3

Mwaura A, Kamau J, Ombori O. 2020. An ethnobotanical study of medicinal plants commonly traded in Kajiado, Narok and Nairobi counties, Kenya: Medicinal Plant Species Traded in Kenya. East African Journal of Science, Technology and Innovation 1(3). http://dx.doi.org/10.37425/eajsti.v1i3.153

Nanagulyan S, Zakaryan N, Kartashyan N, Piwowarczyk R, Łuczaj Ł. 2020. Wild plants and fungi sold in the markets of Yerevan (Armenia). Journal of Ethnobiology and Ethnomedicine 16: 1-27. DOI: 10.1186/s13002-020-00375-3

Nguyen TS, Xia NH, Van Chu T, Van Sam H. 2019. Ethnobotanical study on medicinal plants in traditional markets of Son La province, Vietnam. Forest and Society 3(2): 171-192. doi: 10.24259/FS.V3I2.6005

Oliveira FCS, Vieira FJ, Amorim AN, Barros RFM. 2021. The use and diversity of medicinal flora sold at the open market in the city of Oeiras, semiarid region of Piauí, Brazil. Ethnobotany Research and Applications 22: 1-19. http://dx.doi.org/10.32859/era.22.21:1-19

Ouédraogo L, Endl J, Sombié PAED, Schaefer H, Kiendrebeogo M. 2020. Ethnobotanical use and conservation assessment of medicinal plants sold in markets of Burkina Faso. Ethnobotany Research and Applications 20: 1-25. http://dx.doi.org/10.32859/era.20.39.1-25

Petrakou K, latrou G, Lamari FN. 2020. Ethnopharmacological survey of medicinal plants traded in herbal markets in the Peloponnisos, Greece. Journal of Herbal Medicine 19: 100305. doi: 10.1016/j.hermed.2019.100305

Randriamiharisoa MN, Kuhlman AR, Jeannoda V, Rabarison H, Rakotoarivelo N, Randrianarivony T, Bussmann RW. 2015. Medicinal plants sold in the markets of Antananarivo, Madagascar. Journal of Ethnobiology and Ethnomedicine 11: 1-13. doi: 10.1186/s13002-015-0046-y

Rasethe MT, Semenya SS, Maroyi A. 2019. Medicinal plants traded in informal herbal medicine markets of the Limpopo Province, South Africa. Evidence-Based Complementary and Alternative Medicine 2019: 1-9. doi: 10.1155/2019/2609532

Rios M, Tinitana F, Jarrín-V P, Donoso N, Romero-Benavides JC. 2017. "Horchata" drink in Southern Ecuador: medicinal plants and people's wellbeing. Journal of Ethnobiology and Ethnomedicine 13: 18. doi: 10.1186/s13002-017-0145-z

Shah AA, Badshah L, Muhammad M, Khan S, Abbas M, Khan N, Bussmann RW. 2021. Quantitative study on the trade and ecological aspect of spice plants in the markets of District Bannu, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 22: 1-21. http://dx.doi.org/10.32859/era.22.32.1-21

Shah S, Khan S, Sulaiman S, Muhammad M, Badshah L, Bussmann RW, Hussain W. 2020. Quantitative study on medicinal plants traded in selected herbal markets of Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications 20: 1-36. http://dx.doi.org/10.32859/era.20.57.1-36

Silalahi M, BW E, Supriatna J, Mangunwardoyo W. 2015. The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia. Journal of Ethnopharmacology 175: 432-443. doi: 10.1016/j.jep.2015.09.009

Sulaini AA, Sabran SF. 2018. Edible and medicinal plants sold at selected local markets in Batu Pahat, Johor, Malaysia. In: AIP Conference Proceedings, Vol. 2002, No. 1. AIP Publishing. http://dx.doi.org/10.1063/1.5050102

Suma TS, Ravikumar K, Somashekhar BS, Ved DK, Zaman R, Rajalakshmi G, Kukkupuni SK. 2018. Documentation of 'Plant Drugs' dispensed via local weekly shanties of Madurai City, India. Journal of Ayurveda and Integrative Medicine 9(2): 104-112. doi: 10.1016/j.jaim.2017.05.008

Uzun SP, Koca C. 2020. Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş. Plant Diversity 42(6): 443-454. doi: 10.1016/j.pld.2020.12.003

Uzun SP, Şimşir-Bozdağ R. 2022. Ethnobotanical study on traded medicinal plants and herbal market analyses in Gaziantep/Turkey. Applied Ecology & Environmental Research 20(5). http://dx.doi.org/10.1016/j.pld.2020.12.003

Zahoor M, Yousaf Y, Yasin H, Shinwari ZK, Haroon M, Saleh N, Rashid M. 2021. Ethnobotanicals and commercial trends of herbal markets in Punjab, Pakistan. Journal of Herbal Medicine 26: 100425. doi: 10.1016/j.hermed.2021.100425

Zhang M, Li H, Wang J, Tang M, Zhang X, Yang S, Huang L. 2022. Market survey on the traditional medicine of the Lijiang area in Yunnan Province, China. Journal of Ethnobiology and Ethnomedicine 18(1): 40. doi: 10.1186/s13002-022-00532-w

Zhang Y, Li JW, San MM, Whitney CW, San TT, Yang XF, Hein PP. 2020. The secret of health in daily cuisine: typical healthy vegetables in local markets in central Myanmar. Journal of Ethnobiology and Ethnomedicine 16: 1-13. doi: 10.1186/s13002-020-00425-w

Literature cited in the Appendix

Angeli A, Terzolo M. 2002. Adrenal incidentaloma a modern disease with old complications. The Journal of Clinical Endocrinology and Metabolism 87(11): 4869-4871. doi: 10.1210/jc.2002-021436

Basu S, Dixit S. 2022. Increasing choices or decreasing hope? Explaining the rising prevalence of depression from a decision-making perspective. Psychological Reports 125(2): 681-702. doi: 10.1177/0033294120988128

Bernstein CN, Shanahan F. 2008. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57(9): 1185-1191. doi: 10.1136/gut.2007.122143

Blacher J, Levy BI, Mourad JJ, Safar ME, Bakris G. 2016. From epidemiological transition to modern cardiovascular epidemiology: hypertension in the 21st century. The Lancet 388(10043): 530-532. doi: 10.1016/S0140-6736(16)00002-7

Bloom DE, Kuhn M, Prettner K. 2022. Modern infectious diseases: macroeconomic impacts and policy responses. Journal of Economic Literature 60(1): 85-131. doi: 10.1257/jel.20201642

Booth FW, Gordon SE, Carlson CJ, Hamilton MT. 2000. Waging war on modern chronic diseases: primary prevention through exercise biology. Journal of Applied Physiology 88(2): 774-787. doi: 10.1152/jappl.2000.88.2.774

Chemych M, Lutai I. 2020. Lyme disease. Modern issue condition. Eastern Ukrainian Medical Journal 8(2): 230-241. doi: 10.21272/eumj.2020; 8(2):230-241

Choi BC, Hunter DJ, Tsou W, Sainsbury P. 2005. Diseases of comfort: primary cause of death in the 22nd century. Journal of Epidemiology and Community Health 59(12): 1030-1034. doi: 10.1136/jech.2005.032805

Deaner RO, Lutwick LI. 2014. Book Review: A Big Batch of Mismatch. Evolutionary Psychology doi: 10.1177/147470491401200309

Ehlers S, Kaufmann SH. 2010. Infection, inflammation, and chronic diseases: consequences of a modern lifestyle. Trends in Immunology 31(5): 184-190 doi: 10.1016/j.it.2010.02.003

Gawda A, Majka G, Nowak B, Marcinkiewicz J. 2017. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Central European Journal of Immunology 42(3): 305-312. doi: 10.5114/ceji.2017.70975

Giannouli V. 2017. Alzheimer's disease: Psychosocial dimensions of a modern plague. Encephalos 54: 33-38.

Gibbons A. 2016. Neandertal genes linked to modern diseases. Science 351: 648-649. doi: 10.1126/science.351.6274.648

Ginaldi L, Mengoli LP, De Martinis M. 2009. Osteoporosis, inflammation and ageing. Handbook on Immunosenescence: Basic Understanding and Clinical Applications: 1329-1352. doi: 10.1007/978-1-4020-9063-9_64

Gismera CS, Aladrén BS. 2008. Inflammatory bowel diseases: a disease(s) of modern times? Is incidence still increasing? World Journal of Gastroenterology 14(36): 5491-5497. doi: 10.3748/wjg.v14.i36.5491

Godreuil S, Tazi L, Bañuls AL. 2007. Pulmonary tuberculosis and Mycobacterium tuberculosis: modern molecular epidemiology and perspectives. Encyclopedia of Infectious Diseases: Modern Methodologies: 1-29. doi: 10.1002/9780470114209.ch1

Hahn-Holbrook J, Haselton M. 2014. Is postpartum depression a disease of modern civilization? Current Directions in Psychological Science 23(6): 395-400. doi: 10.1177/0963721414547736

Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S. 2004. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. Journal of Ethnopharmacology 91(2-3): 281-299. doi: 10.1016/j.jep.2004.01.007

Hegde BM. 2015. Evolutionary mismatch. Archives of Medicine and Health Sciences 3(1): 4-5. doi: 10.4103/2321-4848.154917

Herbert OC, Barnetson RS, Weninger W, Krämer U, Behrendt H, Ring J. 2009. Western lifestyle and increased prevalence of atopic diseases: an example from a small Papua New Guinean island. World Allergy Organization Journal 2: 130-137. doi: 10.1097/WOX.0b013e3181accf27

Hidaka BH. 2012. Depression as a disease of modernity: explanations for increasing prevalence. Journal of Affective Disorders 140(3): 205-214. doi: 10.1016/j.jad.2011.12.036

Jackson M. 2001. Allergy: the making of a modern plague. Clinical and Experimental Allergy 31(11). doi: 10.1046/j.1365-2222.2001.01264.x

Kalia M. 2002. Assessing the economic impact of stress: The modern day hidden epidemic. Metabolism-Clinical and Experimental 51(6 Suppl): 49-53. doi: 10.1053/meta.2002.33193

Kelsen JR, Wu GD. 2012. The gut microbiota, environment and diseases of modern society. Gut Microbes 3(4): 374-382. doi: 10.4161/gmic.21333

Keohane K, Petersen A, Van den Bergh B. 2017. Late modern subjectivity and its discontents: Anxiety, depression and Alzheimer's disease. Taylor and Francis eBook Series: DOI:10.4324/9781315447209

Krakauer JW. 2020. A theory for curing the diseases of modernity. Current Biology 30(23): R1393-R1397. doi: 10.1016/j.cub.2020.10.055

Logan AC, Jacka FN. 2014. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. Journal of Physiological Anthropology 33: 1-16. doi: 10.1186/1880-6805-33-22

Migdał W, Živković B. 2007. Meat: From functional food to diseases of modern civilization. Biotechnology in Animal Husbandry 23(5-6-1): 19-31. doi: 10.2298/BAH0701019M

Morris Jr JG. 2011. Cholera: modern pandemic disease of ancient lineage. Emerging Infectious Diseases 17(11): 2099. doi: 10.3201/eid1711.111109

Okin D, Medzhitov R. 2012. Evolution of inflammatory diseases. Current Biology 22(17): R733-R740. doi: 10.1016/j.cub.2012.07.029

Patil GV, Dass SK, Chandra R. 2011. Artemisia afra and modern diseases. Journal of Pharmacogenomics and Pharmacoproteomics 2(105): 2153-0645. doi: 10.4172/2153-0645.1000105

Prescott SL. 2013. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. Journal of Allergy and Clinical Immunology 131(1): 23-30. doi: 10.1016/j.jaci.2012.11.019

Robbins GR, Wen H, Ting JPY. 2014. Inflammasomes and metabolic disorders: old genes in modern diseases. Molecular Cell 54(2): 297-308. doi: 10.1016/j.molcel.2014.03.029

Samsel A, Seneff S. 2013. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdisciplinary Toxicology 6(4): 159-184. doi: 10.2478/intox-2013-0026

Samsel A, Seneff S. 2015. Glyphosate, pathways to modern diseases IV: cancer and related pathologies. Journal of Biological Physics and Chemistry 15(3): 121-159. http://dx.doi.org/10.4024/11SA15R.jbpc.15.03

Senapati S, Bharti N, Bhattacharya A. 2015. Modern lifestyle diseases: chronic diseases, awareness and prevention. International Journal of Current Research and Academic Review 3(3): 215-223.

Sengupta P, Dutta S. 2021. Coronavirus Disease-19 (COVID-19) and Modern Lifestyle Diseases. Biomedical and Pharmacology Journal 14(4): 2245-2247. http://dx.doi.org/10.13005/bpj/2323

Sharifi-Rad M, Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Sharifi-Rad J. 2020. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology 11: 694. doi: 10.3389/fphys.2020.00694

Waetzig GH, Schreiber S. 2003. Mitogen-activated protein kinases in chronic intestinal inflammation targeting ancient pathways to treat modern diseases. Alimentary Pharmacology and Therapeutics 18(1): 17-32. doi: 10.1046/j.1365-2036.2003.01642.x

Yacoub S, Kotit S, Yacoub MH. 2011. Disease appearance and evolution against a background of climate change and reduced resources. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1942): 1719-1729. doi: 10.1098/rsta.2011.0013

Zarean E, Azadeh A, Pirali H, Doroushi B, Edrisi A, Ahmadi A, Torkian S. 2021. Association between depression, anxiety, and insomnia with musculoskeletal pain source: a multi-center study. Middle East Current Psychiatry 28: 1-8. doi: 10.1186/s43045-021-00083-y

Appendix

Diseases of modernity, according to the literature and found in the studied markets.

Body System	Diseases of modernity	Reference	Diseases of
200, 0,000	according to literature		modernity found in
			the markets studied
Mental, Behavioral or	Schizophrenia, depression,	Corbett et al. (2018),	Stress, anxiety,
Neurodevelopmental	anxiety, stress, attention	Hegde (2015),	depression, and
Disorders	deficit disorder, autism,	Migdał & Živković (2007)	insomnia.
Districts	insomnia, dementia, eating	Krakauer (2020)	ilisolilila.
	disorders, postpartum	Hidaka (2012)	
	depression, and other	Logan & Jacka (2014),	
	l '	Gurven & Liebermanb (2020),	
	psychological disorders such as obsessive-compulsive	, , , ,	
	· ·	Basu &Dixit (2021),	
	disorder, bipolar disorder,	Samsel & Seneff (2013), Samsel &	
	and others.	Seneff (2015),	
		Zarean et al. (2021),	
		Keohane et al. (2017),	
		Kalia (2002),	
		Choi et al. (2005),	
		Blacher et al. (2016),	
		Hahn-Holbrook & Haselton (2014),	
		Gibbons (2016), Yacoub et al. (2011).	
Diseases of the	Acid reflux, chronic	Hegde (2015), Gurven & Liebermanb	Acid reflux, chronic
Digestive System	heartburn, cavities, celiac	(2020), Samsel & Seneff (2013),	heartburn, cavities,
	disease, gallbladder disease,	Samsel & Seneff (2015) Bloom et al.	gallbladder disease
	cholera, chronic constipation,	(2020)	(cholecystitis),
	liver cirrhosis and liver	Morris (2011),	chronic constipation,
	disease, Crohn's disease,	Gismera & Aladrén (2008), Kelsen &	liver disease, liver
	irritable bowel syndrome,	Wu (2012), Bernstein & Shanahan	cirrhosis, hepatitis,
	inflammatory colitis, acute	(2008),	scurvy, cholera,
	pancreatitis, peptic ulcers,	Okin & Medzhitov (2012), Waetzig &	stomach diseases
	stomach ulcers, gallstones,	Schreiber (2003).	such as Crohn's
	and hemorrhoids.		disease, enterocolitis,
			irritable bowel
			syndrome,
			inflammatory colitis,
			peptic ulcers,
			hemorrhoids,
			gallstones, and
			stomach ulcers.
Cardiovascular	Endothelial dysfunction,	Sharifi-Rad et al. (2020), Samsel &	Heart attack, angina,
diseases	congenital heart disease in	Seneff (2015), Senapati et al. (2015),	arrhythmias, coronary
	newborns, alcoholic	Yacoub et al. (2011), Migdał &	artery disease,
	cardiomyopathy,	Živković (2007), Sengupta & Dutta	hyperlipidemia, heart
	arrhythmias, coronary artery	(2021), Blacher et al. (2016), Booth et	failure, stroke,
	disease, heart failure, stroke,	al. (2000) Gayathri et al. (2011), Okin	thrombosis,
	heart attack, sudden tissue	& Medzhitov (2012), Sengupta &	arteriosclerosis, high
	ischemia, thrombosis,	Dutta (2021), Krakauer, (2020), Power	cholesterol, and
	hypertension,	(2012), Gurven & Liebermanb (2020),	hypertension.
	arteriosclerosis, dyslipidemia,	Sudano & Gregorio (2011), Hidaka	
	high cholesterol, and	(2012), Choi et al. (2005).	
	cardiovascular diseases in		
	general.		
Infectious and parasitic	Dengue, COVID-19, influenza,	Bloom et al. (2020),	Dengue, COVID-19,

diseases	malaria, chikungunya, Zika,	Sengupta & Dutta (2021), Ehlers &	influenza, malaria,
	H1N1, HIV, AIDS, measles,	Kaufmann (2010),	chikungunya, HIV,
	MERS, SARS, yellow fever,	Herbert et al. (2009),	measles, yellow fever,
	rabies, Ebola, leptospirosis,	Chemych E Lutai (2020).	and rabies.
	Lyme disease, and anthrax.		
Diseases of the skin	Acne, eczema, lupus, and	Hegde (2015),	Acne, eczema, lupus,
and subcutaneous	psoriasis.	Gurven & Liebermanb (2020),	and psoriasis.
tissue		Herbert et al. (2009),	
		Gawda et al. (2017),	
		Ehlers & Kaufmann (2010).	
Diseases of the blood	Anemia	Samsel & Seneff (2013).	Anemia and
or blood-forming			hypertension.
organs			
Diseases of the sistema	Ankylosing spondylitis,	Ehlers & Kaufmann (2010), Gurven &	Rickets, rheumatic
musculoesquelético.	bunion, rickets, sarcopenia,	Liebermanb (2020),	diseases such as
	flat feet, musculoskeletal	Hahn-Holbrook & Haselton (2014),	rheumatoid arthritis,
	disorders, hammer toes, and	Booth et al. (2000),	fibromyalgia, and
	rheumatic diseases such as	Hegde (2015), Yacoub et al. (2011),	gout, lower back pain
	rheumatoid arthritis,	Zarean et al. (2021),	and related problems,
	fibromyalgia, gout, lower	Okin & Medzhitov (2012), Gawda et	osteoporosis,
	back pain, osteoporosis,	al. (2017), Deaner & Allendale (2014),	tendinitis, plantar
	plantar fasciitis, and spinal	Hidaka (2012).	fasciitis, and
5: (1) : 1	problems.	C 0.1:1 (2020)	herniated discs.
Diseases of the visual	Glaucoma & myopia	Gurven & Liebermanb (2020).	Myopia syndrome.
system	syndrome.	Chariff Bad Ft Al (2020) Carrbatt at	Allegeise /ellegeisefter
Immune System	Allergies.	Sharifi-Rad Et Al. (2020), Corbett et	Allergies (allergic flu,
Diseases		al. (2018), Logan & Jacka (2014),	allergic fever).
		Jackson (2001), Gurven &	
		Liebermanb (2020),	
		Prescott (2013), Ehlers & Kaufmann (2010), Okin &	
		Medzhitov (2012),	
		Migdał & Živković (2007), Herbert et	
		al. (2009).	
Diseases of the system	Diabetes, thyroid problems	Kelsen & Wu (2012), Booth et al.	Diabetes,
Endocrine, nutritional,	such as Basedow-Graves'	(2000), Gayathri et al. (2011), Samsel	hypothyroidism,
or metabolic diseases	disease, Hashimoto's	& Senef (2015), Okin & Medzhitov	metabolic syndrome,
	thyroiditis, and	(2012), Yacoub et al. (2011),	obesity, and scurvy.
	hypothyroidism, lactose	Migdał & Živković (2007), Sengupta &	
	intolerance, metabolic	Dutta (2021),	
	disorders in newborns,	Giannouli (2017),	
	metabolic syndrome, obesity,	Gawda et al. (2017),	
	and scurvy.	Blacher et al. (2016),	
		Hahn-Holbrook & Haselton (2014),	
		Sharifi-Rad et al. (2020), Corbett et	
		al. (2018), Hegde (2015), Krakauer	
		ai. (2010), Hegue (2013). Niakauei	
		(2020), Deaner & Allendale (2014),	
		(2020), Deaner & Allendale (2014), Hidaka (2012),	
		(2020), Deaner & Allendale (2014), Hidaka (2012), Ginaldi et al. (2005),	
		(2020), Deaner & Allendale (2014), Hidaka (2012), Ginaldi et al. (2005), Power (2012), Logan & Jacka (2014),	
		(2020), Deaner & Allendale (2014), Hidaka (2012), Ginaldi et al. (2005),	

	T	D. I.I /204 (2)	<u> </u>
		Robbins et al. (2014), Patil et al.	
		(2011), Sudano & Gregorio (2011),	
		Samsel & Seneff (2013), Samsel &	
		Seneff (2015), Zarean et al. (2021).	
Diseases of the	Rhinitis, sinusitis,	Gayathri et al. (2011),	Chronic lung diseases
respiratory system	tuberculosis, pulmonary	Herbert et al. (2009),	such as asthma,
	disorders such as asthma,	Sharifi-Rad et al. (2020), Bloom et al.	chronic bronchitis,
	chronic bronchitis, pulmonary	(2020), Ehlers & Kaufmann (2010),	pneumonia, rhinitis,
	emphysema, pneumonia,	Godreuil et al. (2007), Senapati et al.	sinusitis, and
	apnea, sarcoidosis, and	(2015), Okin & Medzhitov (2012),	tuberculosis.
	others.	Hegde (2015), Deaner & Allendale	
		(2014), Gurven & Liebermanb (2020),	
		Prescott (2013).	
Neoplasms	Adrenal incidentaloma and	Angeli & Terzolo (2002), Samsel &	Cancer (other types,
·	cancers in general.	Seneff (2013), Prescott (2013), Patil	bowel, lung, breast,
		et al. (2011), Kelsen & Wu (2012),	and leukemia) and
		Booth et al. (2000), Gayathri et al.	adrenal disorders.
		(2011), Ehlers & Kaufmann (2010),	
		Samsel & Senef (2015), Senapati et	
		al. (2015), Okin & Medzhitov (2012),	
		Gibbons (2016),	
		Migdał & Živković (2007), Choi et al.	
		(2005), giannouli (2017), Blacher et	
		al. (2016), Sharifi-Rad et al. (2020),	
		Corbett et al. (2018), Hegde (2015),	
		Deaner & Allendale (2014),	
		Hidaka (2012),	
		Gurven & Liebermanb (2020),	
		Prescott (2013).	
Diseases of the	Carpal tunnel syndrome,	Gurven & Liebermanb (2020), Ehlers	Multiple sclerosis,
nervous system	multiple sclerosis,	& Kaufmann (2010), Samsel & Senef	Alzheimer's, neuritis,
	Alzheimer's disease,	(2015), Gawda et al. (2017), Senapati	and Parkinson's
	Parkinson's disease, and	et al. (2015), Giannouli (2017),	disease.
	amyotrophic lateral sclerosis.	Keohane et al. (2017), Sharifi-Rad et	
		al. (2020), Corbett et al. (2018),	
		Ginaldi et al. (2005), Samsel & Seneff	
		(2013).	
Disorders of the	Kidney diseases and urinary	Blacher et al. (2016),	Bladder disease,
genitourinary system	tract problems.	Samsel & Seneff (2013), Gibbons	prostate problems,
		(2016).	kidney disease, and
			urinary tract
			problems.
Reproductive system	Ovarian problems such as	Gurvena & Liebermanb (2020),	Infertility and ovarian
diseases	endometriosis, infertility, pre-	Samsel & Seneff (2013).	problems
	eclampsia, and polycystic		
	ovary syndrome.		
Congenital	Microcephaly in Children.	Samsel & Seneff (2013).	
malformations &			
neurological conditions			
Other Systems or	Necrotizing enterocolitis and	Kelsen & Wu (2012),	Fatigue
General Conditions	fatigue.	Gurvena & Liebermanb (2020).	
	<u> </u>	·	i