

Ethnobotanical study of traditional antidiabetic plants with potential synergistic use with modern formulations in coastal Odisha, India

Satyanarayana CH, Bimalendu Chowdhury, Biswajeet Acharya, Prafulla Kumar Sahu

Correspondence

Satyanarayana CH1*, Bimalendu Chowdhury², Biswajeet Acharya³, Prafulla Kumar Sahu⁴

- ¹ Research Scholar, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
- ² Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha-760010, India
- ³Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, India
- ⁴School of Pharmacy, GIET University, Gunupur, Rayagada, Odisha-765022, India
- *Corresponding Author: satya_pharm@yahoo.com

Ethnobotany Research and Applications 32:49 (2025) - http://dx.doi.org/10.32859/era.32.49.1-26 Manuscript received: 26/08/2025 - Revised manuscript received: 03/12/2025 - Published: 04/12/20x25

Research

Abstract

Background: Diabetes mellitus is a growing global health challenge, particularly in under-resourced coastal and rural regions where conventional healthcare access is limited. In these settings, communities often rely on traditional medicinal knowledge and locally available plants for managing diseases, including diabetes.

Methods: An ethnobotanical survey was conducted over nine months (February-October 2023) in the coastal districts of Odisha, specifically in Balasore and Bhadrak. A total of 105 informants—including traditional healers, farmers, fisherfolk, and women-led self-help group members-were interviewed using semi-structured questionnaires, free listing, and field walks. Data were analyzed using key ethnobotanical indices such as Relative Frequency of Citation (RFC), Cultural Importance Index (CI), and Use Reports per Participant (UR/N).

Results: Fifty medicinal plant species traditionally used for diabetes were documented. Terminalia pallida (RFC: 0.99, Cl: 1.14, UR: 120) and Didymocarpus pedicellata (RFC: 0.99, Cl: 1.10, UR: 115) were the most culturally and therapeutically valued species. Twenty-six polyherbal formulations were identified, with combinations like D. pedicellata + T. pallida (RFC: 0.99, Cl: 1.05) and Syzygium cumini + Phyllanthus emblica (RFC: 0.97, Cl: 0.91) rated as highly effective. These plant pairs are believed to exert synergistic effects on glycemic regulation and organ protection.

Conclusions: The study highlights a rich, community-driven pharmacopoeia of antidiabetic plants, many of which influence key metabolic pathways such as AMP-activated Protein Kinase activation and oxidative stress modulation. These findings support further pharmacological validation of high-ranking species and their combinations. Traditional knowledge, when documented systematically, can guide the development of accessible, integrative antidiabetic therapies rooted in cultural and ecological sustainability.

Keywords: Ethnobotany; Diabetes mellitus; Polyherbal formulation; Traditional medicine; Odisha; Synergistic phytotherapy

Background

Diabetes mellitus is a chronic metabolic condition characterised by elevated blood glucose levels resulting from insufficient insulin production, reduced insulin sensitivity, or both. It is a leading cause of mortality and morbidity across the world, with serious complications including cardiovascular disease, renal failure, neuropathy, and retinopathy (Jain *et al.*, 2025). India is among the countries most affected by this epidemic, where the burden of type 2 diabetes is increasing rapidly. While urban areas experience fast lifestyle transitions that promote obesity and insulin resistance, rural and coastal regions are challenged by limited access to consistent medical infrastructure and affordable long-term therapies (Nnadiukwu *et al.*, 2024).

In this backdrop, communities in many parts of India still rely on traditional healing systems and locally available medicinal plants to manage chronic diseases like diabetes. Traditional medicine in India comprises systems such as Ayurveda, Siddha, Unani, and various tribal and folk practices (Jain *et al.*, 2025). In these systems, plant-based therapies are central, and many natural substances have long been employed to regulate blood sugar and treat symptoms associated with diabetes. The value of this indigenous knowledge, much of which is orally transmitted, remains immense but under-documented. One of the most prominent strategies in traditional medicine is the use of polyherbal formulations, which combine multiple plant species in a single therapeutic preparation (Dellaoui *et al.*, 2025; Kondalkar *et al.*, 2025).

The logic behind polyherbal therapy is rooted in the principle of synergy, where the combined effect of two or more medicinal plants is greater than the sum of their individual effects. Plants often possess multiple phytochemicals such as alkaloids, flavonoids, tannins, glycosides, and terpenoids that can act on diverse metabolic targets (Rath *et al.*, 2024). When combined, these bioactive constituents may enhance absorption, increase receptor binding, modulate enzyme activity, or protect against oxidative damage more efficiently than isolated compounds. Polyherbal formulations are also believed to reduce side effects by balancing opposing properties of individual components (Roy 2025).

From a molecular standpoint, many plant-derived compounds influence key pathways related to glucose metabolism. For example, flavonoids and phenolic acids found in plants like *Syzygium cumini* (Rosa *et al.*, 2024), *Phyllanthus emblica* (Singh *et al.*, 2024), and *Didymocarpus pedicellate* (Hartanti *et al.*, 2025) have been shown to modulate enzymes like alphaglucosidase, alpha-amylase, and DPP-4, which control postprandial glucose levels. Others, such as triterpenoids and steroids, may enhance GLUT4 translocation, promoting glucose uptake into cells. Additionally, several herbal constituents activate the AMP-activated protein kinase (AMPK) pathway, a master regulator of cellular energy homeostasis that is often impaired in diabetic individuals. Many polyphenols also inhibit protein tyrosine phosphatase 1B (PTP1B), thereby improving insulin receptor sensitivity and downstream signalling (Asliddin & Gulnaz, 2025).

The role of traditional healers in preserving and transmitting this knowledge is indispensable. In coastal regions such as Odisha, traditional herbalists and community elders are often the first point of contact for individuals suffering from chronic conditions like diabetes (Nazar et al., 2024). Their therapeutic practices are based on a deep understanding of locally available flora, ecological cycles, and human physiology as interpreted through ancestral wisdom. These healers not only prepare medicines but also guide dietary patterns, seasonal cleansing practices, and the appropriate use of herbs based on an individual's constitution or imbalance (Bhattacharya et al., 2024). Odisha, located on the eastern coast of India, is home to a rich tapestry of cultural and medicinal plant traditions. The coastal belt, covering districts such as Ganjam, Puri, Kendrapara, Jagatsinghpur, and Balasore, supports ecosystems ranging from sandy beaches and mangroves to moist deciduous forests and sacred groves. Local communities in these areas—including fisherfolk, coastal cultivators, women-led self-help groups, and herbal vendors—use a variety of plants to prepare home remedies for diabetes (Ralte et al., 2024). These include decoctions, pastes, powders, and fermented extracts derived from fruits, roots, leaves, seeds, and bark. While some plants like *Momordica charantia* (bitter gourd) and *Gymnema sylvestre* (Gudmar) are widely recognized, others like *Didymocarpus pedicellata* and *Terminalia pallida* remain largely unknown to the scientific community, despite their consistent use in local formulations (Jain et al., 2025).

Despite the widespread use of these plant combinations, there is limited scientific validation of their synergistic effects, especially in real-world polyherbal preparations. Very few studies have explored how these formulations act at cellular and systemic levels, how they influence existing pharmacotherapies, or how they vary across different cultural contexts (Frimpong *et al.*, 2024). The therapeutic success of many of these polyherbal combinations is deeply rooted in collective experience and empirical observation, often refined over generations of trial and error. Ethnobotanical research is a powerful approach to document this traditional wisdom and assess its relevance in modern health challenges (Priyanka *et al.*, 2024). By systematically recording the identity of antidiabetic plants, their parts used, methods of preparation, dosage, perceived

efficacy, and source of knowledge, ethnobotanical surveys help preserve disappearing knowledge systems. Additionally, through tools like relative frequency of citation (RFC) and cultural importance index (CI), researchers can identify the most valued species and combinations, thus prioritizing them for pharmacological testing (Ajao & Sadgrove, 2024).

In this context, the present study was designed to explore and document the traditional knowledge related to the use of medicinal plants for the management of diabetes in the coastal belt of Odisha. The primary objective was to carry out an ethnobotanical survey to identify plant species that are commonly used by local communities for controlling blood sugar levels. The study also aimed to gather information on the parts of the plant used, methods of preparation, routes of administration, and the traditional names associated with these plants. In addition, the research intended to understand how this knowledge is transmitted across generations and how different social and occupational groups perceive the effectiveness of these remedies. Another important focus of the study was to identify and compile plant combinations used in traditional practices and to propose a set of potential polyherbal formulations that reflect community-based usage. Through this approach, the study seeks to lay a cultural and scientific foundation for future research that can validate and develop antidiabetic remedies inspired by traditional practices.

Materials and Methods

Study area

The present study was conducted in the coastal plains of northern Odisha, focusing on selected areas of Balasore and Bhadrak districts. These regions lie between 21.3-21.9°N latitude and 86.6-87.3°E longitude, forming a transitional ecological zone between the Bay of Bengal and the inland alluvial plains. The landscape includes sandy coasts, tidal wetlands, estuaries, mangrove patches, and riverine floodplains (Behera *et al.*, 2025).

Major rivers such as the Subarnarekha, Baitarani, and Salandi enrich the region's biodiversity and agricultural productivity. The area experiences a humid tropical monsoon climate, receiving 1400-1600 mm of annual rainfall mainly from June to September. Temperatures range from about 10°C in winter to above 40°C in summer. High humidity and saline winds create unique microclimates that shape local vegetation and cropping systems.

Soil types vary from sandy loam near the coast to fertile alluvial soils inland (Sahoo & Bhoi, 2025). The flora includes tropical deciduous trees, medicinal herbs, coastal shrubs, and mangrove associates, all supporting a wide range of traditional healing practices. Interior villages preserve ancient ecological traditions and are inhabited by tribal and non-tribal communities who depend heavily on herbal medicine.

The coastal region has a rich maritime history dating back to ancient Kalinga, with trade links to Southeast Asia. These interactions contributed to the blending of indigenous and foreign ethnobotanical knowledge, making the region an important site for studying cultural adaptation and traditional medical practices (Bhoi & Ahirwar, 2025). Figure 1 shows the map of the study area.

Tribal Profile of the Study Region

Tribal communities form a major part of the rural population in the study area. According to recent census data, about 29% of people in selected blocks of Balasore and Bhadrak belong to the Scheduled Tribes. The major groups include the Bathudi, Santal, Lodha, Kolha, Bhuyan, and Mankidia communities.

These groups inhabit forest-fringed and coastal villages and possess extensive knowledge of local ecosystems. The Bathudi and Santal are primarily agricultural, while the Lodha and Mankidia depend more on forest-based livelihoods. Languages such as Odia, Santali, and tribal dialects are used interchangeably. Literacy rates among the tribal population range from 45-65%, and herbal healing remains widely practiced through oral traditions (Sahu & Mahalik, 2024; Jena & Devi, 2024).

Field Study

The ethnobotanical survey was conducted over a period of nine months, from February to October 2023, covering five administrative blocks: Remuna and Nilagiri in Balasore district, and Basudevpur, Dhamnagar, and Chandbali in Bhadrak district, by adopting the literature of Aumeeruddy & Mahomoodally,2020. The sites were chosen to represent ecological variation, tribal diversity, accessibility, and the willingness of the local communities to participate. A total of 105 participants were recruited using a purposive sampling approach, focusing on individuals recognized within their communities for their expertise in traditional medicinal plant knowledge. The participants included tribal elders, folk healers, coastal herbalists, experienced users of plant-based remedies, fisherfolk, crop cultivators, women from self-help groups, and local herbal

vendors. Efforts were made to ensure a balanced representation across age, gender, and social roles to enhance the inclusiveness and credibility of the data collected.

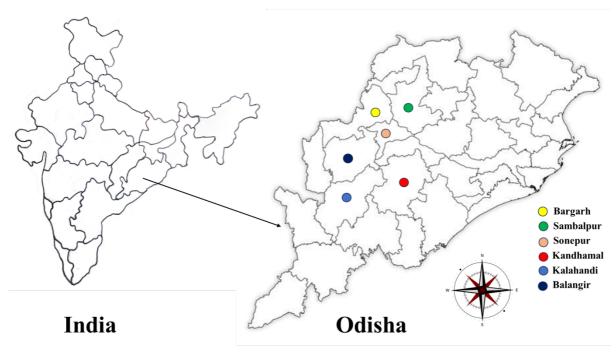


Figure 1. Map of the study area

Communication of Concepts and Interview Procedure

Since biomedical concepts such as diabetes and blood sugar control do not always translate directly into local languages, these concepts were carefully communicated in Odia and Santali through culturally relevant descriptions of associated symptoms, including frequent urination, excessive thirst, weight loss, and fatigue. Preliminary consultations with local health workers and translators helped identify appropriate terms and expressions that participants could readily understand. Data collection was carried out using semi-structured interviews, free listing, and guided field walks, during which participants were asked to describe the plants they use for symptoms corresponding to diabetes, the specific parts of the plants utilized, methods of preparation and administration, whether plants are used alone or in combinations, observed therapeutic effects, and the mode of knowledge transmission, including family, apprenticeship, or community sharing. All interviews were conducted with prior informed consent, audio-recorded when permitted, and supplemented by detailed field notes to capture contextual observations and nuances of plant use (Acharya et al., 2023).

Taxonomic Identification of Plant Specimens

Plant specimens reported by participants were systematically collected and preserved as voucher specimens to ensure accurate documentation. Detailed photographs of leaves, flowers, and fruits were taken to support morphological identification. Preliminary identification was performed using regional floras and relevant ethnobotanical literature, while final verification of scientific names was carried out through authoritative online databases, including Plants of the World Online (https://powo.science.kew.org) and the International Plant Name Index (https://www.ipni.org). All verified specimens were deposited at the Herbarium Unit, Department of Botany, Fakir Mohan University, Balasore, Odisha, providing a permanent reference for future research. This methodological framework incorporated ecological, cultural, and linguistic diversity, thereby enhancing the scientific rigor, reproducibility, and long-term value of the ethnobotanical study.

Knowledge Documentation, Coding, and Analysis

To evaluate the ethnobotanical data collected on traditionally used antidiabetic plants, we employed several quantitative indices that help measure the significance and cultural relevance of each species. One of the key tools used was the Use Value (UV), which quantifies how frequently a particular plant is mentioned by informants in relation to its therapeutic applications. This index offers insight into the prominence of each species within the community's traditional knowledge system. The UV was calculated by dividing the total number of use reports for each plant by the number of informants

participating in the study, thus indicating both the popularity and versatility of the plant in managing diabetes. This method helps identify plants that are not only widely recognized but also potentially involved in synergistic interactions within polyherbal formulations (Sharma *et al.*, 2025).

$$UV = \frac{\sum U}{N}$$

Where, ΣU denotes the total number of use reports for a given species, and N represents the total number of informants interviewed. This index helps in highlighting plants that are widely recognized and used in multiple contexts, indicating their versatility and embeddedness in local health practices.

We recorded the Use Report (UR) as the aggregate number of times a particular plant species was mentioned by informants for its therapeutic applications, reflecting its overall prominence within the community. To evaluate the level of agreement among informants about the medicinal relevance of specific plants, we also calculated the Relative Frequency of Citation (RFC), which serves as an indicator of shared traditional knowledge. The RFC was determined using the following formula:

$$RFC = \frac{FC}{N}$$

Where, FC represents the number of informants who cited the species, and N is the total number of informants interviewed. We employed the Cultural Importance Index (CI) to assess the overall ethnobotanical relevance of each plant species by accounting for both the number of informants citing a species and the diversity of its reported uses across different therapeutic contexts. This metric provided a broader perspective on how individual plant species are integrated into the community's traditional healthcare practices. The CI was calculated using the formula (Ogwu *et al.*, 2025)

$$CI = \sum_{i=1}^{n} \left(n \frac{URij}{N} \right)$$

Where, UR represents the number of use-reports for each use category and N is the total number of informants. This approach enabled us to identify species that hold not only therapeutic value but also a culturally embedded role in local medical traditions.

Results

Demographic Information of the Participants

A total of 105 participants were interviewed during the study. The highest number of respondents came from Gopalpur (14.29%), followed by Puri (13.33%), Paradip (12.38%), and Chandipur (11.43%). Other sites such as Konark, Talsari, Astaranga, Pentha (Kendrapara), and Devi River Mouth (Jagatsinghpur) contributed nearly equally to the remainder.

Gender distribution was nearly balanced, with males comprising 51.43% and females 48.57% of the sample. Fisherfolk, including small-scale boat owners and helpers, represented the largest occupational group (24.76%). This was followed by women's self-help group members involved in herbal product sales, dried fish, or handicrafts (21.90%), traditional healers (20.00%), coastal farmers (18.10%), and herbal vendors (15.24%).

The majority of participants were aged 60-80 years (37.14%), indicating a predominance of elderly knowledge holders. Other age groups included 40-60 years (27.62%), below 40 years (22.86%), and above 80 years (12.38%). Educational levels varied, with most having primary education (30.48%), followed by secondary (26.67%), no formal education (23.81%), and collegelevel education (19.05%). Table 1 summarizes the socio-demographic characteristics of participants.

Table 1. Socio-Demographic Profile of Study Participants

Socio-Demographic	Parameters	Sample	Percentage
Variables		Number	(%)
Locality	Gopalpur	15	14.29
	Puri	14	13.33
	Paradip	13	12.38
	Chandipur	12	11.43
	Talsari	10	9.52

	Actorongo	10	9.52
	Astaranga	-	
	Konark	11	10.48
	Pentha (Kendrapara)	10	9.52
	Devi River Mouth (Jagatsinghpur district)	10	9.52
Gender	Male	54	51.43
	Female	51	48.57
Occupation	Traditional herbal practitioners	21	20.00
	Fisherfolk (including small-scale boat owners and helpers)	26	24.76
	Coconut/cashew cultivators and coastal farmers	19	18.10
	Women SHG members (selling forest/herbal products,	23	21.90
	dried fish, or handicrafts)		
	Local herbal vendors / plant sellers (fresh or dried)	16	15.24
Age Group	Below 40 years	24	22.86
	40-60 years	29	27.62
	60-80 years	39	37.14
	Above 80 years	13	12.38
Education Level	No formal education	25	23.81
	Primary education	32	30.48
	Secondary / High school	28	26.67
	Vocational / College-level	20	19.05

Most Utilised Plants in Traditional Antidiabetic Formulations

The survey documented 50 medicinal plant species belonging to diverse families, with most collected from wild habitats. Commonly used parts included leaves, fruits, roots, bark, stems, and occasionally whole plants, with leaves being dominant. Seasonal availability ranged mainly from August to February, although species like *Tinospora cordifolia*, *Murraya koenigii*, and *Aloe vera* were accessible year-round.

Most plants were gathered from forests, riverbanks, and roadside groves, while some were cultivated in home gardens. Decoctions and powders were the most common preparation forms, followed by juices, infusions, and pastes, reflecting the simplicity of indigenous methods.

Manual collection methods such as plucking, root digging, bark scraping, and stem cutting were widely practiced. Species like *Gymnema sylvestre*, *Momordica charantia*, *Syzygium cumini*, *Tinospora cordifolia*, *Terminalia chebula*, *Didymocarpus pedicellata*, and *Terminalia pallida* were recorded with voucher specimens and appeared central to traditional diabetic treatment systems. Table 2 provides a detailed list of the 50 species documented.

High-Consensus Antidiabetic Plants Based on Multi-Index Evaluation

Quantitative analysis identified the top ten antidiabetic plants using indices such as Informant Citations (IP), Informant Responses (IR), Use Reports (UR), Relative Frequency of Citation (RFC), and Cultural Importance Index (CI). *Terminalia pallida* ranked highest with 104 citations, 100 responses, and 120 use reports, yielding an RFC of 0.99 and CI of 1.14. This indicates its dominant therapeutic role and broad cultural acceptance.

Didymocarpus pedicellata followed closely (CI = 1.10), valued for nephroprotective and glucose-lowering properties. Phyllanthus emblica ranked next, known for its antioxidant and glucose-modulating effects. Desmodium gangeticum (RFC = 0.91; CI = 1.06) was commonly cited for immunomodulatory and hepatic support in diabetes management.

Other top species included *Pterocarpus marsupium*, *Momordica charantia*, *Andrographis paniculata*, *Tinospora cordifolia*, *Aegle marmelos*, and *Syzygium cumini*, all recognized for enhancing insulin sensitivity, reducing oxidative stress, and supporting liver function. Table 3 summarizes the quantitative indices of all 50 species.

Table 2. Ethnobotanical Details of Antidiabetic Plant Species Documented in Coastal Odisha

Species Name	Family	Local Name	Season Available	Voucher Specimen No.	Habitat	Part Used	Consumable Form	Collection Method	Nature (Wild/Cultivated)
Andrographis paniculata (Burm.f.) Nees	Acanthaceae	Kalmegha	Sept-Dec	OUH-008	Marshy lands	Whole plant	Juice, dried powder	Whole plant pull	Wild
Justicia adhatoda L.	Acanthaceae	Basanga	Oct-Feb	OUH-017	Village Leaves J boundary hedges		Juice, paste	Leaf plucking	Wild/Cultivated
Achyranthes aspera L.	Amaranthaceae	Apamaranga	Aug-Nov	OUH-049	Forest margins			Hand-harvested	Wild
Mangifera indica L.	Anacardiaceae	Amba	May-July	OUH-027	Homesteads	Leaves	Juice, decoction	Leaf hand- picking	Cultivated
Calotropis gigantea (L.) W.T.Aiton	Apocynaceae	Arakh	Year-round	OUH-046	Dry open fields	Leaf, root	Paste, latex extract	Cautious plucking	Wild
<i>Gymnema sylvestre</i> R.Br.	Apocynaceae	Gudmar	Oct-Jan	OUH-001	Forest edges	Leaves	Decoction, powder	Manual plucking	Wild
Holarrhena pubescens Wall. ex G.Don	Apocynaceae	Kureya	May-Sept	OUH-015	Forest clearings	Bark, seed	Decoction, powder	Bark stripping	Wild
Aloe vera (L.) Burm.f.	Asphodelaceae	Ghrutakumari	Year-round	OUH-031	Garden patches	Leaf gel	Juice, raw gel	Leaf cutting	Cultivated
Terminalia arjuna (Roxb. ex DC.) Wight & Arn.	Combretaceae	Arjuna	Nov-Mar	OUH-044	Riverbanks, forest edge	Bark	Powder, decoction	Bark scraping	Wild
Terminalia bellirica (Gaertn.) Roxb.	Combretaceae	Bahada	Nov-Feb	OUH-039	Dry deciduous forests	Fruit	Powder, decoction	Fruit collection	Wild
Terminalia chebula Retz.	Combretaceae	Harida	Oct-Jan	OUH-007	Dry deciduous forest	Fruit	Powder, infusion	Collected when dry	Wild
Terminalia pallida Brandis	Combretaceae	Asan Harida	Nov-Feb	OUH-012	Hill slopes, dry groves	Fruit	Powder, decoction	Fruit collection	Wild/Semi- cultivated
Costus speciosus (J.Koenig) Sm.	Costaceae	Keu kandha	July-Oct	OUH-040	Moist slopes, streamsides	Rhizome	Paste, infusion	Rhizome digging	Wild
Coccinia grandis (L.) Voigt	Cucurbitaceae	Kunduri	May-Sept	OUH-003	Field margins	Leaves, fruit	Curry, raw, decoction	Handpicked	Semi-cultivated
Momordica charantia L.	Cucurbitaceae	Karala / Kalara	Aug-Nov	OUH-002	Home gardens	Fruit	Juice, cooked veg	Knife-cutting	Cultivated
Dillenia indica L.	Dilleniaceae	Oau / Oulu	Aug-Nov	OUH-016	Moist forest margin	Fruit	Raw, juice	Fruit handpicked	Wild/Sacred groves
Bauhinia variegata L.	Fabaceae	Kanchan Tree	Feb-Apr	OUH-026	Roadsides	Bark, flowers	Decoction	Bark stripping	Semi-cultivated

Cajanus scarabaeoides (L.) Thouars	Fabaceae	Banar Harada	Sept-Nov	OUH-021	Open grassland	Seeds	Powder, infusion	Pod collection	Wild
Cassia auriculata L.	Fabaceae	Chinnapendi	Aug-Oct	OUH-010	Roadside slopes	Flowers, bark	Decoction	Flower plucking	Wild
Cassia occidentalis L.	Fabaceae	Kasundhi	Aug-Oct	OUH-042	Roadside wasteland	Leaf	Decoction, paste	Leaf collection	Wild
Clitoria ternatea L.	Fabaceae	Aparajita	Sept-Dec	OUH-050	Garden hedges	Root, flower	Tea, decoction	Flower/root collection	Cultivated
Desmodium gangeticum (L.) DC.	Fabaceae	Salaparni	July-Oct	OUH-013	Lateritic soils	Root	Decoction	Root digging	Wild
Pongamia pinnata (L.) Pierre	Fabaceae	Karanja	Oct-Jan	OUH-043	Riverbanks	Seed, leaf	Oil, decoction	Seed collection	Wild
Pterocarpus marsupium Roxb.	Fabaceae	Bijasal	Nov-Feb	OUH-022	Moist deciduous forest	Heartwood	Soaked extract	Bark shaving	Wild
Trigonella foenum- graecum L.	Fabaceae	Methi	Nov-Feb	OUH-005	Cultivated land	Seeds, leaves	Powder, sprouts	Harvested with crop	Cultivated
Swertia chirata (Roxb. ex Fleming) Karsten	Gentianaceae	Chiraita	Aug-Nov	OUH-025	Hill slopes	Whole plant	Decoction, powder	Whole plant collection	Wild (seasonal)
Didymocarpus pedicellata R.Br.	Gesneriaceae	Patharkuchi	Sept-Dec	OUH-011	Moist rocky slopes	Leaves	Juice, decoction	Leaf plucking	Wild
Clerodendrum indicum (L.) Kuntze	Lamiaceae	Bhuin Neem	Aug-Nov	OUH-014	Roadside hedges	Leaves, root	Paste, juice	Root and leaf handpick	Wild
Ocimum gratissimum L.	Lamiaceae	Ram Tulasi	Year-round	OUH-023	Backyard gardens	Leaves	Juice, infusion	Leaf plucking	Cultivated
Vitex negundo L.	Lamiaceae	Nirgundi	Aug-Dec	OUH-045	Near ponds	Leaf	Infusion	Leaf handpicked	Wild
Lawsonia inermis L.	Lythraceae	Henna / Mehendi	Oct-Feb	OUH-032	Dry field borders	Leaves	Decoction, paste	Leaf plucking	Semi-wild
Abroma augusta L.	Malvaceae	Ulatkambal	Sept-Dec	OUH-029	Moist forest undergrowth	Bark, root	Decoction	Bark/root collection	Wild
Helicteres isora L.	Malvaceae	Marodphali	Oct-Feb	OUH-047	Dry deciduous groves	Fruit	Decoction, powder	Fruit plucked	Wild
Sida cordifolia L.	Malvaceae	Bala	July-Oct	OUH-035	Waste lands	Root, stem	Decoction	Root harvesting	Wild
Azadirachta indica A.Juss.	Meliaceae	Neem	Mar-June	OUH-041	Village roadsides	Leaf, bark	Juice, powder	Leaf plucking	Wild/Cultivated
Stephania japonica (Thunb.) Miers	Menispermaceae	Akani bela	June-Sept	OUH-037	Wetland boundaries	Root, stem	Paste, decoction	Stem/root collection	Wild
Tinospora cordifolia (Willd.) Miers	Menispermaceae	Guluchi	Year-round	OUH-006	Moist fence lines	Stem	Juice, decoction	Stem cutting	Wild/Semi- cultivated
Tinospora crispa (L.) Hook.f. & Thomson	Menispermaceae	Guluchi bela	Year-round	OUH-020	Climbing on fences	Stem	Decoction, juice	Stem cutting	Wild/Semi- domestic

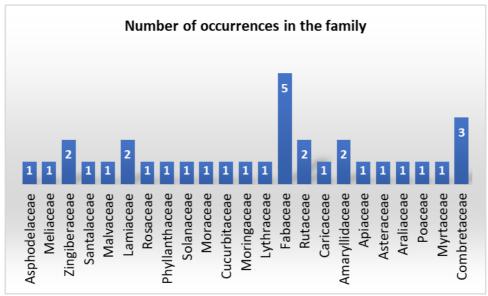
Ficus racemosa L.	Moraceae	Dumur	May-Oct	OUH-024	Riverbanks, wetlands	Bark, fruit	Decoction, raw fruit	Bark scraping	Wild
Eugenia heyneana Wall.	Myrtaceae	Jamun gacha	May-July	OUH-018	Moist deciduous groves	Fruit, bark	Decoction, powder	Bark scraping	Wild
Syzygium cumini (L.) Skeels	Myrtaceae	Jamukoli	May-July	OUH-004	Roadside, groves	Seed, bark	Powder, decoction	Fruit collection + bark scraping	Wild
Boerhavia diffusa L.	Nyctaginaceae	Punarnava	Aug-Nov	OUH-034	Field margins	Whole plant	Decoction, paste	Entire plant pulled	Wild
Averrhoa carambola L.	Oxalidaceae	Kamrakh	June-Aug	OUH-030	Garden edges	Fruit	Raw, juice	Fruit picking	Cultivated
Phyllanthus emblica L.	Phyllanthaceae	Aonla	Nov-Jan	OUH-033	Sacred groves, groves	Fruit	Juice, raw, powder	Fruit plucking	Wild/Cultivated
Bacopa monnieri (L.) Wettst.	Plantaginaceae	Brahmi	July-Oct	OUH-048	Marshy areas	Whole plant	Fresh juice,	Entire plant pulled	Wild
Cymbopogon citratus (DC.) Stapf	Poaceae	Gandharaj ghasa	Year-round	OUH-036	Garden edges, plantations	Leaf	Infusion, tea	Leaf cutting	Cultivated
Aegle marmelos (L.) Corrêa	Rutaceae	Bela	May-Aug	OUH-009	Sacred groves	Fruit, leaf	Juice, raw pulp	Fruit picked	Wild/Cultivated
<i>Murraya koenigii</i> (L.) Spreng.	Rutaceae	Bhursunga Patra	Year-round	OUH-019	Homestead backyards	Leaves	Curry leaf, decoction	Leaf plucking	Cultivated
Lygodium flexuosum (L.) Sw.	Schizaeaceae	Bicha lata	Aug-Oct	OUH-038	Damp forest floor	Leaflets	Decoction	Handpicked	Wild
Zingiber officinale Roscoe	Zingiberaceae	Ada	Dec-Mar	OUH-028	Home gardens	Rhizome	Powder, infusion	Rhizome digging	Cultivated

Table 3. Quantitative Ethnobotanical Indices of Antidiabetic Plant Species Used in Coastal Odisha

Species Name	IP (participant)	IR (response)	UR	RFC	CI
Gymnema sylvestre R.Br.	98	90	101	0.93	0.96
Momordica charantia L.	96	85	108	0.91	1.03
Coccinia grandis (L.) Voigt	85	76	95	0.81	0.90
Syzygium cumini (L.) Skeels	100	99	89	0.95	0.85
Trigonella foenum-graecum L.	85	82	103	0.81	0.98
Tinospora cordifolia (Willd.) Miers	89	87	99	0.85	0.94
Terminalia chebula Retz.	84	80	85	0.80	0.81
Andrographis paniculata (Burm.f.) Nees	90	88	106	0.86	1.01
Aegle marmelos (L.) Corrêa	101	90	102	0.96	0.97
Cassia auriculata L.	83	75	90	0.79	0.86
Didymocarpus pedicellata R.Br.	104	102	115	0.99	1.10
Terminalia pallida Brandis	104	100	120	0.99	1.14
Desmodium gangeticum (L.) DC.	90	85	110	0.86	1.05
Clerodendrum indicum (L.) Kuntze	100	93	95	0.95	0.90
Holarrhena pubescens Wall. ex G.Don	99	93	100	0.94	0.95
Dillenia indica L.	86	80	98	0.82	0.93
Justicia adhatoda L.	84	79	105	0.80	1.00
Eugenia heyneana Wall.	85	78	96	0.81	0.91
Murraya koenigii (L.) Spreng.	78	74	86	0.74	0.82
Tinospora crispa (L.) Hook.f. & Thomson	71	69	106	0.68	1.01
Cajanus scarabaeoides (L.) Thouars	89	84	107	0.85	1.02
Pterocarpus marsupium Roxb.	94	90	110	0.90	1.05
Ocimum gratissimum L.	96	95	100	0.91	0.95
Ficus racemosa L.	89	80	94	0.85	0.90
Swertia chirata (Roxb. ex Fleming) Karsten	100	99	82	0.95	0.78
Bauhinia variegata L.	95	90	86	0.90	0.82
Mangifera indica L.	94	90	93	0.90	0.89
Zingiber officinale Roscoe	81	75	99	0.77	0.94
Abroma augusta L.	86	84	86	0.82	0.82

Averrhoa carambola L.	79	75	95	0.75	0.90
Aloe vera (L.) Burm.f.	92	88	98	0.88	0.93
Lawsonia inermis L.	101	86	86	0.96	0.82
Phyllanthus emblica L.	100	84	111	0.95	1.06
Boerhavia diffusa L.	102	99	100	0.97	0.95
Sida cordifolia L.	85	80	98	0.81	0.93
Cymbopogon citratus (DC.) Stapf	96	94	93	0.91	0.89
Stephania japonica (Thunb.) Miers	82	80	97	0.78	0.92
Lygodium flexuosum (L.) Sw.	84	79	86	0.80	0.82
Terminalia bellirica (Gaertn.) Roxb.	87	84	102	0.83	0.97
Costus speciosus (J.Koenig) Sm.	83	75	100	0.79	0.95
Azadirachta indica A.Juss.	85	79	97	0.81	0.92
Cassia occidentalis L.	89	79	90	0.85	0.86
Pongamia pinnata (L.) Pierre	95	88	84	0.90	0.80
Terminalia arjuna (Roxb. ex DC.) Wight & Arn.	92	90	95	0.88	0.90
Vitex negundo L.	94	86	85	0.90	0.81
Calotropis gigantea (L.) W.T.Aiton	101	88	99	0.96	0.94
Helicteres isora L.	88	85	70	0.84	0.67
Bacopa monnieri (L.) Wettst.	82	80	85	0.78	0.81
Achyranthes aspera L.	79	71	89	0.75	0.85
Clitoria ternatea L.	99	89	80	0.94	0.76

Comparative Analysis of Ethnobotanical Indices


Across all five indices—IP, IR, UR, RFC, and CI—certain plants consistently emerged as culturally and therapeutically dominant. *Terminalia pallida* topped the IP chart with 104 informants, followed by *Didymocarpus pedicellata*, *Phyllanthus emblica*, *Desmodium gangeticum*, and *Pterocarpus marsupium*.

The IR-based chart also placed *Terminalia pallida* first (100 responses), reaffirming its frequent use across formulations. In the UR analysis, *Terminalia pallida* again showed the highest number (120), followed closely by *Desmodium gangeticum* and *Phyllanthus emblica*, suggesting their use in treating both diabetes and related complications.

In the RFC comparison, *Terminalia pallida, Didymocarpus pedicellata, Phyllanthus emblica*, and *Desmodium gangeticum* all recorded values above 0.85, indicating strong community consensus. The CI chart confirmed *Terminalia pallida* (1.14) as the most culturally significant, followed by *Didymocarpus pedicellata* (1.10), *Desmodium gangeticum* (1.06), and *Phyllanthus emblica* (1.02). Figures 2-6 collectively illustrate the comparative ethnobotanical significance of the top ten antidiabetic plant species across different evaluation indices. Figure 2 shows the ten most frequently mentioned species based on Informant Participation (IP), highlighting the plants most commonly cited by respondents. Figure 3 presents the same species ranked according to Informant Responses (IR), reflecting the diversity of their reported uses. Figure 4 depicts the top ten plants with the highest number of Use Reports (UR), emphasizing their broad therapeutic application in traditional diabetic care. Figure 5 ranks these species by Relative Frequency of Citation (RFC), indicating the level of community consensus regarding their efficacy. Finally, Figure 6 displays the ranking based on the Cultural Importance Index (CI), integrating both frequency and diversity of use to reveal the most culturally and therapeutically valued plants in the study. Together, these findings reveal deep-rooted cultural trust and empirical understanding of plant synergy, forming a foundation for pharmacological validation and future phytomedicine development.

Figure 2. Pictorial representation of an ethnobotanical survey conducted in a specific area: [A] Collection of plant specimens of the sample *Curcuma longa* for the herbarium. [B] Visit a specific area where *Withania somnifera* and *Glycyrrhiza glabra* were harvested at the study location. [C] Collection of data from informants in the study area. [D] A field visit to the garden where *Allium cepa* and *Allium sativum* were harvested.

Fiure.3. Distribution of distinct families amongst plant specimens from the ethnobotanical survey

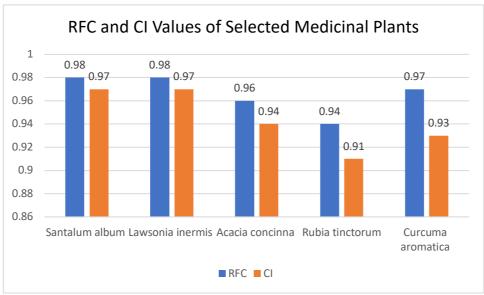


Figure 4. Representation of plant species above 0.9 RFC & CI

Traditional Polyherbal Ayurvedic Formulations for Diabetes Management

A total of 26 traditional Ayurvedic formulations used for diabetes management were recorded. These included combinations of plants with hypoglycemic, hepatoprotective, and immunomodulatory effects. Frequently occurring species included Momordica charantia, Syzygium cumini, Gymnema sylvestre, Terminalia chebula, Andrographis paniculata, and Boerhavia diffusa.

Formulations such as Nidigdhadi Vati and Karela Shunti Vati feature *Momordica charantia*, while *Syzygium cumini* appears in Jamunavaleha and Jambupatra Kashaya. *Gymnema sylvestre*, known for regenerating pancreatic β -cells, is a key component in Gudmarishta and Madhunashini Leha.

Dosage forms varied, including tablets, decoctions, fermented liquids, herbal jams, and medicated oils. Common adjuvants such as honey, ghee, and Trikatu churna were used to enhance absorption and palatability. Most formulations were administered before meals or at bedtime for optimal glycemic control. Table 4 lists all recorded formulations with preparation type, timing, and dosage.

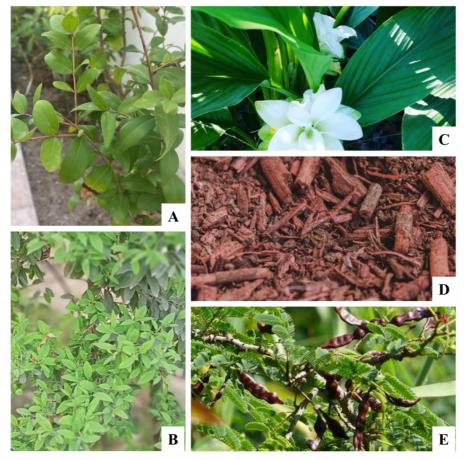


Figure 5. Collection of photographs of plant specimens whose RFC and CI are more than 0.90. [A] *Lawsonia inermis*, [B] *Santalum album*,[C]*Curcuma aromatica*[D]*Rubia tinctorum*,[E]*Acacia concinna*

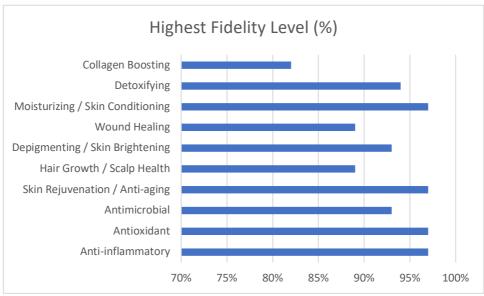


Figure. 6: Representation of the plant species with the highest percentile in each pharmacological effect.

Table 4. Traditional Antidiabetic Polyherbal Formulations Documented from Coastal Odisha

S.No	Formulation Name	Main Plant Ingredients	Vehicle	Additional Ingredients	Time of Consumption	Dose (per day)
1	Nidigdhadi Vati	Momordica charantia, Syzygium cumini	Tablet (dry)	Trikatu churna	Before breakfast	1-2 tablets
2	Chitradya Kashayam	Andrographis paniculata, Aegle marmelos, Ficus racemosa	Water decoction	Ginger slices	Before lunch	50 ml
3	Jamunavaleha	Syzygium cumini, Phyllanthus emblica	Sugar-free paste	Honey, ghee	Night (post dinner)	1-2 tsp
ļ	Triphala Madhughna Ras	Terminalia chebula, T. bellirica, P. emblica	Hot water	Black pepper	Early morning	30 ml
,	Madhumeharishtam	Didymocarpus pedicellata, Terminalia pallida	Fermented decoction	Jaggery, Piper longum	After meals	15-20 ml
ć	Karela Shunti Vati	Momordica charantia, Zingiber officinale	Dry tablet	Rock salt	Before food	1 tablet
•	Gudmarishta	Gymnema sylvestre, Ocimum gratissimum, Cassia auriculata	Self-fermented decoction	Raisins	After meals	20 ml
}	Panarnava Vati	Boerhavia diffusa, Tinospora cordifolia	Compressed tablet	Gum acacia	Before breakfast	1-2 tablets
)	Karpuradi Kashayam	Mangifera indica, Cajanus scarabaeoides, Swertia chirata	Water decoction	Clove powder	Before lunch	40 ml
.0	Kanchnaradi Arka	Bauhinia variegata, Lawsonia inermis	Distilled liquid	Camphor essence	Mid-morning	10-15 drops
1	Madhunashini Leha	Gymnema sylvestre, Abroma augusta	Herbal jam	Cow ghee, jaggery	Before bed	1 tsp
2	Trinetradi Vati	Cassia occidentalis, Azadirachta indica, Vitex negundo	Tablet	Long pepper, dried ginger	After lunch	2 tablets
.3	Arjunadi Rasayana	Terminalia arjuna, Helicteres isora	Ghee-based	Licorice, rock sugar	Morning empty stomach	5 gm
.4	Amrutaphaladi Syrup	Averrhoa carambola, Murraya koenigii	Syrup	Cardamom, lemon juice	After meals	10 ml
.5	Tiktaka Kashaya	Andrographis paniculata, Boerhavia diffusa, Sida cordifolia	Warm water	Neem powder	Morning & evening	40 ml
.6	Bahuvalli Arista	Tinospora crispa, Clitoria ternatea	Fermented decoction	Jaggery, dry grapes	After food	20 ml
7	Nishkumbhadi Vati	Justicia adhatoda, Costus speciosus	Compressed tablet	Talcum base, starch	Before sleep	1 tablet
.8	Patoladi Churna	Pongamia pinnata, Calotropis gigantea	Dry powder	Black salt	Before lunch	1-2 gm with water
9	Jirakadya Mantha	Cymbopogon citratus, Zingiber officinale, Murraya koenigii	Cold infusion	Cumin seed extract	Early morning	50 ml
.0	Bhringapatri Leha	Lawsonia inermis, Ocimum gratissimum	Herbal paste	Honey, sesame oil	Nighttime	1 tsp
1	Tripratyayadi Vati	Desmodium gangeticum, Bacopa monnieri, Achyranthes aspera	Tablet	Cow milk binder	After food	2 tablets
2	Tiktakarista	Cassia auriculata, Terminalia chebula, Vitex negundo	Fermented decoction	Cinnamon bark	Evening	20 ml
3	Raktashodhini Ras	Stephania japonica, Lygodium flexuosum	Decoction	Dried amla, turmeric	Early evening	30 ml
4	Nayabindu Taila	Didymocarpus pedicellata, Aloe vera	Medicated oil	Castor oil, Camphor	External use (abdomen)	5 ml massage
25	Jambupatra Kashaya	Syzygium cumini, Mangifera indica, Terminalia bellirica	Water decoction	Cumin, coriander	Before breakfast	40 ml

26	Srotoshodhaka Arista	Holarrhena pubescens. Swertia chirata	Fermented decoction	Fennel, jaggery	After lunch	15-20 ml
20	Si Otosi iodi idika 7 il ista	Holal Hiera paseseens, swertia emilata	i ci ilicitica accoction	i cilici, jugger y	/ litter failter	15 20 1111

Table 5. Community Consensus, Use Pattern, and Perceived Effectiveness of Traditional Antidiabetic Polyherbal Combinations

S.No	Main Plant Ingredients	IP	IR	UR	RFC	CI	Source of Knowledge	Perceived Effectiveness
1	Momordica charantia, Syzygium cumini	89	87	102	0.85	0.97	Inherited	Highly effective
2	Andrographis paniculata, Aegle marmelos, Ficus racemosa	90	88	102	0.86	0.97	Learned from healer	Moderately effective
3	Syzygium cumini, Phyllanthus emblica	102	99	96	0.97	0.91	Inherited	Highly effective
4	Terminalia chebula, T. bellirica, P. emblica	95	91	99	0.90	0.94	Community shared	Moderately effective
5	Didymocarpus pedicellata, Terminalia pallida	104	103	110	0.99	1.05	Learned from healer	Highly effective
6	Momordica charantia, Zingiber officinale	96	95	94	0.91	0.90	Self-experimented	Highly effective
7	Gymnema sylvestre, Ocimum gratissimum, Cassia auriculata	98	96	95	0.93	0.90	Inherited	Moderately effective
8	Boerhavia diffusa, Tinospora cordifolia	100	98	96	0.95	0.91	Community shared	Highly effective
9	Mangifera indica, Cajanus scarabaeoides, Swertia chirata	98	95	100	0.93	0.95	Inherited	Ineffective
10	Bauhinia variegata, Lawsonia inermis	85	83	80	0.81	0.76	Learned from healer	Moderately effective
11	Gymnema sylvestre, Abroma augusta	99	96	94	0.94	0.90	Inherited	Highly effective
12	Cassia occidentalis, Azadirachta indica, Vitex negundo	101	99	98	0.96	0.93	Community shared	Moderately effective
13	Terminalia arjuna, Helicteres isora	98	96	97	0.93	0.92	Learned from healer	Highly effective
14	Averrhoa carambola, Murraya koenigii	96	94	91	0.91	0.87	Inherited	Moderately effective
15	Andrographis paniculata, Boerhavia diffusa, Sida cordifolia	92	90	97	0.88	0.92	Learned from healer	Highly effective
16	Tinospora crispa, Clitoria ternatea	89	88	92	0.85	0.88	Self-experimented	Moderately effective
17	Justicia adhatoda, Costus speciosus	103	100	101	0.98	0.96	Community shared	Moderately effective
18	Pongamia pinnata, Calotropis gigantea	96	94	99	0.91	0.94	Inherited	Moderately effective
19	Cymbopogon citratus, Zingiber officinale, Murraya koenigii	98	95	99	0.93	0.94	Community shared	Highly effective
20	Lawsonia inermis, Ocimum gratissimum	100	98	102	0.95	0.97	Self-experimented	Moderately effective
21	Desmodium gangeticum, Bacopa monnieri, Achyranthes aspera	99	98	100	0.94	0.95	Learned from healer	Highly effective
22	Cassia auriculata, Terminalia chebula, Vitex negundo	90	88	102	0.86	0.97	Community shared	Highly effective
23	Stephania japonica, Lygodium flexuosum	101	99	101	0.96	0.96	Inherited	Moderately effective
24	Didymocarpus pedicellata, Aloe vera	98	97	102	0.93	0.97	Learned from a healer	Highly effective
25	Syzygium cumini, Mangifera indica, Terminalia bellirica	96	95	96	0.91	0.91	Inherited	Highly effective
26	Holarrhena pubescens, Swertia chirata	90	87	98	0.86	0.93	Learned from healer	Moderately effective

Commonly Used Polyherbal Combinations

Several prominent polyherbal combinations were identified. The pairing of *Didymocarpus pedicellata* and *Terminalia pallida* ranked highest in both RFC and CI, showing strong healer-based trust. The classic blend of *Momordica charantia* and *Syzygium cumini* was another widely cited remedy for blood sugar control.

Combinations such as *Syzygium cumini* with *Phyllanthus emblica* supported glucose and liver regulation, while *Boerhavia diffusa* with *Tinospora cordifolia* was valued for immune and hepatic protection. Other notable pairs included *Gymnema sylvestre* with *Abroma augusta* (insulin sensitivity), and *Cassia occidentalis*, *Azadirachta indica*, and *Vitex negundo* (detox and skin health).

Healer-taught formulations like *Desmodium gangeticum* with *Bacopa monnieri* and *Achyranthes aspera* were used for cognitive and systemic health. The classical *Triphala* combination remained central for digestion and detoxification. Table 5 summarizes these combinations along with IP, IR, UR, RFC, CI, and perceived effectiveness.

Transmission and Perceived Effectiveness of Traditional Knowledge

Knowledge of antidiabetic plants was transmitted mainly through inheritance (34.6%) and healer instruction (30.8%). Community sharing accounted for 23.1%, while self-experimentation contributed 11.5%, reflecting both traditional continuity and personal innovation.

The *Didymocarpus pedicellata* + *Terminalia pallida* achieved the highest RFC (0.99), reflecting its healer-taught origin and high perceived effectiveness. Other top-ranked combinations, such as *Syzygium cumini* + *Phyllanthus emblica* and *Boerhavia diffusa* + *Tinospora cordifolia*, were mainly inherited or community-shared and rated highly effective.

Some formulations, like *Justicia adhatoda* + *Costus speciosus* and *Lawsonia inermis* + *Ocimum gratissimum*, though frequently cited, had moderate effectiveness ratings—indicating popularity based on availability rather than efficacy. An exception was *Mangifera indica* + *Cajanus scarabaeoides* + *Swertia chirata*, which ranked high in RFC but was considered ineffective.

Overall, inherited and healer-derived knowledge forms the backbone of ethnomedicinal practice. High RFC values correspond with perceived efficacy, validating community trust. However, discrepancies between citation frequency and actual effectiveness point to areas requiring scientific re-evaluation and standardisation.

Discussion

Ethnobotanical Significance and Consensus Use

The present ethnobotanical study conducted in the coastal districts of Odisha provides valuable insights into the enduring relevance and pharmacological potential of traditional polyherbal formulations for diabetes management. Among the 26 identified plant combinations, a few emerged as culturally significant and pharmacologically promising based on metrics like Relative Frequency of Citation (RFC), Use Report per Participant (UR/N), and Cultural Importance Index (CI). Most notably, the pairing of *Didymocarpus pedicellata* and *Terminalia pallida* stood out with the highest consensus values, reflecting widespread community use, healer-transmitted knowledge, and perceived efficacy in glycemic control. These findings highlight the sophisticated empirical framework through which these combinations have evolved over generations.

Phytochemical Profile and Pharmacological Potential

Didymocarpus pedicellata, commonly known as Shilapushpa, is well-documented in Ayurvedic medicine for its antiurolithiatic and nephroprotective properties. Its bioactive compounds-flavonoids, chalcones, triterpenes, and steroids such as didymocarpene and pedicellin (Nanjala et al., 2022)-exhibit antioxidant, anti-inflammatory, and hypoglycemic activity. Pharmacokinetic studies in streptozotocin-induced diabetic rats show that co-administration with gliclazide enhances hypoglycemic effects, though repeated dosing may alter drug metabolism (Singh et al., 2025). Its nephroprotective role is linked to reducing urinary oxalate levels and oxidative stress.

Similarly, *Terminalia pallida* fruits and leaves contain hydrolyzable tannins, gallic acid, and ellagic acid, which contribute to antioxidant and lipid-lowering properties. Experimental models have shown reductions in serum cholesterol, triglycerides, and LDL, alongside increases in HDL (Saleem *et al.*, 2024). Cardioprotective effects observed in myocardial infarction models further validate its traditional use in managing diabetes with cardiovascular complications (Harrasi *et al.*, 2022).

Synergistic Polyherbal Formulations

Several other plant combinations documented in the study demonstrated significant ethnomedicinal value. For instance, *Syzygium cumini* with *Phyllanthus emblica* is rich in jamboline and ellagic acid, modulating insulin sensitivity and suppressing sugar absorption (Sharma *et al.*, 2019). *Boerhavia diffusa* with *Tinospora cordifolia* combines hepatoprotective and insulinotropic effects (Ghosh *et al.*, 2024A), while *Momordica charantia* with *Zingiber officinale* enhances glucose uptake via charantin and polypeptide-p (Ghosh *et al.*, 2024B; Hafeez *et al.*, 2023). Formulations with *Gymnema sylvestre*, *Ocimum gratissimum*, or *Abroma augusta* target glucose absorption, beta-cell regeneration, and antioxidant defenses (Ditchou *et al.*, 2024).

Other notable species include Andrographis paniculata, Aegle marmelos, Ficus racemosa, and Terminalia chebula, contributing systemic cleansing, antidiabetic, and antioxidant benefits (Suemanotham et al., 2023; Kaur et al., 2024). Less frequently cited but pharmacologically promising plants—Desmodium gangeticum, Costus speciosus, Justicia adhatoda, Lawsonia inermis, and Calotropis gigantea—were also integrated into effective combinations, supporting multi-organ modulation in diabetes (Khattak et al., 2024; Musfiroh et al., 2024).

Molecular Mechanisms and Multi-Targeted Effects

Many of the studied plants influence complex signalling networks regulating glucose homeostasis and metabolic function. Phytochemicals such as gymnemic acids, charantin, berberine, and flavonoids modulate alpha-amylase and alpha-glucosidase activity, AMP-activated protein kinase (AMPK), insulin receptor substrate (IRS), and PI3K/Akt pathways (Borozdina *et al.*, 2024; Hassan *et al.*, 2023). These mechanisms enhance GLUT4-mediated glucose uptake, improve insulin sensitivity via PPAR- γ/α , downregulate PTP1B, and regulate antioxidant pathways including Nrf2 and NF- κ B, addressing oxidative stress and chronic inflammation associated with type 2 diabetes (Parveen *et al.*, 2021; Zhang *et al.*, 2021).

Synergistic effects in polyherbal formulations further enhance efficacy, bioavailability, and receptor sensitivity across multiple organs. For example, *Tinospora cordifolia* with *Boerhavia diffusa* improves hepatic glucose regulation, while *Syzygium cumini* with *Phyllanthus emblica* enhances mitochondrial function and reduces lipid peroxidation in pancreatic tissues (Pande *et al.*, 2021; Sridevi & Thirumal, 2025). Network pharmacology and transcriptomic analyses reveal upregulation of insulin-responsive genes and downregulation of gluconeogenic enzymes (PEPCK, G6Pase), with some metabolites acting as epigenetic modulators through HDAC inhibition or SIRT1 activation (Alhamhoom *et al.*, 2024). A list of plants with their phytochemical composition, pharmacological actions, and molecular mechanisms of antidiabetic medicinal species obtained from the survey has been mentioned in Table 6.

Sustainability and Traditional Preparation Practices

Most highly cited plants are either cultivated or harvested non-destructively from wild or semi-wild habitats. *Terminalia pallida* fruits are collected without harming the tree, while *Didymocarpus pedicellata* regenerates seasonally from rocky slopes (Zahoor *et al.*, 2024). Such practices demonstrate an ecological ethic intrinsic to traditional medicine, valuing long-term sustainability. Preparation methods-decoctions, powders, pastes, and infusions—ensure accessibility, simplicity, and independence from industrial processes (Ali *et al.*, 2024). Less effective historical combinations, such as *Mangifera indica* with *Swertia chirata* and *Cajanus scarabaeoides*, highlight the need for ongoing community evaluation and scientific validation (Bhattacharya *et al.*, 2024).

Future Scope

Future research can build upon this ethnobotanical survey by conducting detailed phytochemical and pharmacological investigations of polyherbal formulations documented in Odisha's coastal communities. Studies focusing on the isolation of bioactive compounds, identification of synergistic interactions, and the standardization of extracts will provide a scientific foundation for developing multi-target antidiabetic therapies. Researchers can explore mechanistic studies using in vitro and in vivo models to understand how these formulations influence key metabolic pathways, insulin signalling, oxidative stress, and inflammation. There is also scope for clinical translation, where well-designed trials can evaluate efficacy, safety, and potential herb-drug interactions of selected polyherbal formulations. Systems biology and network pharmacology approaches could help predict multi-component interactions and guide the design of combination therapies. Sustainability and conservation research is another important avenue. Investigations into cultivation practices, propagation methods, and community-based conservation strategies can ensure long-term availability of medicinal plants while preserving traditional knowledge. Future researchers can also explore the digitization of ethnobotanical knowledge, the creation of databases, and integration with modern informatics tools for wider accessibility and cross-cultural validation. Additionally, the unique cultural context of Odisha's coastal communities provides opportunities to study region-specific formulations and their relevance in managing metabolic disorders, paving the way for locally tailored, culturally acceptable, and integrative healthcare solutions.

Table 6. Phytochemical Composition, Pharmacological Actions, and Molecular Mechanisms of Antidiabetic Medicinal Plant Species obtained from the survey.

Species Name	Major Chemical Constituents	Pharmacological Action	Molecular Mechanism in Diabetes	References
Gymnema sylvestre	Gymnemic acids, gurmarin, flavonoids	Hypoglycemic, β-cell regeneration	Inhibits glucose absorption, stimulates insulin, $\beta\text{-}$ cell protection	Acharya et al., 2024
Momordica charantia	Charantin, polypeptide-p, triterpenoids, flavonoids	Hypoglycemic, insulin- mimetic	Enhances insulin, inhibits carb enzymes, improves glucose uptake	Agrawal & Kulkarni, 2023
Coccinia grandis	Quercetin, flavonoids, alkaloids	Hypoglycemic, antioxidant	Inhibits α-amylase/glucosidase, enhances insulin	Akter <i>et al.</i> , 2024
Syzygium cumini	Jamboline, ellagic acid, quercetin	Hypoglycemic, antioxidant	Enhances insulin, modulates PPARγ, β-cell protection	Bhatt & Sharma, 2025
Trigonella foenum- graecum	Diosgenin, trigonelline, galactomannan, saponins	Hypoglycemic, insulin secretagogue	Stimulates insulin, inhibits carb digestion	Chintanippula & Chowdhury, 2024
Tinospora cordifolia	Tinosporaside, alkaloids, diterpenes	Hypoglycemic, antioxidative	Activates PI3K/AMPK, DPP-4 inhibition, β-cell regeneration	Chi <i>et al.</i> , 2016
Terminalia chebula	Chebulic acid, gallic acid, tannins	Hypoglycemic, lipid lowering	Reduces glycation, β-cell support, antioxidant	Cordiano et al., 2025
Andrographis paniculata	Andrographolide, flavonoids	Hypoglycemic, anti- inflammatory	Upregulates GLUT4, suppresses NF-κB, ↑ insulin sensitivity	Dhara <i>et al.</i> , 2024
Aegle marmelos	Marmelosin, aegeline, coumarins	Hypoglycemic, antioxidant	Enhances glucose uptake, β-cell protection	Gandhi <i>et al.</i> , 2012
Cassia auriculata	Flavonoids, anthraquinones, tannins	Hypoglycemic, antioxidant	Inhibits carb enzymes, improves insulin response	Gwata <i>et al.,</i> 2025
Didymocarpus pedicellata	Flavonoids, saponins	Antioxidant, antihyperglycemic	Protects β-cells, reduces oxidative stress	Harini <i>et al.</i> , 2025
Terminalia pallida	Tannins, flavonoids, triterpenoids	Hypoglycemic, antioxidant	Increases insulin, inhibits carb enzymes	Ismail <i>et al.,</i> 2024
Desmodium gangeticum	Alkaloids, flavonoids, saponins	Antioxidant, antidiabetic	Stimulates insulin, blocks carb-digesting enzymes	Jachak <i>et al.</i> , 2024
Clerodendrum indicum	Flavonoids, clerodin, saponins	Hypoglycemic, antioxidant	Stimulates insulin, inhibits carb digestion	Jayaweera et al., 2024
Holarrhena pubescens	Conessine, alkaloids, flavonoids	Hypoglycemic, anti- inflammatory	Inhibits carb enzymes, improves insulin secretion	Karpe <i>et al.,</i> 2025
Dillenia indica	Betulinic acid, flavonoids, phenolic acids	Hypoglycemic, antioxidant	Protects β-cells, reduces oxidative stress	Kadyan et al., 2025
Justicia adhatoda	Vasicine, flavonoids, alkaloids	Hypoglycemic, anti- inflammatory	Enhances insulin, protects β-cells	Khan & Kibria, 2024
Eugenia heyneana	Flavonoids, essential oils	Antioxidant, hypoglycemic	Improves insulin function, antioxidant enzyme modulation	Khan <i>et al.</i> , 2024
Murraya koenigii	Mahanimbine, carbazole alkaloids, flavonoids	Hypoglycemic, insulin secretagogue	Stimulates insulin, delays carb absorption	Kumar <i>et al.</i> , 2025
Tinospora crispa	Tinosporaside, diterpenoids	Hypoglycemic, antioxidant	Increases insulin, reduces glucose absorption	Kumar <i>et al.,</i> 2024a (Sida cordifolia)
Cajanus scarabaeoides	Isoflavonoids, flavonoids, phenolics	Hypoglycemic, antioxidant	Enhances insulin, inhibits digestive enzymes	Kumaravelu <i>et al.,</i> 2025
Pterocarpus marsupium	Pterostilbene, marsupsin, tannins	Regenerates β-cells, hypoglycemic	Stimulates β-cell regrowth, inhibits glucose absorption	Kumari et al., 2024
Ocimum gratissimum	Eugenol, flavonoids, terpenes	Hypoglycemic, antioxidant	Enhances insulin, reduces oxidative stress	Lestari et al., 2023

Ficus racemosa	Leucocyanidin, β-sitosterol, tannins	Hypoglycemic, antioxidant	Improves insulin activity, inhibits carb enzymes	Mahomoodally et al., 2012
Swertia chirata	Swertiamarin, amarogentin, xanthones	Hypoglycemic, antioxidant	Stimulates insulin, reduces oxidative stress	Malik <i>et al.,</i> 2025
Bauhinia variegata	Flavonoids, saponins, alkaloids	Hypoglycemic, antioxidative	Enhances insulin, reduces glucose absorption	Mohan <i>et al.</i> , 2020
Mangifera indica	Mangiferin, polyphenols, triterpenoids	Hypoglycemic, antioxidant	Inhibits carb enzymes, enhances glucose uptake	Moreno-Vargas et al., 2024
Zingiber officinale	Gingerols, shogaols, paradols	Hypoglycemic, anti-	Enhances insulin sensitivity, reduces oxidative	Nille <i>et al.</i> , 2021
		inflammatory	stress	
Abroma augusta	Flavonoids, alkaloids, saponins	Hypoglycemic, antioxidant	Stimulates insulin, reduces glucose absorption	Nenni & Karahuseyin, 2024
Averrhoa carambola	Flavonoids, oxalate, saponins	Hypoglycemic, antioxidant	Enhances insulin, antioxidant enzyme modulation	Neto <i>et al.,</i> 2024
Aloe vera	Aloin, aloe-emodin, polysaccharides	Hypoglycemic, antioxidant	Increases insulin secretion, improves glucose metabolism	Pangavhane & Pache, 2025
Lawsonia inermis	Lawsone, flavonoids, tannins	Antioxidant, hypoglycemic	Improves β-cell function, reduces oxidative stress	Pathak <i>et al.</i> , 2024
Phyllanthus emblica	Emblicanin, gallic acid, ellagic acid	Hypoglycemic, potent antioxidant	Enhances insulin, blocks α-glucosidase	Pradhan et al., 2025
Boerhavia diffusa	Punarnavine, flavonoids, alkaloids	Antioxidant, hypoglycemic	Stimulates insulin, inhibits carb-digesting enzymes	Ramjan <i>et al.</i> , 2025
Sida cordifolia	Ephedrine, flavonoids, alkaloids	Hypoglycemic, antioxidant	Enhances insulin activity, reduces oxidative load	Rani <i>et al.,</i> 2024
Cymbopogon citratus	Citral, flavonoids, essential oils	Hypoglycemic, antioxidant	Inhibits carb enzymes, improves glucose tolerance	Saka <i>et al.,</i> 2024
Stephania japonica	Alkaloids (stepharanine), flavonoids	Hypoglycemic, antioxidant	Improves insulin activity, reduces oxidative damage	Saqulain et al., 2025
Lygodium flexuosum	Flavonoids, phenolic acids	Hypoglycemic, antioxidant	Enhances insulin secretion, antioxidant support	Sharma et al., 2024
Terminalia bellirica	Gallic acid, ellagic acid, chebulagic acid	Hypoglycemic, lipid lowering	Reduces oxidative stress, stimulates insulin	Sheethal et al., 2025
Costus speciosus	Diosgenin, saponins, alkaloids	Hypoglycemic, antioxidant	Upregulates insulin, inhibits glucose absorption	Shukla <i>et al.,</i> 2025
Azadirachta indica	Azadirachtin, nimbolide, flavonoids	Hypoglycemic, anti- inflammatory	Stimulates insulin, inhibits digestive enzymes	Singh & Bharadvaja, 2025
Cassia occidentalis	Anthraquinones, flavonoids, alkaloids	Antioxidant, hypoglycemic	Blocks carb-digesting enzymes, enhances insulin	Song <i>et al.,</i> 2022
Pongamia pinnata	Pongamol, flavonoids, karanjin	Hypoglycemic, antioxidant	Improves insulin secretion, antioxidant activity	Tabassum & Ahmad, 2021
Terminalia arjuna	Tannins, arjunic acid, flavonoids	Hypoglycemic, cardioprotective	Enhances insulin, reduces oxidative damage	Tahir <i>et al.</i> , 2025
Vitex negundo	Flavonoids, casticin, alkaloids	Hypoglycemic, antioxidant	Upregulates insulin, reduces glucose absorption	Tiwari <i>et al.,</i> 2024
Calotropis gigantea	Calotropin, flavonoids, cardiac glycosides	Antioxidant, hypoglycemic	Enhances insulin, potentiates β-cell function	Van <i>et al.,</i> 2024
Helicteres isora	Flavonoids, sterols, saponins	Hypoglycemic, antioxidant	Improves glucose uptake, stimulates insulin	Valsa et al., 2021
Bacopa monnieri	Bacoside A/B, flavonoids, saponins	Hypoglycemic, neuroprotective	Enhances insulin, reduces oxidative stress	Widowati et al., 2024
Achyranthes aspera	Ecdysterone, alkaloids, saponins	Antidiabetic, antioxidant	Increases insulin, inhibits carb-digesting enzymes	Yadav et al., 2024
Clitoria ternatea	Ternatins, anthocyanins, flavonoids	Hypoglycemic, antioxidant	Enhances insulin secretion, modulates carb enzymes	Yadav et al., 2025

Conclusion

The ethnobotanical exploration of antidiabetic plant use in Odisha's coastal communities confirms a deeply rooted and culturally sustained herbal knowledge system. A total of fifty plant species and twenty-six polyherbal formulations were documented, reflecting not only the rich botanical diversity but also the community's reliance on synergistic interactions among multiple plants. Among these, Terminalia pallida and Didymocarpus pedicellata emerged as particularly significant due to their consistent use and high cultural importance, validated by quantitative ethnobotanical indices. Unlike many previous studies that focus on single plants or inland regions, this research uniquely highlights polyherbal formulations in the coastal belt of Odisha, a region characterised by ecological and cultural heterogeneity, where diverse tribal and nontribal communities maintain a living tradition of herbal medicine. Many of the documented formulations are known to influence key metabolic regulators, including AMPK, PTP1B, and insulin signalling pathways, and frequently integrate antioxidant, hepatoprotective, and nephroprotective herbs, demonstrating a sophisticated community-level understanding of diabetes as a systemic disorder. Sustainable harvesting practices and simple preparation methods further ensure replicability and ecological stewardship, enhancing the relevance of these remedies in modern contexts. While some widely used combinations were found to be less effective, the study underscores the importance of ongoing scientific validation to optimise formulation efficacy. The novelty of this study lies in its focus on traditional polyherbal combinations within a specific coastal context, capturing region-specific knowledge that has been largely underexplored. These findings offer a valuable foundation for future pharmacological research, including in vitro and in vivo testing of multi-plant extracts, as well as clinical investigations to assess safety, efficacy, and potential synergistic effects. By bridging traditional wisdom with modern biomedical research, this work provides a roadmap for developing culturally acceptable, affordable, and effective antidiabetic interventions, while preserving invaluable ethnobotanical knowledge for future generations.

Declaration

List of Abbreviations: RFC: Relative Frequency of Citation; **CI**: Cultural Importance Index; **UR**: Use Report; **IP**: Informant Participant; **IR**: Informant Response; **AMPK**: AMP-activated Protein Kinase; **PTP1B**: Protein Tyrosine Phosphatase 1B; **SHG**: Self-Help Group

Ethics approval and consent to participate: Verbal prior informal information consent was obtained before the survey **Consent for publication:** People who participated in this study gave their prior informed consent for the publication of the article and their images.

Availability of data and material: All the supporting data available in the article

Competing interests: The author declared no competing interests.

Funding: No funding was received for the work.

Author's Contribution: C.S, B.A, P.K.S & B.C carried out the survey and collected the data. B.A & P.K.S designed and analyzed the data and framed the final manuscript. C.S & B.C prepared and proofread the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors express their gratitude towards the guides and traditional healers who willingly participated in the study. The authors express their gratitude to the various racial tribes, indigenous communities, and local herbalists for their collaboration and provision of essential information.

Literature cited

Acharya B, Behera A, Sahu PK, Behera S. 2024. Sustainable health practices: ethnobotanical insights into seasonal plants of Kalahandi, Western Odisha, India for food and medicine. Ethnobotany Research and Applications 29:1-26.

Acharya B, Mishra DP, Tripathy S, Barik B, Pradhan KC, Singhgartia S, Parida D, Sahu P. 2023. The prevalence and cultural perceptions of hysteria among rural communities in India: an ethnobotanical study in Balangir and Bargarh Districts of Odisha, India. Ethnobotany Research and Applications 26:1-25.

Agrawal OD, Kulkarni YA. 2023. Treatment with *Terminalia chebula* extract reduces insulin resistance, hyperglycemia and improves SIRT1 expression in type 2 diabetic rats. Life 13(5):1168.

Ajao AA, Sadgrove NJ. 2024. Cosmetopoeia of African plants in hair treatment and care: Topical nutrition and the antidiabetic connection? Diversity 16(2):96.

Akter S, Ali H, Shati AA, Alfaifi MY, Elbehairi SE, Sayyed RZ, Yeasmin T. 2024. Antidiabetic activity of methanolic extract of *Hibiscus sabdariffa* Linn. fruit in alloxan-induced Swiss albino diabetic mice. Open Agriculture 9(1):20220243.

Alhamhoom Y, Ahmed SS, M RK, Salahuddin MD, DR B, Ahmed MM, Farhana SA, Rahamathulla M. 2023. Synergistic antihyperglycemic and antihyperlipidemic effect of polyherbal and allopolyherbal formulation. Pharmaceuticals 16(10):1368.

Ali A, Kant K, Gupta S, Kaur N, Jindal P, Naeem M. 2024. Enhancing nutritional and antidiabetic properties of Stevia rebaudiana Bert.—a sweet-leaf plant through various scientific approaches. In: Antidiabetic Medicinal Plants. Academic Press. pp. 229-253.

Asliddin A, Gulnaz M. 2025. The synergistic effect and pharmacological activity of phytotherapeutic combinations in metabolic syndrome. American Journal of Biomedical Science & Pharmaceutical Innovation 5(04):47-50.

Aumeeruddy MZ, Mahomoodally MF. 2020. Traditional herbal therapies for hypertension: A systematic review of global ethnobotanical field studies. South African Journal of Botany 135:451-464.

Barik B, Pattnaik G, Satapathy BS, Acharya B, Kumar LA. 2024. An ethnobotanical study of medicinal plants used by ethnic communities of Nuapada District, Odisha to treat periodontal disorders. Ethnobotany Research and Applications 28:1-20.

Behera SK, Subudhi L, Mohapatra S, Panda AK. 2025. A review on the ethnomedicinal plants used for the traditional treatment of malaria in the Mayurbhanj district of Odisha, India. Malaria Journal 24(1):228.

Bhatt SM, Sharma N. 2025. The potential of various herbal plants for potential therapeutic treatment for diabetes management. *Annals of the National Academy of Medical Sciences (India)* Jul:1-1.

Bhattacharya S, Gupta N, Flekalová A, Gordillo-Alarcón S, Espinel-Jara V, Fernández-Cusimamani E. 2024. Exploring folklore Ecuadorian medicinal plants and their bioactive components focusing on antidiabetic potential: An overview. Plants 13(11):1436.

Bhoi DK, Ahirwar RK. 2025. Traditional medicine insights: exploring ethnomedicinal leafy vegetables of the Bhunjia and Paharia tribes in Sunabeda Wildlife Sanctuary, Odisha, India. Genetic Resources and Crop Evolution 72(2):2077-2101.

Borozdina NA, Dyachenko IA, Popkova DV. 2024. Promising directions for regulating signaling pathways involved in the type 2 diabetes mellitus development (a review). Russian Journal of Bioorganic Chemistry 50(4):1263-1284.

Chi S, She G, Han D, Wang W, Liu Z, Liu B. 2016. Genus *Tinospora*: ethnopharmacology, phytochemistry, and pharmacology. Evidence-Based Complementary and Alternative Medicine 2016(1):9232593.

Chintanippula S, Chowdhury B. 2025. Pharmacokinetic and pharmacodynamic interaction of *Didymocarpus pedicellata* with gliclazide in normal and diabetic rats. [Journal name not specified].

Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. 2025. Anthraquinones and *Aloe vera* extracts as potential modulators of inflammaging mechanisms: a translational approach from autoimmune to onco-hematological diseases. Molecules 30(6):1251.

da Rosa AC, Hoscheid J, Garcia VA, de Oliveira Santos Junior O, da Silva C. 2024. Phytochemical extract from Syzygium cumini leaf: Maximization of compound extraction, chemical characterization, antidiabetic and antibacterial activity, and cell viability. Processes 12(10):2270.

Dellaoui H, Mesbah EA, Guenifi K, Kabouche HE, Bouchekioua S, Gueddou A, Srief M, Guellout W, Benaziz B. 2025. Assessment of the synergistic effects of bioactive molecules and antidiabetic drugs: An analytical review. Journal of Molecular and Pharmaceutical Sciences 4(1):8-36.

Dhara J, Saha SK, Saha PS, Chakraborty R. 2024. Star fruit (*Averrhoea carambola*): exploring its nutritional value, health benefits, and consideration for potential risk and future application in biotechnology and medicine. Current Pharmacology Reports 11(1):7.

Ditchou YO, Leutcha PB, Miaffo D, Mamoudou H, Ali MS, à Ngnoung GA, Soh D, Agrawal M, Darbawa R, Tchouboun EZ, Lannang AM. 2024. In vitro and in silico assessment of antidiabetic and antioxidant potencies of secondary metabolites from Gymnema sylvestre. Biomedicine & Pharmacotherapy 177:117043.

Frimpong EK, Thembane N, Hlatshwayo S, Ngcobo M, Gqaleni N. 2024. Indigenous medicinal plants used in the management of diabetes in Africa: 5 years (2019-2024) in perspective. Plants 13(14):1898.

Gandhi GR, Ignacimuthu S, Paulraj MG. 2012. Hypoglycemic and β -cell regenerative effects of *Aegle marmelos* (L.) Corr. bark extract in streptozotocin-induced diabetic rats. Food and Chemical Toxicology 50(5):1667-1674.

Ghosh AK, Dewaele P, Hu H, Panda SK, Luyten W. 2024. Antimicrobial efficacy of select medicinal plant extracts from Bangladesh against food-borne bacterial pathogens. Journal of Food Safety 44(3):e13147.

Ghosh AK, Islam HR, Banu GR, Panda SK, Schoofs L, Luyten W. 2024. Effects of Piper betle and Phyllanthus emblica leaf extracts on the growth and resistance of black tiger shrimp, Penaeus monodon, against pathogenic Vibrio parahaemolyticus. Aquaculture International 32(3):3689-3708.

Gwata ET, Mashifane DC, Maphosa TM, Jank L, Mushoriwa H. 2025. Leveraging underutilized food plants for food and nutrition security: selected nutritional attributes in pigeonpea (*Cajanus cajan*) seed. In: Food Security and Nutrition, pp. 335-350. CRC Press.

Hafeez J, Naeem M, Ali T, Sultan B, Hussain F, Ur Rashid H, Nadeem M, Shirzad I. 2023. Comparative study of antioxidant, antidiabetic, cytotoxic potentials, and phytochemicals of fenugreek (*Trigonella foenum-graecum*) and ginger (*Zingiber officinale*). Journal of Chemistry 2023(1):3469727.

Harini P, Priyadharshini R, Rajeshkumar S. 2025. Comprehensive analysis of the anti-inflammatory and anti-diabetic properties of aqueous-alcoholic extract of *Boerhavia diffusa*: an *in vitro* study. Cuestiones de Fisioterapia 54(3):2796-2810.

Hartanti D, Romdhoni MF, Hamad A. 2025. Crude drug standardization and antioxidant properties of an Indonesian antidiabetic polyherbal formulation and plant constituents. Tropical Journal of Natural Product Research 9(5).

Hassan MA, Elmageed GM, El-Qazaz IG, El-Sayed DS, El-Samad LM, Abdou HM. 2023. The synergistic influence of polyflavonoids from Citrus aurantifolia on diabetes treatment and their modulation of the PI3K/AKT/FOXO1 signaling pathways: molecular docking analyses and in vivo investigations. Pharmaceutics 15(9):2306.

Ismail RM, Salman HA, Ibrahim HJ. 2024. Study of phytochemical, biological and pharmacological aspects of *Azadirachta indica*: a review. GSC Biological and Pharmaceutical Sciences 29(1):33-41.

Jachak SM, Thakur MS, Ahirrao P, Goyal A. 2024. *Murraya koenigii* (L.) Spreng. as a natural intervention for diabesity: a review. Current Pharmaceutical Design 30(41):3255-3275.

Jain A, Jangid T, Jangir RN, Bhardwaj GS. 2025. Antidiabetic activity of polyherbal formulations: a comprehensive review. Protoplasma 1-22.

Jain D, Sharma P, Jain V. 2025. Synergistic evaluation of anti-diabetic and hypolipidemic effects of *Alangium salvifolium* and Ocimum sanctum extracts. Journal of Biomaterials Science, Polymer Edition 1-29.

Jayaweera U, Shivashekaregowda NK, Herapathdeniya SK, Paranagama PA. 2024. Ethnopharmacological uses, phytochemistry, pharmacological activities and toxicity of *Justicia adhatoda* L.: a review. Discover Plants 1(1):41.

Jena N, Devi RS. 2024. Some common native medicinal plants used by tribals in Odisha, India. Journal of Biodiversity and Conservation 8(1):75-82.

Jena N, Rout S, Mishra S, Kumar S. 2025. Evaluation of quantitative ethnobotanical uses in Mayurbhanj district, Odisha, India. Journal of Biodiversity and Conservation 9(1):1-29.

Kadyan P, Saini J, Singh P, Arasu PT, Kataria SK. 2025. Unveiling antidiabetic and antioxidant activities of biogenically synthesized red fluorescent graphene quantum dots using *Bauhinia variegata* L. leaves. Discover Sustainability 6(1):3.

Karpe S, Chandewar A, Kochar N, Shrirao A. 2025. Formulation, optimization and characterization of *Pongamia pinnata* phytosomes for therapeutic potential. Indian Journal of Pharmaceutical Education and Research 59(3):949-959.

Kaur N, Sharma S. 2023. Formulation, evaluation, and stability testing of polyherbal antidiabetic capsules. International Journal of Pharmaceutical Investigation 13(1).

Khan JT, Richi AE, Riju SA, Jalal T, Orchi RJ, Singh S, Bhagat P, Abdel-Wahab YH, Ansari P. 2024. Evaluation of antidiabetic potential of *Mangifera indica* leaf in streptozotocin-induced type 2 diabetic rats: focus on glycemic control and cholesterol regulation. Endocrines 5(2):137-152.

Khan M, Kibria S. 2024. Unlocking the insightful antidiabetic effects of lemongrass (*Cymbopogon citratus*): a comprehensive review. PHYTONutrients Aug 19:90-103.

Khattak MM, Mohd-Shukri NA, Mahmood T, Ahmed M, Azmi SN, Alam M, Sarian MN, Ahmed QU. 2024. Antidiabetic activity evaluation of polyherbal formulation in type 2 diabetes mellitus patients. Journal of King Saud University-Science 36(1):103010.

Kondalkar VS, Polshettiwar PP, Choudhari GB, Pawar AT, Choudhari VP. 2025. Evaluation of antidiabetic potential, cardio, pancreatic, nephroprotective effect, and herb-herb-drug interaction of Madhukiran formulations in T2 diabetic rats. Phytomedicine Plus 5(2):100756.

Kumar S, Kumar S, Vishnoi VK, Kumar P, Maheshwari DK. 2024. *Sida cordifolia* L.: ethnobotany, phytonanotechnology, and commercial application. Current Pharmaceutical Biotechnology 25(7):838-859.

Kumar V, Khatri N, Kumar D, Shekhawat M, Vandana Garg V, Kumar A, Kakkar S. 2025. Modern perspectives on the traditional uses, phytochemical profiles, and therapeutic benefits of *Syzygium cumini*. Integrative Medicine Discovery 9:e25007.

Kumaravelu P, Shanmugam R, Jayakodi S. 2025. Advancements in medicinal plant-derived trace element nanoparticles for diabetes mellitus therapy. BioNanoScience 15(3):429.

Kumari S, Saini R, Bhatnagar A, Mishra A. 2024. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Archives of Physiology and Biochemistry 130(6):694-709.

Lestari U, Muhaimin M, Chaerunisaa AY, Sujarwo W. 2023. Anti-aging potential of plants of the Anak Dalam tribe, Jambi, Indonesia. Pharmaceuticals 16(9):1300.

Mahomoodally MF, Subratty AH, Gurib-Fakim A, Choudhary MI, Khan SN. 2012. Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes *in vitro* and reduce postprandial blood glucose peaks *in vivo*. The Scientific World Journal 2012:1-9.

Malik AK, Redhu A, Mohiuddin I, Philippe SK. 2025. Exploring the pharmacological evaluation of Indian medicinal herbs for managing diabetes. Current Analytical Chemistry Feb 26.

Mohan PK, Moola AK, Kumar TS, Kumari BD. 2020. A comprehensive review of the phytochemical and pharmacological properties of *Desmodium gangeticum* (L.) DC. Journal of Advanced Scientific Research 11.

Moreno-Vargas AD, Andrade-Cetto A, Espinoza-Hernández FA, Mata-Torres G. 2024. Proposed mechanisms of action participating in the hypoglycemic effect of the traditionally used *Croton guatemalensis* Lotsy and junceic acid, its main compound. Frontiers in Pharmacology 15:1436927.

Musfiroh I, Ifaya M, Sahidin I, Herawati DM, Tjitraresmi A, Abdurrahman S, Muchtaridi M, Khairul Ikram NK. 2024. Isolation of phenolic compound from Lawsonia inermis and its prediction as anti-diabetic agent using molecular docking and molecular dynamic simulation. Journal of Biomolecular Structure and Dynamics 42(21):11415-11424.

Nanjala C, Odago WO, Rono PC, Waswa EN, Mutinda ES, Oulo MA, Muema FW, Wanga VO, Mkala EM, Kuja J, Njire MM. 2022. A review on ethnobotany, phytochemistry, and pharmacology of the genus *Didymocarpus* Wall. (Gesneriaceae). Journal of Ethnopharmacology 295:115404.

Nazar A, Adnan M, Shah SM, Bari A, Ullah R, Tariq A, Ahmad N. 2024. Ethnobotanical assessment of antidiabetic medicinal plants in District Karak, Pakistan. BMC Complementary Medicine and Therapies 24(1):173.

Nenni M, Karahuseyin S. 2024. Natural production, extraction, and quantification of secondary metabolites with antiallergy properties. In: Propagation to Pharmacopeia, pp. 93-158. CRC Press.

Neto LJ, de Araujo MR, Junior RC, Machado NM, Joshi RK, dos Santos Buglio D, Lamas CB, Direito R, Laurindo LF, Tanaka M, Barbalho SM. 2024. Investigating the neuroprotective and cognitive-enhancing effects of *Bacopa monnieri*: a systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Antioxidants 13(4):393.

Nille GC, Mishra SK, Chaudhary AK, Reddy KR. 2021. Ethnopharmacological, phytochemical, pharmacological, and toxicological review on *Senna auriculata* (L.) Roxb.: a special insight to antidiabetic property. Frontiers in Pharmacology 12:647887.

Nnadiukwu CU, Nnadiukwu TA, Ajuru G, Ogono TG. 2024. Synergistic effect of combined multiple plant extracts on some blood cell indices of diabetic rats. Scientia Africana 23(2):161-174.

Ogwu MC, Ojo AO, Osawaru ME. 2025. Quantitative ethnobotany of Afenmai people of Southern Nigeria: an assessment of their crop utilization, and preservation methods. Genetic Resources and Crop Evolution 72(5):5807-5829.

Pande VB, Chandel SS, Soni V. 2021. Synergistic and safe antidiabetic effect of polyherbal formulation: comprehensive overview. International Journal of Life Sciences and Pharma Research 11(2):P51-P57.

Pangavhane R, Pache M. 2025. Phytochemicals in the management of diabetes mellitus: a comprehensive review. International Journal of Scientific Research and Technology Feb 4.

Parveen A, Sultana R, Lee SM, Kim TH, Kim SY. 2021. Phytochemicals against anti-diabetic complications: targeting the advanced glycation end product signaling pathway. Archives of Pharmacal Research 44(4):378-401.

Pathak S, Pratap A, Sharma R, Jha MK. 2024. The *Phyllanthus emblica* fruits: a review on phytochemistry, traditional uses, bioactive composition and pharmacological activities. Current Topics in Medicinal Chemistry 24(22):1917-1939.

Pradhan D, Sahu PK, Purohit S, Ranajit SK, Acharya B, Sangam S, Shrivastava AK. 2025. Therapeutic interventions for diabetes mellitus-associated complications. Current Diabetes Reviews 21(8):e030524229631.

Priyanka S, Namasivayam SK, Thenmozhi M, Lavanya M, Moovendhan M. 2024. Evaluation of antidiabetic potential of *Fragaria* × *ananassa* Duch., *Annona squamosa* Linn, and *Salvia hispanica* L. methanolic extract-based composite and in silico analysis. Biomass Conversion and Biorefinery 14(19):24397-24406.

Ralte L, Sailo H, Singh YT. 2024. Ethnobotanical study of medicinal plants used by the indigenous community of the western region of Mizoram, India. Journal of Ethnobiology and Ethnomedicine 20(1):2.

Ramjan AH, Akter R, Hasan MS, Amin MF, Muktadir AM, Kamruzzaman HM, Hasan MM. 2025. Phytochemical screening and evaluation of pharmacological activities of *Clerodendrum viscosum* methanolic leaves extract. Journal of Pharmacognosy and Phytochemistry 14(4):209-222.

Rani A, Tabassum F, Sharma AK. 2024. Molecular interplay between phytoconstituents of *Ficus racemosa* and neurodegenerative diseases. European Journal of Neuroscience 59(7):1833-1847.

Rath P, Prakash D, Ranjan A, Chauhan A, Jindal T, Alamri S, Alamri T, Harakeh S, Haque S. 2024. Modulation of insulin resistance by *Silybum marianum* leaves, and its synergistic efficacy with *Gymnema sylvestre*, *Momordica charantia*, *Trigonella-foenum graecum* against protein tyrosine phosphatase 1B. Biotechnology and Genetic Engineering Reviews 40(4):3805-3827.

Roy A. 2025. Antidiabetic and antihyperlipidemic effects, as well as herb-drug interactions, of a polyherbal formulation in streptozotocin-induced diabetic rats. International Journal of Pharmacognosy and Herbal Drug Technology (IJPHDT) 17-28.

Sahoo M, Bhoi C. 2024. Divine botany: unveiling the religious and cultural importance of plants in Odisha. Studies in Indian Anthropology and Sociology 1(2):193-200.

Sahu D, Mahalik G. 2024. Traditional methods of detoxifying medicinal plants: an ethnobotanical survey in the Bargarh district, Odisha. Proceedings of the Indian National Science Academy 1-7.

Saka WA, Oyekunle OS, Akhigbe TM, Oladipo OO, Ajayi MB, Adekola AT, Omole AI, Akhigbe RE. 2024. *Andrographis paniculata* improves glucose regulation by enhancing insulin sensitivity and upregulating GLUT4 expression in Wistar rats. Frontiers in Nutrition 11:1416641.

Saleem A, Akhtar MF, Latif A, Abdel-Daim MM, Baig MM, Saleem M, Mehmood MH. 2024. Chemical characterisation and appraisal of antidiabetic potential of *Terminalia citrina* extract in streptozotocin induced hyperglycaemia in Wistar rats. Archives of Physiology and Biochemistry 130(1):56-69.

Sanagala VM, Porika R, Edupuganti S, Dokuparthi SK, Biman KK. 2024. Molecular docking evaluation of phytochemicals in fruits of *Terminalia pallida* Brandis: implication on immunomodulation. Tropical Journal of Natural Product Research 8(5).

Saqulain S, Verma M, Singh H, Dharmalingam S, MJ E, Srivastav Y, Krishna KV, Ghadge T, Kumar A. 2025. Therapeutic role of *Gymnema sylvestre* and *Momordica charantia* in diabetes management: a detailed review of their mechanisms in insulin resistance, glucose metabolism regulation, and clinical efficacy in type 2 diabetes mellitus. International Journal of Pharmaceutical Sciences 3:1757-1768.

Sharma A, Adhikari D, Wagh VV. 2024. An ethnobotanical investigation of medicinal plants used among rural communities in Northeastern Madhya Pradesh, India: a quantitative study. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 158(5):1160-1181.

Sharma A, Kumar A, Singh AK, Kumar KJ, Narasimhan B, Kumar P. 2024. Ethnomedicinal uses, phytochemistry, pharmacology, and toxicology of *Ruellia tuberosa* L.: a review. Chemistry & Biodiversity 21(8):e202400292.

Sharma AK, Singh C. 2019. Impact of ethanolic extract of *Senna auriculata*, *Phyllanthus emblica* L., *Syzygium cumini* (L.) Skeels used by rural areas of Rajasthan state, India on diabetic neuropathy in rats. European Journal of Pharmaceutical & Medical Research 6(6):659-674.

Sheethal S, Jose SP, Ratheesh M, Rajan S, Sandya S, Samuel S, Madhavan J. 2025. Anti-diabetic effect of herbal formulation (Glymin Plus) on experimental model: possible role in GLP-1 associated pathway. Journal of Pharmaceutical Innovation 20(4):145.

Shukla AK, Tiwari A, Yadav VK, Yadav VP, Kanaujia KA, Mishra MK, Verma MS. 2025. Preliminary phytochemical, isolation, characterization, antioxidant, and antimicrobial activity assessments of *Achyranthes aspera* L. Biosciences Biotechnology Research Asia 22(1):401.

Singh A, Bharadvaja N. 2025. The therapeutic potential of Vitex negundo: a phytochemical exploration. Vegetos Jan 20:1-6.

Singh A, Kumari K, Tandon S, Kaur T, Tandon C. 2025. Reno-protection by *Didymocarpus pedicellata* against oxalate-induced damage: mechanistic insights into mitigation of oxidative stress induced signaling pathways in renal cell line and rat model. Urolithiasis 53(1):1-8.

Singh R, Singh K, Ahirwar V. 2024. Multiherbal formulation effect on blood sugar and body weight in diabetic albino rats. Journal of Stress Physiology & Biochemistry 20(2):165-178.

Song BR, Alam MB, Lee SH. 2022. Terpenoid-rich extract of *Dillenia indica* L. bark displays antidiabetic action in insulinresistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants 11(7):1227.

Sridevi N, Thirumal M. 2025. Evaluation of polyherbal synergy against diabetes: in-vitro analysis. Future Science OA 11(1):2468128.

Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. 2023. Antidiabetic effects of *Andrographis paniculata* supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Frontiers in Pharmacology 14:1077228.

Tabassum H, Ahmad IZ. 2021. *Trigonella foenum-graecum* and its bioactive compounds having potential antidiabetic activity. In: Fenugreek: Biology and Applications, pp. 447-480. Singapore: Springer Singapore.

Tahir H, Akhtar MN, Bishoyi AK, Sanghvi G, Rasheed M, Afzaal M, Imran A, Saeed F, Khare N, Ahmed F, Sahni O. 2025. Nutritional composition, phytochemical profile, extraction methods of bioactive components, and health benefits of *Terminalia arjuna* bark. eFood 6(2):e70038.

Tiwari R, Khatri C, Tyagi LK, Tiwari G. 2024. Expanded therapeutic applications of *Holarrhena antidysenterica*: a review. Combinatorial Chemistry & High Throughput Screening 27(9):1257-1275.

Valsa SM, Parimala K, Revathi K, Komali G. 2021. Phytochemical and biological activities of the genus *Terminalia*, emphasizing on *Terminalia paniculata* L.: a review. Journal of Pharmaceutical Research International 33(62B):229-237.

Van B, Abdalla AN, Algarni AS, Khalid A, Zengin G, Aumeeruddy MZ, Mahomoodally MF. 2024. *Zingiber officinale* Roscoe (ginger) and its bioactive compounds in diabetes: a systematic review of clinical studies and insight of mechanism of action. Current Medicinal Chemistry 31(7):887-903.

Widowati W, Darsono L, Utomo HS, Sabrina AH, Natariza MR, Tarigan AC, Waluyo NW, Gleyriena AM, Siahaan BH, Oktaviani R. 2024. Antidiabetic and hepatoprotective effect of butterfly pea flower (*Clitoria ternatea* L.) through antioxidant, anti-inflammatory, lower LDH, ACP, AST, and ALT on diabetes mellitus and dyslipidemia rat. Heliyon 10(8).

Yadav M, Sahu B, Sahu M. 2025. *Costus igneus*: a versatile herbal remedy for multiple health conditions. Chemistry & Biodiversity 22(4):e202402220.

Yadav RK, Kumar S, Baghel S, Kumar GP, Malik J, Singh SP, Singh G, Siroliya V. 2024. Unlocking the combined therapeutic potential of *Allium sativum* and *Swertia chirata*: a comprehensive review on synergistic antioxidant and antidiabetic properties. International Journal of Pharmaceutical Sciences and Medicine 2(1):15-20.

Zahoor I, Mir TA, Ganaie TA, Allai FM, Ayoub WS, Farooq S. 2024. Antidiabetic potential from selected Himalayan underutilized herbs: a review. Food and Humanity 2:100297.

Zhang X, Shen D, Feng Y, Li Y, Liao H. 2021. Pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications of hydroxysafflor yellow A in antidiabetic research. Journal of Immunology Research 2021(1):4560012.