

Ethnomedicinal plants used for the treatment of snakebites in Nepal

Gopal Bhatt, Shreehari Bhattarai, Garima Neupane, Oshika Khadka, Sarika Katwal, Ripu M. Kunwar

Correspondence

Gopal Bhatt¹, Shreehari Bhattarai^{1*}, Garima Neupane¹, Oshika Khadka¹, Sarika Katwal¹, Ripu M. Kunwar²

¹Faculty of Forestry, Agriculture and Forestry University, Hetauda, Nepal

²Gandaki University, Pokhara, Nepal

*Corresponding Author: sbhattarai@afu.edu.np

Ethnobotany Research and Applications 32:30 (2025) - <http://dx.doi.org/10.32859/era.32.30.1-18>

Manuscript received: 03/09/2025 - Revised manuscript received: 02/11/2025 - Published: 04/11/2025

Research

Abstract

Background: Snakebite envenomation remains a critical public health issue in Nepal, where traditional healers rely on diverse medicinal plants for treatment.

Method: A systematic review of peer-reviewed and grey literature from 1950 to 2025 (June) regarding the indigenous use of plants in Nepal for snake bites was conducted using databases such as Google Scholar, PubMed, Scopus, and Science-Direct, as well as grey literature. A total of 115 articles out of 331 were analyzed and reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model.

Results: This study documents 161 plant species from 67 families, with Fabaceae (12), Asteraceae (9), and Lamiaceae (8) being the most prominent, likely due to their rich bioactive compounds. Herbs (50.3%) dominated the growth forms, followed by trees (19.9%) and shrubs (19.3%), reflecting their accessibility in traditional medicine. Leaves (49 species) were the most frequently used plant part, while roots (42) and whole plants (30) were also significant, indicating targeted therapeutic applications. Remedies were primarily administered topically (58 species) or orally (34), with some plants used as direct antidotes (12 species). Geographically, Chitwan, Parbat, Kanchanpur, and Kaski districts reported the highest plant records.

Conclusion: This study catalogues Nepal's rich tradition of using 161 medicinal plants from 67 families for snakebite treatment yet reveals a striking lack of scientific validation for these remedies. To address this critical gap, rigorous phytochemical and pharmacological investigations are urgently needed to evaluate their therapeutic potential and develop safe, effective treatments that could benefit snakebite victims worldwide.

Keywords: Antidote plants; Antivenom plants; Ethnopharmacology; Snake envenomation

Background

Human-snake conflict has existed for centuries (Longkumer 2016) affecting particularly the rural people, agricultural workers, fishermen, and hunters and gatherers (Shah *et al.* 2003). Worldwide, snakebite envenomation impacts over five million people annually, leading to approximately 100,000 deaths and leaving around 400,000 individuals with permanent disabilities (Bawaskar *et al.* 2021). The incidence of snakebites and associated morbidity and mortality of humans in Asia is

45,900 per annum (Mohapatra *et al.* 2011) and the data peaks for South-east Asia (Westly 2013). In Nepal, 20,000-37,661 people are bitten by snakes resulting in 1,000 - 3,225 deaths annually (Alcoba *et al.* 2022; Pandey & Thapa 2023). In the eastern Tarai of Nepal, annual snakebite deaths per 100,000 populations were reported to be 162, which is the highest mortality rate in Asia (Sharma *et al.* 2004; WHO 2005). Highest mortality in Nepal is associated with limited antivenom and medical pluralities (Joshi 2010). In medical pluralism, both allopathic and traditional medicines synergy for medical treatment (Shrestha & Kunwar 2023). In Nepal, access to antivenom is limited, and traditional medicines contribute around 5% of the national medical system. As a result, a significant portion of the population is relying on traditional medicine (Newman *et al.* 1997). Conventional traditional herbal medicine against snakebite is common in the lowlands Tarai of the country since it is a great place for snakes to dwell and hibernate due to the abundance of rodents, reptiles, and amphibians (Chaudhary 2020). In traditional practices, ethnomedicinal plants are commonly employed to treat snakebites. In Nepal and India, treatment methods include the topical application of plant leaves, juices, or pastes; chewing of leaves and other plant parts; and oral consumption of plant extracts or decoctions and several plants, such as *Cyperus rotundus*, *Citrullus colocynthis* and *Nigella sativa*, are frequently cited for this purpose (Kumar *et al.* 2021). In this connection, this paper aims to document the ethnomedicinal knowledge and practices against snake bite treatment in Nepal to provide baseline information for bioevaluation and bioprospecting.

Particularly in regions where access to antivenom is limited, plant extracts are often prepared as poultices or decoctions and used topically or ingested to counteract the effects of venom. Snakebite management includes caring for symptoms and treating the cause with antivenom (Warrel 2010). In many low-income countries, access to antivenoms is limited because of high costs and widespread poverty among patients (Stock *et al.* 2007). Ophidian accidents represent a significant public health concern in tropical and subtropical regions globally (Mebs 2002), with an estimated incidence of approximately 550,000 bites annually.

A snake bite is a typical and usually fatal occupational and environmental ailment, particularly in rural tropical developing nations (Warrell 2010). A portion of these incidents results in the amputation of affected persons (8%) or fatalities (ranging from 0.3% to 2.3%) (Kasturiratne *et al.* 2008). This results in severe morbidity and death (Chippaux & Goyffon 1998; William *et al.* 2019), as well as long-term physiological impairments and/or psychological distress, and substantial economic consequences (William *et al.* 2011). In South Asia, snakes have long been objects of devotion, aversion, or loathing. Both Hindus and Buddhists hold cobras in high regard, and they frequently feature in stories and mythology (Alirol *et al.* 2010). The Terai region of Nepal is a vast agriculturally productive area, with a hot climate and high seasonal rainfall.

The most common method of treating snakebite envenomations is parenteral delivery of polyclonal antivenoms obtained from horses or sheep that neutralize poisons. Despite the significant advancements in this therapy, exploring alternative venom inhibitors, both synthetic and natural, remains crucial. These may improve or possibly replace the effects of antivenoms (Alagesaboopathi 2013). The only known effective therapy for this illness is antivenom (Jain *et al.* 2011). Unfortunately, populations in many tropical and sub-tropical nations still cannot afford this treatment (Gutierrez *et al.* 2011). The latter employ a wide variety of medicinal plants to cure several illnesses, including the well-known SBE, based on their empirical knowledge (Coe & Anderson 2005). Actually, the benefit of using plants to treat snakebites in rural regions is that they are readily available, affordable, and simple to use (Minu *et al.* 2012).

Materials and Methods

Study area

Nepal is politically structured into seven provinces, 77 districts, and 753 local bodies (Figure 1). Geographically, the country is longitudinally divided into three regions: Western Nepal (80° E to 83° E), Central Nepal (83° E to 86° 30' E), and Eastern Nepal (86° 30' E to 88° 12' E). It also features five distinct vertical physiographic zones from south to north: (i) the Tarai (below 500 m), covering 14% of the country's area; (ii) the Siwalik range (500-1000 m), occupying 12%; (iii) the Mid-hills (1000-3000 m), making up 30%; (iv) the High Mountain region (3000-5000 m), accounting for 20%; and (v) the High Himalaya (above 5000 m), spanning 24% (LRMP, 1986). This diverse geography supports a rich biodiversity, with over 13,000 plant species, including approximately 7,000 flowering plants (Chaudhary *et al.* 2020).

Data collection and analysis

In this systematic review, peer-reviewed and grey literature from 1950 to 2025 (June) based on the indigenous use of plants in Nepal related to snake bite incidence, were reviewed analytically for discussion, conclusion, and recommendation. Different search engines; Google scholar, Research Gate, PubMed, Scopus, Science-Direct, and grey literature were searched using the keywords; "Ethnobotany", "Nepal", "Medicinal plants", "Indigenous knowledge", "Snakebite", "Traditional

knowledge", "Ethnomedicine", "Herbal medicine", "Indigenous plants", "Wild plants", "Ethnopharmacological survey", "Ethnomedicinal study". A total of 115 articles of 331 were analyzed and reviewed after eliminating all duplicates and papers that were excluded by applying different inclusion criteria following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model (Figure 2). A detailed table was formatted for all the plants used in case of snake bites recorded in Nepal.

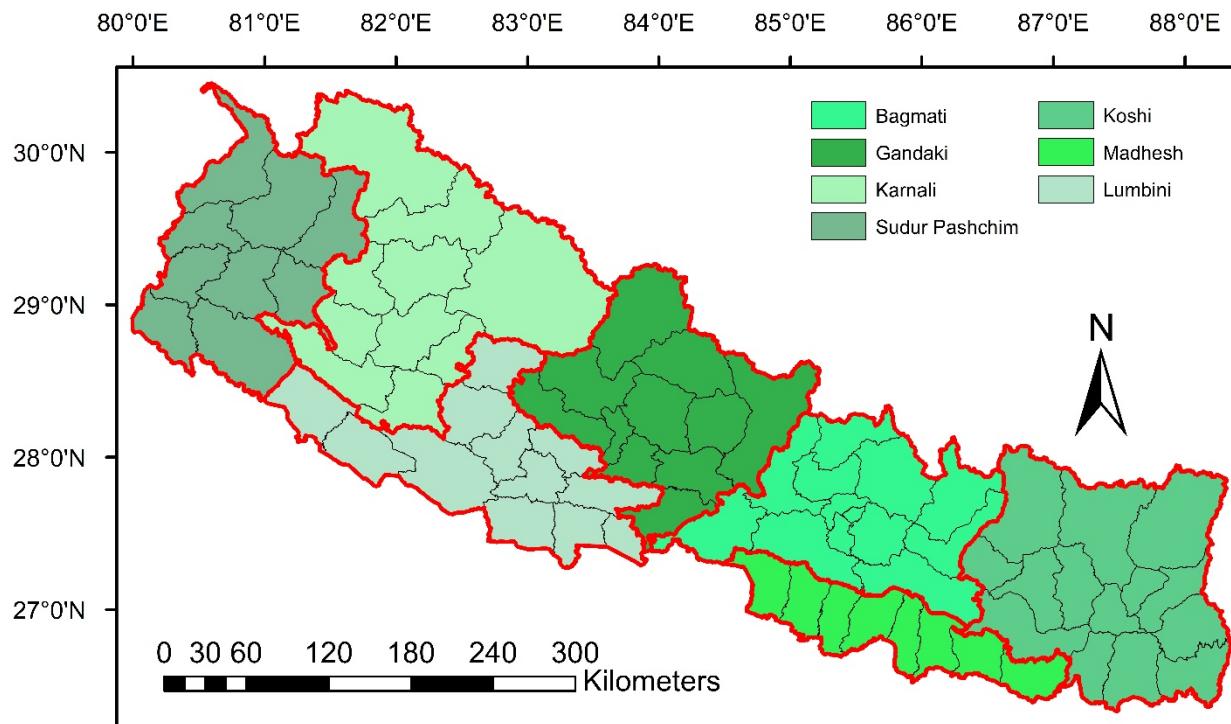


Figure 1. Map of study area

Results

Diversity of ethnomedicinal plants used for snakebite

This review documented 161 plant species from 67 families (Supplimentary file 1) traditionally used in Nepal for snakebite treatment, indicating high taxonomic diversity and deep ethnobotanical knowledge. The most dominant family was Fabaceae, with 12 species (Figure 3), likely due to its wide ecological distribution and rich content of bioactive compounds such as flavonoids and alkaloids known for their antivenom properties. Other prominent families included Asteraceae (9 species) and Lamiaceae (8 species), both commonly associated with traditional medicine worldwide. Euphorbiaceae, Ranunculaceae, Rubiaceae, and Solanaceae each had 6 species, further highlighting their significance in local healthcare practices. Families such as Araceae, Cucurbitaceae, and Rutaceae contributed 5 species each, while others like Amaranthaceae, Asclepidaceae, Malvaceae, Piperaceae, and Zingiberaceae contained 4 species each. Notably, 34 families were represented by only a single species, reflecting the broad but uneven use of plant families. This wide diversity underscores the extensive traditional knowledge systems across Nepal and suggests a strong reliance on locally available plant resources for managing snakebite incidents.

Growth forms of ethnomedicinal plants

Of the reported herbal plants, 50.31% of plant species were herbs, followed by trees (19.88%), and shrubs (19.25%) (Figure 4). The data revealed that climbers (10.56%) were the least recorded life form of plants. The life form analysis of the 161 plant species traditionally used for snakebite treatment in Nepal reveals a clear dominance of herbs, which account for 81 species, more than half of the total. This prevalence is likely due to their easy availability, accessibility, and faster growth rates, making them ideal for immediate use in local remedies. Trees and shrubs follow with 32 and 31 species, respectively, suggesting that more permanent, long-lived vegetation types also play a significant role in traditional healing systems. Climbers, though less common, are still represented by 17 species, indicating that all major plant growth forms contribute to traditional snakebite treatments. This variety in life forms reflects the adaptability and breadth of indigenous knowledge,

with communities utilizing whatever plant forms are most accessible in their specific ecological settings. The prominence of herbs especially underscores their importance as readily harvestable and renewable resources in folk medicine.

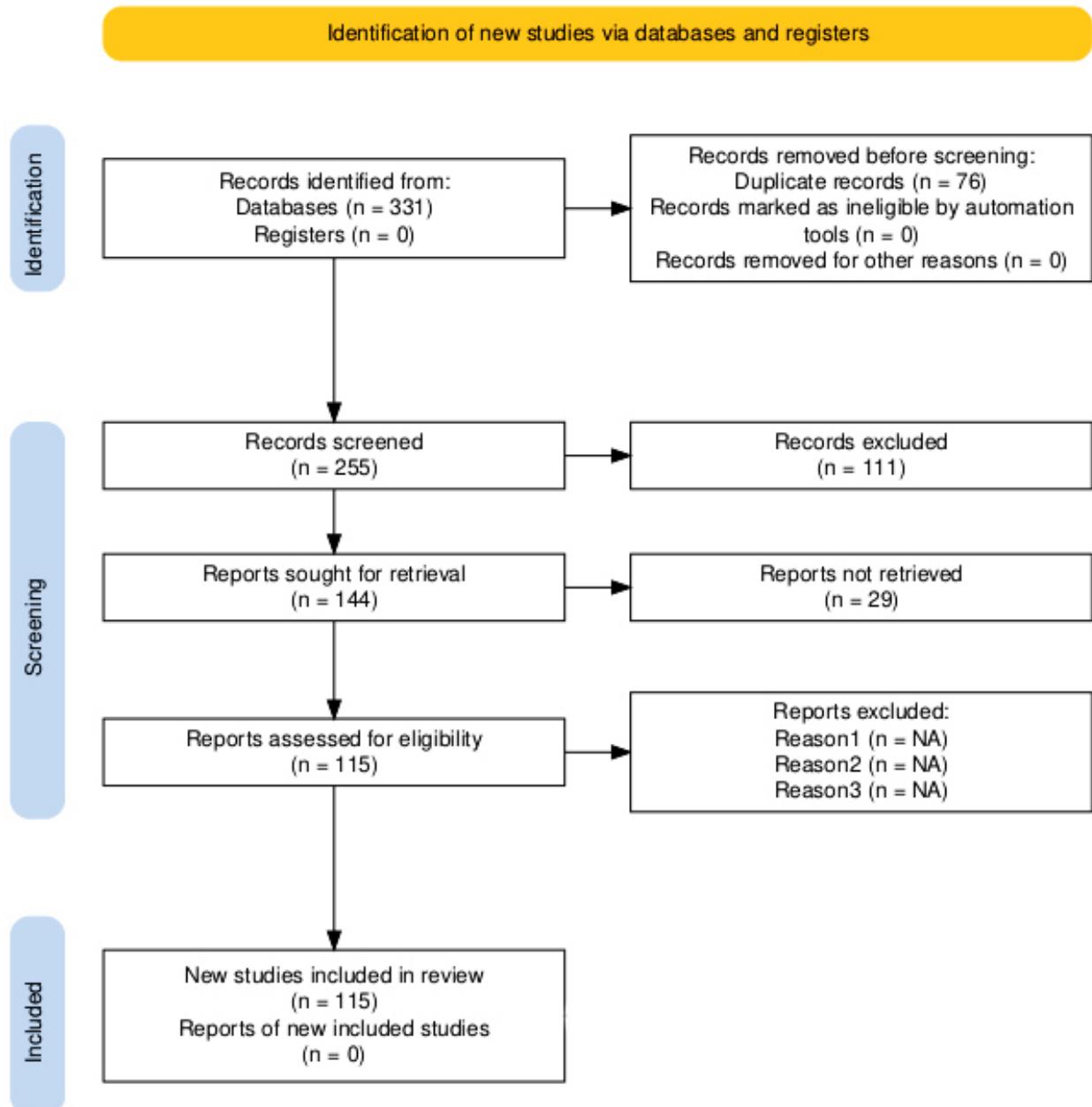


Figure 2. Flow chart of systematic literature review

Plant parts used

Among the plant parts used for preparing medicine, leaves (n = 49) were the most frequent and commonly utilized part, either alone or in combination with others (Figure 4). This is likely because leaves are abundant, easy to collect, and often contain potent bioactive compounds. Roots (42) and whole plants (30) also play a significant role, suggesting a belief in their strong medicinal properties, although harvesting roots can be destructive to plant populations. Fruits (23) and bark (18) are used frequently as well, pointing to their perceived therapeutic value. In contrast, parts like tubers, galls, and branches are rarely utilized (only once each), which may indicate limited ethnomedical knowledge or availability. Of the 161 medicinal plants, the parts used for 11 species (4.89%) were not recorded, reflecting the selective use of plant anatomy based on perceived healing efficacy, availability, and ease of preparation in treating snakebite.

Figure 3. Word cloud diagram of the families reported in the literature

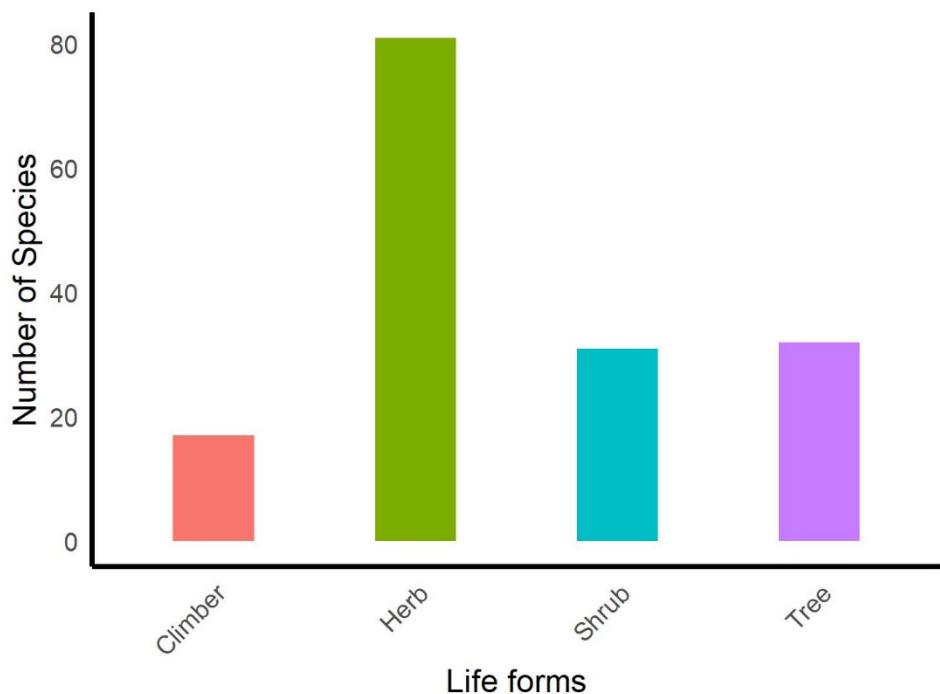


Figure 4. Life forms of the species

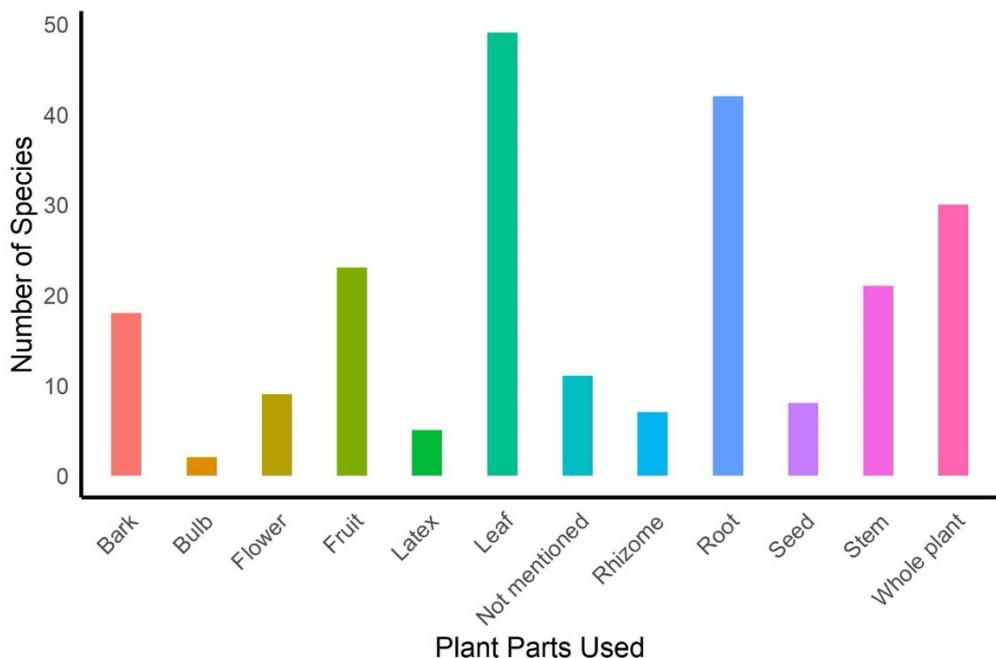


Figure 5. Different plant parts used for ethnomedicine against snakebite

Preparation and administration of remedies

The most common method is topical application (n=58), which makes practical sense for treating bites, as applying the remedy directly to the wound can help draw out venom or reduce swelling and pain (Figure 5). Oral administration follows with n=34, reflecting the belief that internal treatment can help counteract the venom's effects systemically. Interestingly, in 12 species, the plants were specifically used as an antidote, indicating a targeted approach to neutralizing venom. Only one case involved smelling, possibly involving aromatic herbs thought to influence the body through inhalation. Conversely, a significant portion (n=78) of the species was not explained regarding the mode of administration.

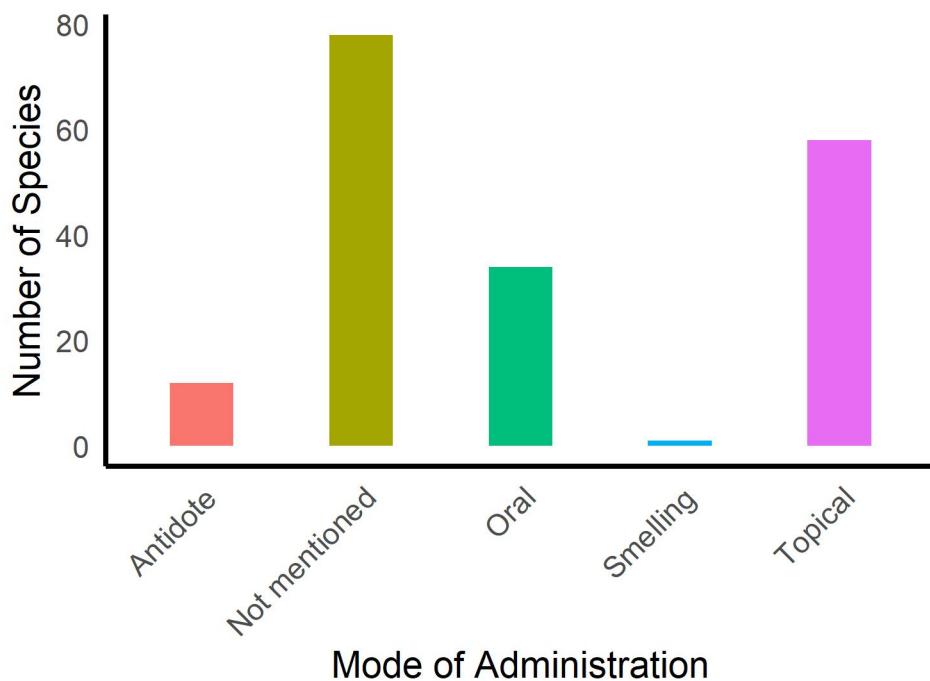


Figure 6. Different mode of administration used for ethnomedicine against snakebite

Spatial distribution of incidence and ethnobotanical studies

The study documented significant regional variations in the incidence and use of medicinal plants for snakebite treatment across Nepal (Figure 7-8). The Terai region had the most cases. Saptari and Mahottarai reported >25 cases, followed by Mahottari with 25, Rautahat and Dang with 23 each, and Kanchanpur with 21. In contrast, several hill and mountain districts had very few or no cases at all, even though they received more research attention. For example, Kaski had 17 studies but only 2 cases, Chitwan had 17 studies and 4 cases, and Parbat had 15 studies with no cases. On the other hand, high-burden districts like Saptari, Mahottari, and Rautahat had no published studies despite frequently occurring snakebites. Four districts, such as Chitwan, Parbat, Kanchanpur, and Kaski, exhibited the highest plant diversity, with each recording more than 15 different species used for treating snakebite (Figure 6). Similarly, Ilam, Sunsari, Kathmandu, and Makwanpur showed moderate diversity, with 10 to 15 plant species employed for snakebite remedies. A lower but still notable range of 5 to 10 medicinal plant species was reported from 17 districts, while 21 districts had minimal documentation, with only 1 to 5 species being used. Notably, 30 districts lacked any reported medicinal plants for snakebite treatment, indicating either limited ethnobotanical knowledge, insufficient research, or a scarcity of such plants in these regions.

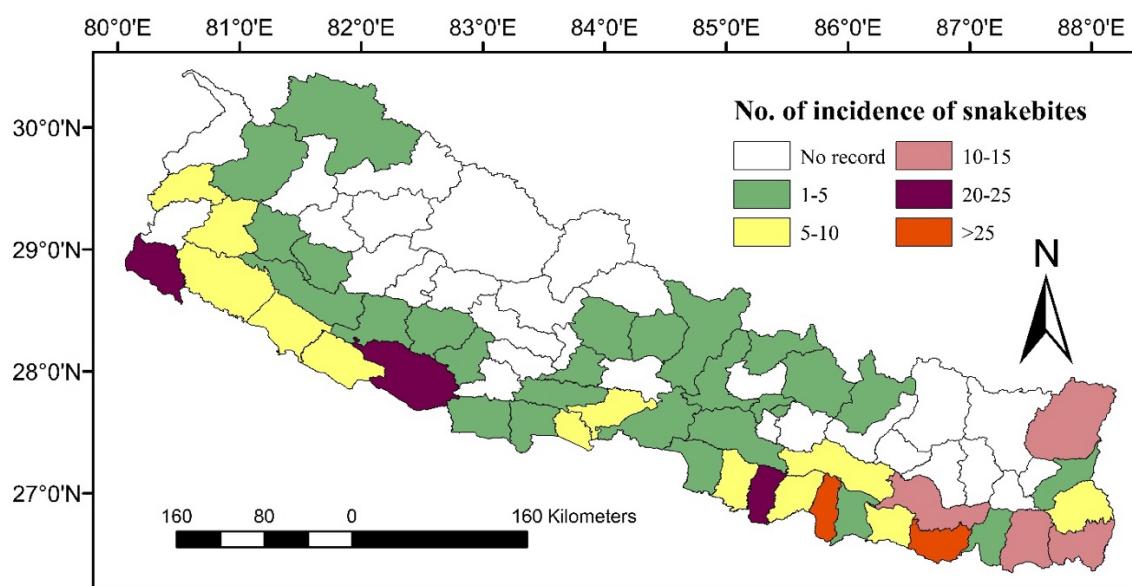


Figure 7. Map of Nepal showing the number of incidents of snake bites

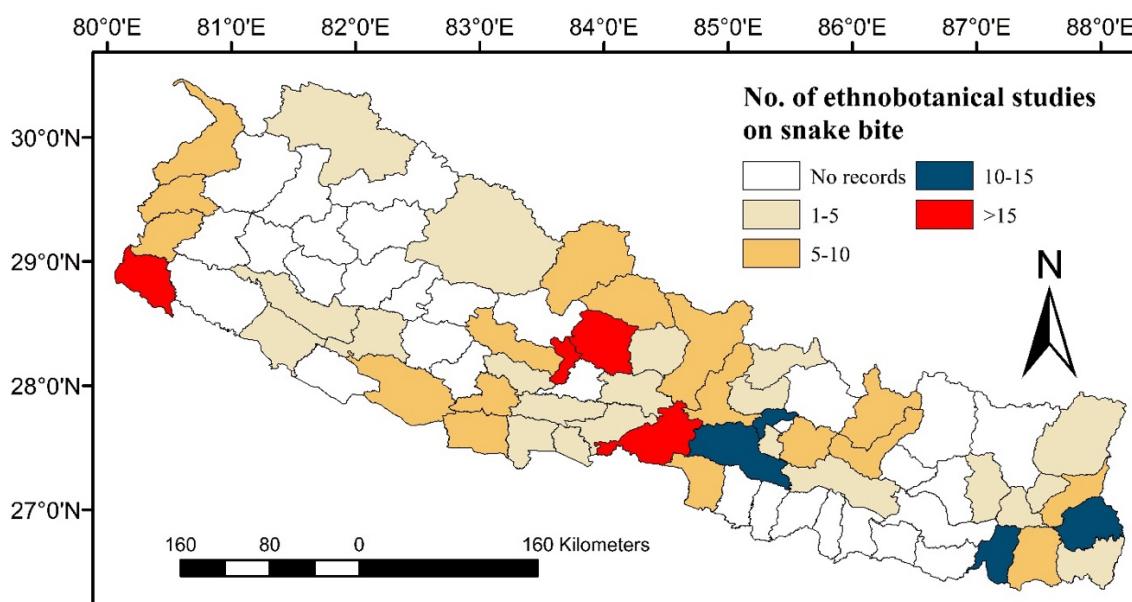


Figure 8. Map of Nepal showing ethnobotanical studies on snake bite

Discussion

The findings of this review underscore the significant diversity of ethnomedicinal plants utilized for the treatment of snakebites in Nepal, reflecting the nation's rich botanical heritage and deeply ingrained traditional knowledge systems. The taxonomic distribution, growth forms, utilized plant parts, and modes of administration collectively illustrate how Nepalese communities depend on locally accessible plants to manage snakebite envenomation, a critical public health issue in rural areas where access to modern antivenom is limited.

The highest number of snakebite cases and deaths occurs in South Asia, especially in India and Pakistan (Roberts 2022). Snakebite is the sixth largest factor causing human deaths in India (Westly 2013). Every year, snakebites cause around 4,500 deaths in Bihar. This makes it the state with the third-highest number of snakebite deaths in India, following Uttar Pradesh and Andhra Pradesh (Mohapatra *et al.* 2011). Similarly, these findings also align with the results of Dharmadasa *et al.* (2016) (Srilanka), Hasan *et al.* (2016) (Bangladesh), Giovannini & HOwes (2017) (Centr America, and Okot *et al.* (2020) (Uganda). The development of antivenom to cure envenomation from most snake species that cause SBE took many decades. It is crucial to employ the appropriate antivenom, nevertheless, as it is neither completely safe nor 100% effective (William *et al.* 2011; Habib & Warnell 2013; Keyler *et al.* 2013). The age and species of the snake, the season, the region, and the envenoming snake's food all affect the amount, content, and toxicity of venoms. According to Kang *et al.* (2011), snake venom is a complex mixture of toxic proteins that are injected to immobilize the victim.

The common use of herbs among indigenous communities mainly comes from the many herbaceous plants found in their environment (Ayyanar & Ignacimuthu 2005, Giday *et al.* 2010, Tabuti *et al.* 2003), easy availability, or being cheaper at the local market (Butt *et al.* 2015). Leaves were commonly employed due to their ease of collection in comparison to the other parts, such as roots, rhizomes, flowers, and fruits (Giday *et al.* 2009). Additionally, leaves play an active role in photosynthesis and metabolite formation (Ghorbani 2005), and harvesting leaves poses less damage to the presence of individual plant species (Giday & Ameni 2003). Studies conducted across the globe, such as India(Muthu *et al.* 2006, Uniyal *et al.* 2006, Raghupathy *et al.* 2008), Argentina (Hilgert 2001), Uganda (Tabuti *et al.* 2003), and Ethiopia (Giday & Ameni 2003), also highlighted the use of herbs as sources of medicine quite similar to this study. Many rural residents rely on traditional medicine for their main health care delivery due to the high cost of contemporary medications and their unavailability in distant locations (Durugbo *et al.* 2012). Additionally, due to their price, accessibility, and innate confidence in their efficacy over conventional medications, they support both traditional and unorthodox treatment.

Plants are a major source of licensed medications that are used to treat a variety of illnesses worldwide. According to estimates, about 25% of licensed medicines are derived directly from plant chemicals (Rates 2001). However, when synthetic derivatives of natural compounds are considered, the percentage rises significantly (Kusari *et al.* 2015). These approved plant chemicals have undergone stringent safety and effectiveness studies and consistently provide a substantial benefit to the patient, surpassing the placebo control. This sets them apart from typical medications (Trim *et al.*, 2020). Plant extracts have multiple biochemical and pharmacological characteristics and are a very rich source of pharmacologically active chemicals. When these substances interact with the poisons or enzymes from a snake bite, their actions are neutralized or inhibited (Makhija & Khamar 2010). Alkaloids, essential oils, flavonoids, tannins, saponins, and phenolic compounds are among the bioactive phytochemical elements of these plants that give them their therapeutic value. These constituents have specific physiological effects on the human body (Hostettmann 2003).

The predominance of the Fabaceae family (12 species) corresponds with its extensive ecological distribution and high concentration of bioactive compounds, such as flavonoids and alkaloids, which have exhibited antivenom properties in pharmacological studies (Gutierrez *et al.* 2017). The Fabaceae family is also dominant in India (Upasani *et al.* 2017), Uganda (Omara *et al.* 2020), Ethiopia (Yirgu & Chippaux 2019), and Tanzania (Mogha *et al.* 2022). The prominence of Asteraceae and Lamiaceae further reinforces their global acknowledgment in traditional medicine due to their anti-inflammatory and neuroprotective effects (Mohan *et al.* 2020). The presence of multiple species from Euphorbiaceae, Ranunculaceae, and Solanaceae families, recognized for their toxic yet medicinally valuable secondary metabolites, indicates that Nepalese healers have developed a sophisticated understanding of balancing toxicity with therapeutic efficacy. The representation of 34 families by only a single species suggests a broad but uneven ethnobotanical reliance, potentially attributable to localized availability or specialized indigenous knowledge that has not been thoroughly documented. The predominance of herbaceous species (50.31%) over trees, shrubs, and climbers suggests a preference for easily accessible, fast-growing plants that can be harvested quickly in emergencies. This finding is consistent with other ethnomedicinal studies in tropical regions where herbs are the primary source of first-aid treatments (Alves & Rosa 2007). Trees and shrubs, though less frequently

used, still contribute significantly, likely due to their year-round availability and potent bioactive compounds stored in bark and roots.

Leaves being the most frequently used plant part (n=49) aligns with global ethnobotanical trends, as leaves are rich in secondary metabolites, easily collected, and renewable (Rokaya *et al.*, 2014). The substantial use of roots (n=42) and whole plants (n=30) indicates a belief in their high medicinal potency, though this raises concerns about sustainability, as root harvesting can threaten plant populations. The minimal use of tubers, galls, and branches suggests either limited traditional knowledge about these parts or their lower efficacy in treating snakebites. Similarly, the preference for topical application (n=58) over oral administration (n=34) is logical, given that snake venom primarily acts locally at the bite site, causing necrosis and swelling. Direct application may help neutralize venom enzymes or reduce inflammation. Oral ingestion, though less common, suggests systemic detoxification beliefs, possibly targeting hematotoxic or neurotoxic effects. The lack of documented administration methods for 78 species highlights a critical research gap, emphasizing the need for more detailed ethnobotanical documentation before traditional knowledge is lost.

In most cases, snakebite treatment uses extracts from individual plants. In some instances, mixtures of different plants and their parts are used to create antidotes. These antidotes are typically prepared through decoction, which is the main method (Omara *et al.* 2020). The uneven distribution of reported medicinal plants across Nepal's districts suggests regional variations in ethnobotanical expertise, biodiversity, and research coverage. Districts like Chitwan, Parbat, and Kaski, with high plant diversity, may have richer biodiversity or more active documentation efforts. In contrast, the absence of data from 30 districts could stem from insufficient research, cultural erosion of traditional knowledge, or lower snakebite prevalence. Targeted ethnobotanical studies in underrepresented regions are essential to preserve this knowledge and identify potential new antivenom candidates.

Conclusions

This review documents the extensive use of diverse medicinal plants (161 species across 67 families) for snakebite treatment in traditional Nepalese medicine, yet a limited number have been scientifically evaluated for their bioactive constituents and antivenom potential. Given the significant public health burden posed by snakebites in Nepal and other tropical regions, there is an urgent need for comprehensive phytochemical analysis of these ethnomedicinal plants to identify bioactive compounds and pharmacological validation of their venom-neutralizing properties. The integration of ethnobotanical knowledge with modern evidence-based scientific approaches could provide sustainable solutions to the global snakebite crisis while preserving Nepal's rich biocultural heritage.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: The Necessary data are included in the manuscript and supplementary file.

Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding: No funding has been received for the study.

Author contribution: GB - conceptualization, methodology, investigation, analysis, writing original draft, review and editing; SB - conceptualization, methodology, investigation, analysis, writing original draft, review and editing; GN - Investigation, writing original draft; OK - Investigation, writing original draft; SK - Investigation, writing original draft; RK - Review and editing.

Literature cited

Acharya D. 2023. Study Of ethnoecology and phytosociology of vegetation with its use value and conservation status of Bhanu Municipality, Central Nepal. Phd dissertation, Tribhuvan University.

Acharya KP, Rokaya MB. 2005. Ethnobotanical survey of medicinal plants traded in the streets of Kathmandu valley. Scientific World 3:44-48.

Acharya R. 2012. Ethnobotanical study of medicinal plants of Resunga hill used by Magar community of Badagaun VDC, Gulmi district, Nepal. Scientific World 10:54-65. doi: 10.3126/sw.v10i10.6863

Acharya R, Acharya KP. 2009. Ethnobotanical Study of Medicinal Plants used by Tharu Community of Parroha VDC, Rupandehi District, Nepal. *Scientific World* 7:80-84. doi: 10.3126/sw.v7i7.3832

Adhikari M, Thapa R, Kunwar RM, Devkota HP, Poudel P. 2019. Ethnomedicinal uses of plant resources in the Machhapuchchhre rural municipality of Kaski District, Nepal. *Medicines* 6:1-30. doi: 10.3390/medicines6020069

Adhikari S. 2024. Ethnomedical Study in the Rubivalley Rural Municipality Dhading, Central Nepal. MSc dissertation, Tribhuvan University.

Alagesaboopathi C. 2013. Ethnomedicinal plants used for the treatment of snake bites by Malayali tribal's and rural people in Salem district, Tamilnadu, India. *International Journal of Biosciences* 3:42-53. doi: 10.12692/ijb/3.2.42-53

Alcoba G, Sharma SK, Bolon I, Ochoa C, Martins SB, Subedi M, Chappuis F. 2022. Snakebite epidemiology in humans and domestic animals across the Terai region in Nepal: a multicluster random survey. *The Lancet Global Health* 10(3):e398-e408.

Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. 2010. Snake bite in South Asia: A review. *PLoS Neglected Tropical Diseases* 4:1-9. doi: 10.1371/journal.pntd.0000603

Ambu G, Chaudhary RP, Mariotti M, Cornara L. 2010. Traditional Uses of Medicinal Plants by Ethnic People in the Kavrepalanchok District, Central Nepal. *Plants* 9:1-34. doi: 10.1371/journal.pntd.0000603

Aryal KK, Dhimal M, Pandey A, Pandey AR, Dhungana R, Khanipa BN, Mehta RK, Karki KB. Knowledge Diversity and Healing Practices of Traditional Medicine in Nepal. Kathmandu, Nepal: Nepal Health Research Council, 2016.

Aryal KP, Poudel S, Chaudhary RP, Chettri N, Chaudhary P, Ning W, Kotru R. 2018. Diversity and use of wild and non-cultivated edible plants in the Western Himalaya. *Journal of Ethnobiology and Ethnomedicine* 14:1-18. doi: 10.1186/s13002-018-0211-1

Ayyanar M, Ignacimuthu S. 2005. Traditional knowledge of kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. *Journal of Ethnopharmacology* 102(2):246-255.

Balami NP. 2004. Ethnomedicinal uses of plants among the Newar community of Pharping village of Kathmandu District, Nepal. *Tribhuvan University Journal* 24:13-19. doi: 10.3126/tuj.v24i1.251

Baral BR, Bhagat I. 2018. Ethnomedicinal plants used by Dhimal community of Rajghat, Morang. *Nepalese Journal of Biosciences* 8:36-47. doi: 10.3126/njbs.v8i1.51724.

Bawaskar HS Bawaskar PH. 2004. Envenoming by the Common Krait (*Bungarus caeruleus*) and Asian Cobra (Naja naja): clinical manifestations and their management in a rural setting. *Wilderness Environ Med*, 15, 257-266.

Bhandari P, Gurung MB, Subedi CK, Chaudhary RP, Basnet K, Gurung J, Upadhyay Y, Neupane A, Shrestha KK. 2021. Traditional use of medicinal plants in the Chyangthapu-Phalicha biological sub-corridor, Panchthar District, Kangchenjunga Landscape, Nepal. *Ethnobotany Research and Applications* 22:1-43. doi: 10.32859/era.22.25.1-43

Bhandari R, Pandeya B, Ghimire B. 2023. Ethnobotanical study of plant resources in Dhurkot rural municipality, Gulmi district Nepal. *Ethnobotany Research and Applications* 25:1-19. doi: 10.32859/era.25.22.1-19

Bhandari SK, Shrestha P, Choudhary SR, Sharmin T, Rashid MA. 2013. Ethnomedical investigation on herbal drugs used in Dang district of Nepal. *The Journal of Ethnobiology and Traditional Medicine*. 119:501-514

Bhatt MD, Adhikari YP, Kunwar RM. 2021. Ethnomedicinal Values of Weeds in Kanchanpur District, Far-Western Nepal. *Ethnobotany Research and Application* 21: 1-19. doi: 10.32859/era.21.19.1-19

Bhatt MD, Joshi DR, Bhandari GS, Maharjan S, Guragain D, Tamang P, Kunwar RM. 2023. Documentation of flowering plants and ethnobotany in Jhilmil Lake area, Kanchanpur, Sudurpaschim Province. *Banko Janakari* 33:46-59.

Bhattarai KR. 2018. Ethnobotanical study of plants used by Thami community in Ilam District, eastern Nepal. *Our Nature* 16:55-67. doi: 10.3126/on.v16i1.22123

Bhattarai KR. 2020. Ethnobotanical survey on plants used in Mai Municipality of Ilam district, eastern Nepal. *Banko Jankari* 30:11-35. doi: 10.3126/banko.v30i2.33476

Bhattarai KR, Khadka MK. 2017. Ethnobotanical survey of medicinal plants from Ilam District, East Nepal. *Our Nature* 14:78-91. doi: 10.3126/on.v14i1.16444

Bhattarai N. 2008. Study on the Medicinal Plants Used By Herbal Healers of Argha VDC of Arghakhanchi District Nepal. MSc Dissertation, Tribhuvan University.

Bhattarai NK. 1991. Folk Herbal Medicines of Makawanpur District, Nepal. *International Journal of Pharmacognosy* 29: 284-295. doi: 10.3109/13880209109082899

Bhattarai P. 2013. Ethnobotanical Use of Wetland Resources and their Role in Local Livelihood (A Case Study from Beeshazar Lake of Chitwan District). MSc dissertation, Tribhuvan University.

Bhattarai S, Chaudhary RP, Taylor RS. 2009. Ethno-medicinal Plants Used by the People of Nawalparasi District, Central Nepal. *Our Nature* 7:82-99. doi: 10.3126/on.v7i1.2555

Bhattarai S, Tamang R. 2017. Medicinal and aromatic plants: A synopsis of Makawanpur district, central Nepal. *International Journal of Indigenous Herbs and Drugs* 2:6-15.

Bhattarai S. 2009. Ethnobotany and antibacterial activities of selected medicinal plants of Nepal Himalaya. PhD dissertation, Tribhuvan University.

Burlakoti C, Kunwar RM. 2008. Folk herbal medicines of Mahakali watershed area, Nepal.. In: Jha PK, Karmacharya SB, Chettri MK, Thapa CB, Shrestha BB. (eds). *Medicinal Plants in Nepal: An Anthology of Contemporary Research*. Ecological Society, Kathmandu, Nepal. Pp 187-193.

Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, Kayani S. 2015. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. *Journal of Ethnopharmacology* 168:164-181.

Chaudhary C, Rajbhandary S. 2021. Ethnobotanical Study of Traditional Medicinal Plants of Tharu Community in Swathi Village, Nawalparasi District Nepal. In: Abbasi AM, Bussmann RW. (eds). *Ethnobiology of Mountain Communities in Asia*. Springer International Publishing, Pp. 185-220. doi: 10.1007/978-3-030-55494-1_10

Chaudhary MK. 2020. A review on snake bite and its managements. *Pharmacologyonline* 3:319-326.

Chaudhary RP, Upadhyay Y, Devkota S, Adhikari S, Rai SK, Joshi SP. 2020. Plant biodiversity in Nepal: status, conservation approaches, and legal instruments under new federal structure. *Plant Diversity in Nepal*. Kathmandu: Botanical Society of Nepal, 167-206.

Chaudhary SK, Rai SK. 2017. Ethnobotany of Tharu community of Pakali, Sunsari, Nepal. *Nepalese Journal of Biosciences* 7:58-71. doi: 10.3126/njbs.v7i1.41767

Chaudhary S, Magar GT, Sah SN, Parajuli S. 2020. Ethnic Plants of Tharu Community of Eastern Nepal. *International Journal of Applied Sciences and Biotechnology* 8:223-230. doi: 10.3126/ijasbt.v8i2.28325

Coe FG, Anderson GJ. 2005. Snakebite ethnopharmacopoeia of eastern Nicaragua. *Journal of Ethnopharmacology* 96:303-323.

Dangol DR, Gurung SB. 1991. Ethnobotany of the Tharu Tribe of Chitwan District, Nepal. *International Journal of Pharmacognosy* 29:203-209. doi: 10.3109/13880209109082879

Dani RS, Tiwari A. 2018. Medicinal weeds in the rice field of Kathmandu Valley, Nepal. *Himalayan Biodiversity* 6:16-26. doi: 10.3126/hebids.v6i0.33528

Dewan K, Shrestha N, Sapkota R, Rai J, Lama S, Shrestha BB. 2023. Medicinal ethnobotany of the Yakkha community in eastern Nepal. *Ethnobotany Research and Applications* 26:1-34.

Dhami N. 2008. Ethnomedicinal uses of plants in western Terai of Nepal: A case study of Dekhatabuli VDC of Kanchapur District. In: Jha PK, Karmacharya SB, Chettri MK, Thapa CB, Shrestha BB. (eds). *Medicinal Plants in Nepal: An Anthology of Contemporary Research*. Ecological Society, Kathmandu, Nepal. Pp 164-176.

Dharmadasa RM, Akalanka GC, Muthukumarana PRM, Wijesekara RGS. 2016. Ethnopharmacological survey on medicinal plants used in snakebite treatments in Western and Sabaragamuwa provinces in Sri Lanka. *Journal of Ethnopharmacology* 179:110-127.

Dhital AP, Paudel M, Karki S, Kafle S, Siwakoti M, Lamichhane D. 2021. Traditional Knowledge on Use of Medicinal Plants by Tamang Community of Dolakha, Nepal. *Journal of Plant Resources* 19:192-203.

Durugbo EU, Oyetoran BO, Oyejide NE. 2012. Vegetation inventory of the Redemption Camp, Ogun State, Nigeria; Evaluation of medicinal plant resources and strategies for Conservation. *Journal of Biological Sciences* 12:34-42.

Dwa OP. 2022. Ethno-Medicinal Uses of Wild Edible Fruits in Pokhara Valley, Nepal. *Prithvi Academic Journal* 5:28-37. doi: 10.3126/paj.v5i1.45038

Gachhadar PK, Mandal T, Chaudhary RP, Baniya CB. 2023. Plants used in medicinal practices by the tribal people of Morang District in Koshi Province of Nepal. *Pleione* 17:163-190.

Gautam RK, Dhakal DP. 2023. Knowledge Distribution and Ethnobiology in Majhi Community of Makawanpur, Nepal. *International Research Journal of Makwanpur Multiple Campus* 4:49-56. doi: 10.3126/irjmmc.v4i1.51861

Gautam S, Timilsina S. 2022. Ethnomedicinal Uses of Plant Resources in Puranchaur Village, Kaski, Nepal. *Ethnobotany Research and Applications* 23:1-32. doi: 10.32859/era.23.17.1-32

Gautam TP. 2011. Indigenous uses of some medicinal plants in Panchthar district, Nepal. *Nepalese Journal of Biosciences* 1:125-130. doi: 10.3126/njbs.v1i0.7479

Gautam TP. 2013. Status of medicinal plants in tropical forest of eastern Nepal. *Nepalese Journal of Biosciences* 3:57-63. doi: 10.3126/njbs.v3i1.41446

GBD. 2019. Snakebite Envenomation Collaborators. Global mortality of snakebite envenoming between 1990 and 2019. *Nat Commun.* 2022 Oct 25;13(1):6160. doi: 10.1038/s41467-022-33627-9. PMID: 36284094; PMCID: PMC9596405

Gewali MB. 2009. Studies on the most traded medicinal plants from the Dolpa District of Nepal. Phd dissertation, University of Toyama.

Ghimire K, Bastakoti RR. 2009. Ethnomedicinal knowledge and healthcare practices among the Tharus of Nawalparasi district in central Nepal. *Forest Ecology and Management* 257:20662072. doi: 10.1016/j.foreco.2009.01.039

Ghorbani A. 2005. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran:(Part 1): General results. *Journal of Ethnopharmacology* 102(1):58-68.

Giday M, Ameni G. 2003. An ethnobotanical survey of plants of veterinary importance in two woredas of Southern Tigray, Northern Ethiopia. *SINET: Ethiopian Journal of Science* 26(2):123-136.

Giday M, Asfaw Z, Woldu Z. 2009. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. *Journal of Ethnopharmacology* 124(3):513-521.

Giday M, Asfaw Z, Woldu Z. 2010. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. *Journal of Ethnopharmacology* 132(1):75-85.

Giovannini P, Howes MJR. 2017. Medicinal plants used to treat snakebite in Central America: review and assessment of scientific evidence. *Journal of Ethnopharmacology* 199:240-256.

Goswami PK, Samant M, Srivastava RS. 2014. Snake venom, anti-snake venom & potential of snake venom. *International Journal of Pharmacy and Pharmaceutical Sciences* 6:4-7.

Gubhaju MR, Gaha Y. 2019. Ethnomedicinal Uses of Plants in Mityal, Palpa, Nepal. *Journal of Plant Resources* 17:155-162.

Gurung LJ. 2007. Indigenous Knowledge on Non-timber Forest Products (NTFPs) and Utilization of Bamboo (NIGALO) and Himalayan Nettle (ALLO) in Sikles Area of Kaski District, Central Nepal. MSc dissertation, Tribhuvan University.

Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. 2017. Snakebite envenoming. *Nature reviews Disease primers* 3(1), 1-21.

Gutierrez JM, Leon G, Burnouf T. 2011. Antivenoms for the treatment of snakebite envenomings: the road ahead. *Biologicals* 39:129-142.

Habib AG, Warrell DA. 2013. Antivenom therapy of carpet viper (*Echis ocellatus*) envenoming: effectiveness and strategies for delivery in West Africa. *Toxicon*, 69:82-89.

Hasan MK, Gatto P, Jha PK. 2013. Traditional uses of wild medicinal plants and their management practices in Nepal-A study in Makawanpur district. *International Journal of Medicinal and Aromatic Plants* 3:102-112.

HiLGERT NI. 2001. Plants used in home medicine in the Zenta River basin, Northwest Argentina. *Journal of Ethnopharmacology*, 76(1), 11-34.

Hostettmann K. 2003. History of a plant: the example of Echinacea. *Forschende Komplementarmedizin und klassische Naturheilkunde. Research in Complementary and Natural Classical Medicine* 10:9-12.

Jain A, Katewa SS, Sharma SK, Galav P, Jain V. 2011. Snakelore and indigenous snakebite remedies practiced by some tribals of Rajasthan. *Indian Journal of Traditional Knowledge* 10:258-268.

James A. 2017. Snake classification from images. doi: 10.7287/peerj.preprints.2867v1

Joshi A, Kalauni D, Bhattarai S. 2019. Survey on usage of medicinal plants: A case from Chitwan district of Nepal. *SAARC Journal of Agriculture* 16:129-141. doi: 10.3329/sja.v16i2.40265

Joshi AR, Edington JM. 1990. The use of medicinal plants by two village communities in the central development region of Nepal. *Economic Botany* 44:71-83. doi: 10.1007/BF02861069

Joshi AR, Joshi K. 2009. Plant diversity and Ethnobotanical notes on tree species of Syabru Village, Langtang National Park, Nepal. *Ethnobotanical Leaflets* 13:651-664.

Joshi K. 2004. Documentation of medicinal Plants and their indigenous uses in Likhu sub watershed, Nepal. *Journal of Non-Timber Forest Products* 11:83-93.

Joshi N. 2014. Utilization pattern and conservation status of plant resources of Makawanpur district, central Nepal. Phd dissertation, Tribhuvan University.

Joshi K, Joshi R, Joshi AR. 2011. Indigenous knowledge and uses of medicinal plants in Macchegaun, Nepal. *Indian Journal of Traditional Knowledge* 10:281-286.

Joshi N, Ghorbani A, Siwakoti M, Kehlenbeck K. 2020. Utilization pattern and indigenous knowledge of wild medicinal plants among three ethnic groups in Makawanpur district, Central Nepal. *Journal of Ethnopharmacology* 262:1-16. doi: 10.1016/j.jep.2020.113219

Joshi NP. 2021. Ecological and ethnobotanical values of weeds found in the spring rice fields in Chitwan, Nepal. *Ethnobotany Research and Applications*, 22:1-19. doi: 10.32859/era.22.37.1-19

Kandel S. 2012. Comparative Use of Medicinal Plants among the Indigenous People of Manakamana VDC, Nuwakot District. Phd dissertation, Tribhuvan University

Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM. 2011. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. *The Federation of European Biochemical Societies Journal* 278:4544-4576.

Karki D, Khadka D, Kunwar RM, Aryal PC, Paudel HR, Bhatta S, Shi S. 2023. Ethnomedicinal plants in Champadevi rural municipality, Okhaldhunga district, Nepal. *Journal of Ethnobiology and Ethnomedicine* 19:1-18.

Karki S, Dhital AP, Uprety Y, Ghimire SK. 2023. Medicinal plants and their use by an ethnic minority Jirel in Dolakha district, Central Nepal. *Ethnobotany Research and Applications* 25:1-29. doi: 10.32859/era.25.18.1-29

Kasturiratne A, Wickremasinghe AR, De Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Saviolo L, Laloo DG, De Silva HJ. 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. *PLoS Medicine* 5:1591-1604.

Khadka P. 2011. Antibacterial Activity of Some Folklore Medicinal Plants of Nepal. Phd dissertation, Tribhuwan University.

Keyler DE, Gawarammana I, Gutiérrez JM, Sellahewa KH, McWhorter K, Malleappah R. 2013. Antivenom for snakebite envenoming in Sri Lanka: the need for geographically specific antivenom and improved efficacy. *Toxicon* 69: 90-97.

Khatri BBA. 2012. A case study report on medicinal plants in Puranchaur VDC, Kaski district. *The Sanjivini* 1:64-71.

Khanal DP, Raut B, Magar YT. 2020. Traditional Healing Practices Using Herbal Dosage Forms and Other Agents by Magar Community of Gulmi District, Nepal. *Journal of Manmohan Memorial Institute of Health Sciences* 6:20-38. doi: 10.3126/jmmihs.v6i1.30533

Rajpoot A, Kumar VP, Bahuguna A, Rasaily SS. 2021. Preliminary genetic documentation of snake species through shed skin from Uttarakhand, India: A non-invasive genetic sampling approach. *Journal of Wildlife and Biodiversity*, 5(1), 81-91.

Kunwar RM, Adhikari N. 2005. Ethnomedicine of Dolpa district, Nepal: the plants, their vernacular names and uses. *Lyonia* 8:43-49.

Kunwar RM, Bussmann RW. 2009. Medicinal Plants and Quantitative Ethno medicine: A Case Study from Baitadi and Darchula Districts, Far-West Nepal. *Journal of Natural History Museum* 24:72-81. doi: 10.3126/jnhm.v24i1.2244

Kunwar RM, Upadhyay Y, Burlakoti C, Chowdhary CL, Bussmann RW. 2009. Indigenous use and ethnopharmacology of medicinal plants in far-west Nepal. *Ethnobotany Research and Application* 7:5-28.

Kunwar RM, Burlakoti C, Chowdhary CL, Bussmann RW. 2010. Medicinal plants in farwest Nepal: Indigenous uses and pharmacological validity. *Medicinal and Aromatic Plant Science and Biotechnology* 4:28-42.

Kunwar RM. 2018. Ethnobotany in the Kailash sacred landscape, Nepal: implications for conservation through interactions of plants, people, culture and geography. Phd dissertation, Florida Atlantic University.

Kunwar RM, Mahat L, Sharma LN, Shrestha KP, Komine H, Bussmann, RW. 2012. Underutilized plant species in Far West Nepal. *Journal of Mountain Science* 9:589-600. doi: 10.1007/s11629-012-2315-8

Kunwar RM, Nepal BK, Sigdel KP, Balami N. 2007. Contribution to the Ethnobotany of Dhading District, Central Nepal. *Nepal Journal of Science and Technology* 7:65-69. doi: 10.3126/njst.v7i0.574

Kusari P, Kusari S, Spiteller M, Kayser O. 2015. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. *Applied Microbiology and Biotechnology* 99:5383-5390.

Kutal DH, Kunwar RM, Upadhyay Y, Adhikari YP, Bhattarai S, Adhikari B, Kunwar LM, Bhatt MD, Bussmann, RW. 2021. Selection of medicinal plants for traditional medicines in Nepal. *Journal of Ethnobiology and Ethnomedicine* 17:1-11.

Lamichhane J, Chhetri SB, Bhandari M, Pokhrel S, Pokharel A, Sohng JK. 2014. Ethnopharmacological survey, Phytochemical screening and Antibacterial activity measurements of high altitude medicinal plants of Nepal: A bioprospecting approach. *Indian Journal of Traditional Knowlegde* 13:496-507.

Lamichhane D, Baral D, Nepali KB. 2014. Documentation of medicinal plants conserved in National Botanical Garden, Godawari Lalitpur. *Plant Resources*, 41:36-44.

Limbu DK, Rai BK. 2013. Ethno-Medicinal Practices among the Limbu Community in Limbuwan, Eastern Nepal. *Global Journal of Human Social Science* 13:7-30.

Longkumer T, Armstrong LJ, Santra V, Finny P. 2016. Human, snake, and environmental factors in human-snake conflict in North Bihar-A one-year descriptive study. *Christian Journal for Global Health*, 3(1), 36.

LRMP. Land Resources Mapping Project. Kathmandu, Nepal: LRMP [Land Resources Mapping Project] HMGN and Kenting Earth Sciences; 1986.

LS Guimaraes CS, Moreira-Dill LS, Fernandes RS, Costa TR, IS Hage-Melim L, Marcussi S, Carvalho B.M.A, Da Silva SL, Zuliani JP, Fernandes CFC, Calderon LA, Soares AM, Stabeli RG. 2014. Biodiversity as a source of bioactive compounds against snakebites. *Current medicinal Chemistry* 21:2952-2979.

Magar RA, Mallik AR, Chaudhary S, Parajuli S. 2022. Ethno-medicinal plants used by the people of Dharan, Eastern Nepal. *Indian Journal of Traditional Knowledge* 21:72-80.

Magar ST. 2009. Magars and their indigenous knowledge systems and practices in Tanahu district of Nepal. *Occasional Papers in Sociology and Anthropology* 11:67-83.

Makhija IK, Khamar D. 2010. Anti-snake venom properties of medicinal plants. *Der Pharmacia Lettre* 2:399-411.

Mahara S, Ojha, P, Gaddi M, Bhurtel A. 2022. Ethnomedicinal study of common medicinal plants of Kapilvastu district, Nepal. *Journal of Medicinal Herbs* 13:19-27.

Malla B. 2019. Ethnobotanical study on medicinal plants in Parbat district of western Nepal. Phd dissertation, Kathmandu University.

Malla B, Chhetri RB. 2009. Indigenous knowledge on ethnobotanical plants of Kavrepalanchowk district. Kathmandu University Journal of Science, Engineering and Technology 5:96-109.

Malla B, Gauchan DP, Chhetri RB. 2015. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. *Journal of Ethnopharmacology* 165:103-117. doi: 10.1016/j.jep.2014.12.057

Manandhar NP. 1985. Ethnobotanical Notes on Certain Medicinal Plants Used by Tharus of Dang-Deokhuri District, Nepal. *International Journal of Crude Drug Research* 23:153-159. doi: 10.3109/13880208509069022

Manandhar NP. 1987. Traditional Medicinal Plants Used by Tribals of Lamjung District, Nepal. *International Journal of Crude Drug Research* 25:236-240. doi: 10.3109/13880208709055200

Manandhar NP. 1991. Medicinal plant-lore of Tamang tribe of Kabhrepalanchok district, Nepal. *Economic Botany* 45:58-71. doi: 10.1007/BF02860050

Mebs D. 2002. *Venomous and poisonous animals: a handbook for biologists, toxicologists and toxinologists, physicians and pharmacists*. USA: CRC Press; ISBN 3-88763-093-9.

Mehta SR, Sashindran VK. 2002. Clinical features and management of snake bite. *Medical Journal Armed Forces India* 58:247-249. doi: 10.1016/S0377-1237(02)80140-X

Minu V, Harsh V, Ravikant T, Paridhi J, Noopur S. 2012. Medicinal plants of Chhattisgarh with anti-snake venom property. *International Journal of Current Pharmaceutical Review Research* 3:1-10.

Mogha NG, Kalokora OJ, Amir HM, Kacholi DS. 2022. Ethnomedicinal plants used for treatment of snakebites in Tanzania-a systematic review. *Pharmaceutical Biology* 60(1), 1925-1934.

Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, Khalid A. 2020. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. *Molecules*, 25(21), 4878.

Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, Rodriguez P S, Mishra K, Whitaker R, Jha P. 2011. Snakebite mortality in India: a nationally representative mortality survey. *PLoS Neglected Tropical Diseases* 5(4):e1018.

Muller-Boker U. 1993. Ethnobotanical studies among the Chitawan Tharus. *Journal of the Nepal Research Centre* 9:17-56.

Munankarmi NN, Chaudhary S, Neupane S, Shyaula SL, Zhang W, Gauchan DP. 2025. Ethnomedicinal Uses of Plant Resources in Bethanchowk Rural Municipality of Kavrepalanchowk District, Central Nepal. *Ethnobotany Research and Applications* 30:1-47.

Muthu C, Ayyanar M, Raja N, Ignacimuthu S. 2006. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. *Journal of Ethnobiology and Ethnomedicine* 2: 43-10.1186/1746-4269-2-43.

Nagarkoti S, Shrestha SJ. 2022. Ethnomedicinal Plants Used by Pahari Community of Shikarpa Village, Lalitpur, Nepal. *Journal of Plant Resources* 20:159-172.

Nemkul CM. 2022. Ethnobotany and Antimicrobial Study of Selected Medicinal Plants Used by Magar Community in Nawalpur District, Nepal (Doctoral dissertation, Institute of Science and Technology).

Neupane A, Dhakal A, Lamsal U, Sharma B, Thapa R. 2024. Ethnomedicinal Uses of Plant Species in Panchase Protected Forests (A Case Study including the Kaski, Parbat & Syangja Districts of Nepal). *International Journal of Applied Biology* 8:107-127.

Neupane S. 2024. Ethnobotanical Study in Khas Community of Ramaroshan Rural Municipality, Achham, Western Nepal. MSc Dissertation, Tribhuvan University.

Newman WJ, Moran NF, Theakston RDG, Warrell DA, Wilkinson D. 1997. Traditional treatments for snake bite in a rural African community. *Annals of Tropical Medicine & Parasitology*, 91(8), 967-969.

Ojha Khatri S, Chaudhary S, Shrestha N, Munankarmi NN. 2021. Ethnomedicinal study and phytochemical screening of selected plants in Jhule, Dolakha District, Nepal. *Vegetos* 34:834-846. doi: 10.1007/s42535-021-00266-2.

Okot DF, Anywar G, Namukobe J, Byamukama R. 2020. Medicinal plants species used by herbalists in the treatment of snakebite envenomation in Uganda. *Tropical Medicine and Health* 48:1-4.

Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, Bongomin O. 2020. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. *Tropical Medicine and Health* 48:6.

Pandey DP, Thapa NB. 2023. Analysis of News Media-Reported Snakebite Envenoming in Nepal during 2010-2022. *PLoS Negl Trop Dis* 17(8): e0011572. doi: 10.1371/journal.pntd.0011572.

Pandey DP, Subedi Pandey G, Devkota K, Goode M. 2016. Public perceptions of snakes and snakebite management: implications for conservation and human health in southern Nepal. *Journal of Ethnobiology and Ethnomedicine* 12: 1-25.

Pandey J. 2013. Documentation of ethnomedicinal knowledge on plant resources used by Magar community in Dhanbang VDC, Salyan District. *Journal of Plant Resources* 35:62-66.

Parajuli RR. 2013a. Indigenous knowledge on medicinal plants: Maipokhari, Maimajhuwa and mabu VDCS of Ilam District, Eastern Nepal. *Journal of Plant Resources* 35:50-58.

Parajuli RR. 2013b. Study on Local Uses of Medicinal Plants in Nayabazar, Pyang and Jamuna VDCs of Ilam District. *Nepal Journal of Science and Technology* 14:57-66. doi: 10.3126/njst.v14i1.8923

Pariyar D, Miya M, Adhikari A. 2021. Traditional uses of locally available medicinal plants in Bardiya district Nepal. *Journal of Medicinal Herbs* 12:85-92. doi: 10.30495/medherb.2021.684660

Paudel M. 2015. Medical Ethnobiology and indigenous knowlegde system found in Raji group of Nepal. Phd dissertation, Tribhuvan University.

Poudel B, Bhandari J, Poudel A, Gautam D. 2021. Ethnomedicinal use of Common Garden Species in Arghakhanchi district, Western Nepal. *Asian Journal of Pharmacognosy* 4:31-655. doi: 10.13140/RG.2.2.27551.89766

Poudel M, Singh NB. 2016a. Medical Ethnobiology and Indigenous Knowledge System Found In Darai Ethnic Group of Chitwan, Nepal. *Journal of Institute of Science and Technology* 21:103-111. doi: 10.3126/jist.v21i1.16061

Poudel M, Singh NB. 2016b. Teaching (With) Medical Ethnobiology: Indigenous Knowledge System Found In Raji People of Western Nepal. *International Journal of Multidisciplinary Perspective in Higher Education* 1:47-62.

Pradhan SP, Chaudhary RP, Sidgel S, Pandey BP. 2020. Ethnobotanical Knowledge of Khandadevi and Gokulganga Rural Municipality of Ramechhap District of Nepal. *Ethnobotany Research and Applications* 20:1-32. doi: 10.32859/era.20.07.1-32

Prajapati M. 2012. Ethnobotanical Study of Muchu Vdc in Humla District. Phd dissertation, Tribhuvan University.

Rahman R, Faiz MA, Selim S, Rahman B, Basher A, Jones A, d'Este C, Hossain M, Islam Z, Ahmed H, Milton AH. 2010. Annual incidence of snake bite in rural Bangladesh. *PLoS Neglected Tropical Diseases* 4(10):e860.

Rai SK, Shrestha PR. 2009. Ethnoecological Knowledge and Management System of Plants by Rai Bantawa Community of Nepal. Department of plant resources, Thapathali. Departmemnt of Plant Resources, Kathmandu.

Rai MB. 2003. Medicinal Plants of Tehrathum District, Eastern Nepal. *Our Nature* 1:42-48.

Rai R, Singh NB. 2015. Medico-ethnobiology in Rai Community: A Case Study from Baikunthe Village Development Committee, Bhojpur, Eastern Nepal. *Journal of Institute of Science and Technology* 20:127-132. doi: 10.3126/jist.v20i1.13935

Rajbanshi N, Thapa LB. 2019. Traditional knowledge and practices on utilizing medicinal plants by endangered Kisan ethnic group of eastern Nepal. *Ethnobotany Research and Applications* 18:1-9. doi: 10.32859/era.18.23.1-9

Rana SK, Oli PS, Rana HK. 2015. Traditional botanical knowledge (TBK) on the use of medicinal plants in Sikles area, Nepal. *Asian Journal of Plant Science and Research* 5:8-15.

Rates SMK. 2001. Plants as source of drugs. *Toxicon* 39:603-613.

Raut B, Chaudhary A, Khanal DP. 2025. Traditional Healing Practices in Tharu Community of Lamahi-4, Dang, Nepal. *Journal of Manmohan Memorial Institute of Health Sciences* 10:46-50.

Raut B, Khanal DP, Kharel A. 2018. Traditional healing practice in Rajbanshi and Satar Community of Jhapa, Nepal. *Journal of Manmohan Memorial Institute of Health Sciences* 4:103-116. doi: 10.3126/jmmihs.v4i1.21148

Rijal A. 2011. Surviving on Knowledge: Ethnobotany of Chepang community from mid-hills of Nepal. *Ethnobotany Research and Applications* 9:181-215. doi: 10.17348/era.9.0.181-215

Rokaya MB, Upadhyay Y, Poudel RC, Timsina B, Munzbergova Z, Asselin H, Sigdel SR. 2014. Traditional uses of medicinal plants in gastrointestinal disorders in Nepal. *Journal of ethnopharmacology*, 158, 221-229.

Sapkota PP. 2008. Ethno-ecological Observation of Magar of Bokhara, Baglung, Western, Nepal. *Dhaulagiri Journal of Sociology and Anthropology* 2:227-252. doi: 10.3126/dsaj.v2i0.1366

Sapkota PP. 2013. Religious Culture and Medicinal Plants: An Anthropological Study. *Dhaulagiri Journal of Sociology and Anthropology* 7:197-224. doi: 10.3126/dsaj.v7i0.10443

Shah DP, Singh NB. 2014. Ethnobiological Study of the Majhi of Sindhuli District. *Nepalese Journal of Zoology* 2:44-50.

Shah PJ, Gautam R. 2010. Brief survey on the snakes of Pokhara Valley. *Journal of Natural History Museum TU, Kathmandu, Nepal*, 25, 252-254.

Sharma SK, Chappuis F, Jha N, Bovier PA, Loutan L, Koirala S. 2004. Impact of snake bites and determinants of fatal outcomes in southeastern Nepal. *Am. J. Trop. Med. Hyg.* 71(2):234-238.

Shrestha PM, Dhillon SS. 2003. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. *Journal of Ethnopharmacology* 86:81-96. doi: 10.1016/S0378-8741(03)00051-5

Sigdel SR, Rokaya MB. 2013. Utilization of plant resources in Dang district, West Nepal. *Banko Janakari* 21:45-54. doi: 10.3126/banko.v21i2.9143

Silwal GR. 2020. Medicinal Plants and Their Traditional Uses in Ramkot Village, Kathmandu Nepal. *Patan Pragya*, 6:180-190. doi: 10.3126/pragya.v6i1.34431

Singh AG, Hamal JP. 2013. Traditional Phytotherapy of Some Medicinal Plants Used by Tharu and Magar Communities of Western Nepal, Against Dermatological Disorders. *Scientific World* 11:81-89. doi: 10.3126/sw.v11i11.8558

Singh AG, Kumar A, Tewari DD, Bharati KA. 2018. New ethnomedicinal claims from Magar community of Palpa district, Nepal. *Indian Journal of Traditional Knowledge* 17:499-511.

Singh AG, Poudel KN, Tewari DD. 2011. Diversity of Cultivated and Wild Medicinal Plants Used by People of Devdaha VDC of Rupandehi District, West Nepal. *Current Botany* 2:34-42.

Singh S. 2015a. Ethno botanical study of some wild herb species Parsa District Forest of Nepal. *Journal of Pharmacognosy and Phytochemistry* 4:32-40.

Singh S. 2015b. Ethnobotanical study of Indigenous Knowledge on Some Wild Plants in Parsa District, Nepal. *Journal of Natural History Museum* 29:103-121. doi: 10.3126/jnhm.v29i0.19042

Singh S. 2016. Ethnobotanical study of some climbers of Parsa district forest of Nepal. *Journal of Medicinal Plants Studies* 4:6-10.

Singh S. 2017. Ethnobotanical study of wild plants of Parsa District, Nepal. *Ecoprint* 24:1-12. doi: 10.3126/eco.v24i0.20641

Singh S. 2020. Indigenous health management of Tharu tribals in the eastern part of Parsa, Nepal. *Journal of Pharmacognosy and Phytochemistry* 9:268-274. doi: 10.22271/phyto.2020.v9.i3d.11277

Singh S. 2021. Indigenous medicinal practices of shrub species in the western part of Parsa district, Nepal. *World Journal of Pharmaceutical Research* 10:1491-1508.

Subba B, Basnet P. 2014. Antimicrobial and Antioxidant Activity of Some Indigenous Plants of Nepal. *Journal of Pharmacognosy and Phytochemistry* 3:62-67.

Tabuti JRS, Lye KA, Dhillon SS. 2003. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. *Journal of Ethnopharmacology* 88: 19-44. 10.1016/S0378-8741(03)001612.

Tamang P, Singh NB. 2014. Medical Ethnobiology and Indigenous Knowledge System of the Lapcha of Fikkal VDC of Ilam, Nepal. *Journal of Institute of Science and Technology* 19:45-52. doi: 10.3126/jist.v19i2.13851

Tamang R, Thakur C, Koirala D, Chapagain N. 2017. Ethno-medicinal Plants used by chepang community in Nepal. *Journal of Plant Resources* 15:31-30.

Thorn JPR, Thornton TF, Helfgott A, Willis KJ. 2020. Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal. *Journal of Ethnobiology and Ethnomedicine*, 16:1-25. doi: 10.1186/s13002-020-00382-4

Timilsina SH, Singh NB. 2014. Ethnobiology and Indigenous Knowledge about Medicinal Animals and Plants in the Balami Ethnic Group in Nepal. *Journal of Institute of Science and Technology* 19:79-85. doi: 10.3126/jist.v19i2.13857

Trim SA, Trim CM, Williams HF, Vaiyapuri S. 2020. The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation. *Toxins* 12:1-8.

Uniyal SK, Singh KN, Jamwal P, Lal B. 2006. Traditional use of medicinal plants among the tribal communities Chhota, Western Himalaya. *Journal of Ethnobiology and Ethnomedicine* 2: 14-10.1186/1746-4269-2-14.

Warrell DA. 2010. Snake bite. *The Lancet* 375:77-88. doi: 10.1016/S0140-6736(09)61754-2

WHO 2005. Blood Products and related Biologicals: Animal sera-Available from http://www.who.int/bloodproducts/animal_sera/en

Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. 2019. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. *Toxins* 11:1-29.

Williams SS, Wijesinghe CA, Jayamanne SF, Buckley NA, Dawson AH, Laloo DG, De Silva HJ. 2011. Delayed psychological morbidity associated with snakebite envenoming. *PLoS Neglected Tropical Diseases* 5:1-6.

Westly E. 2013. One million deaths. *Nature*, 504, 22-23.

Yirgu A, Chippaux JP. 2019. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. *Journal of venomous animals and toxins including tropical diseases*, 25, e20190017.

Supplementary file 1 (Ethnomedicinal plants used for snakebite in Nepal)

Botanical name	Family	Local name	Habit	Part used	Mode of use	Mode of administration	Frequency of citation (F)	Reference and verification	District
<i>Abrus precatorius</i> L.	Fabaceae	Rati gedi	C	Root	Dried root is ground and administered	Topical	1	Ambu et al. 2020	Kavreplanchowk
<i>Acacia pennata</i> (L.) Willd.	Fabaceae	Arerikanda	T	Whole plant			1	Tamang et al. 2017	Chitwan, Dhading, Gorkha, Makwanpur
<i>Achyranthes aspera</i> L.	Amaranthaceae	Datiwan, Naksirka	H	Leaf, Root, Whole plant, Shoot, Flower, Seed	Decoction of leaf; paste of root	Oral, Topical	6	Lamichhane et al. 2014a; Gautam 2013; Khadka 2011; Bhattacharai et al. 2009; Dhami 2008; Acharya 2023	Kanchanpur, Kapilavastu, Lalitpur, Nawalparasi, Pyuthan, Sunsari, Tanahun
<i>Acmella calva</i> (DC.) R.K. Jansen	Asteraceae	Marethi, Jansen, Latoghans	H	Whole plant	Paste	Topical	3	Kunwar et al. 2012; Khadka 2011; Lamichhane et al. 2014a	Baitadi, Dadeldhura, Darchula, Kapilavastu, Lalitpur Pyuthan
<i>Aconitum lethale</i> Griff.	Ranunculaceae	Bikhma/Bisma	H				3	Bhattacharai 2009; Limbu & Rai 2013; Magar 2009	Dhankuta, Jhapa, Ilam, Morang, Panchthar, Sunsari, Taplejung, Terhathum, Tanahun
<i>Aconitum naviculare</i> (Bruhl) Stapf	Ranunculaceae		H				1	Bhattacharai 2009	Manang, Mustang
<i>Acorus calamus</i> L.	Araceae	Bojho	H	Rhizome	Rhizome as antidote		3	Magar et al. 2022; Chaudhary et al. 2020; Joshi & Edington 1990	Kathmandu, Rasuwa, Sunsari
<i>Adiantum capillus-veneris</i> L.	Pteridaceae	Gophale, Pakhaale Unyu	H	Root, Leaf	Leaf paste; Root juice	Oral, Topical	5	Pariyar et al. 2021; Kunwar 2018; Acharya 2012; Kunwar & Bussmann 2009; Kunwar et al. 2010	Baitadi, Bardiya) Dadeldhura, Darchula, Gulmi
<i>Adiantum pedatum</i> L.	Pteridaceae	Unyu	H	Root	Rhizome paste is applied and tied	Topical	1	Aryal et al. 2016	

					with Siru with mantra				
<i>Agrimonia pilosa</i> Ledeb.	Rosaceae	Kathlange	H	Root	Root juice antidote	Oral	1	Kunwar et al. 2010	Baitadi, Dadeldhura, Darchula
<i>Albizia lebbeck</i> (L.) Benth.	Fabaceae	Kalo siris	T	Bark	Bark paste	Topical	2	Bhattarai & Tamang 2017; Tamang et al. 2017	Chitwan, Dhading, Gorkha, Makwanpur
<i>Allium sativum</i> L.	Amaryllidaceae	Lasun	H	Bulb	Paste of bulb	Topical	2	Adhikari et al. 2019; Rai & Shrestha 2009	Bhojpur, Kaski
<i>Allium wallichii</i> Kunth	Amaryllidaceae		H				2	Limbu & Rai 2013; Bhattarai 2009	Dhankuta, Ilam, Jhapa, Manang, Mustang, Morang, Panchthar, Sunsari, Taplejung, Terhathum, Sunsari
<i>Alternanthera sessilis</i> (L.) DC.	Amaranthaceae	Viringi-jhar/ Sarhauchi	H	Whole plant			1	Chaudhary & Rai 2017	Sunsari
<i>Amaranthus lividus</i> L.	Amaranthaceae	Lunde	H	Root, Stem, Leaf	Root paste with black pepper seed powder is diluted in Chaulani (rice waste water); stem and leaves extract	Topical, Oral	2	Bhatt et al. 2021; Singh et al. 2011	Kanchanpur, Rupandehi
<i>Amaranthus spinosus</i> L.	Amaranthaceae	Lude Kanda/ Banlunde/Kate math	H	Whole plant	Juice and decoction	Oral	2	Gautam & Timilsina 2022; Bhatt et al 2021	Kanchanpur, Kaski
<i>Amomum subulatum</i> Roxb.	Zingiberaceae	Alainchi	H	Fruit			1	Lamichhane et al. 2014a	Lalitpur
<i>Anagallis arvensis</i> L.	Primulaceae	Armale	H	Whole plant	Decoction	Oral	1	Singh & Hamal 2013	Rupandehi
<i>Andrographis paniculata</i> (Burm.f.) Wall. Ex Nees	Acanthaceae	Kalomegh	H	Whole plant	Juice	Oral	2	Singh 2020; Bhattarai & Tamang 2017	Makwanpur, Parsa
<i>Anthocephalus chinensis</i> (Lam.) A. Rich. ex Walp.	Rubiaceae	Kadam	T	Stem, Bark	stem and bark extract		2	Baral & Bhagat 2018; Kunwar et al. 2010	Baitadi, Dadeldhura, Darchula, Morang
<i>Areca catechu</i> L.	Arecaceae	Supadi	S	Fruit			1	Bhattarai 2008	Arghakhanchi
<i>Arisaema costatum</i> (Wall.) Mart. ex Schott	Araceae	Banko	H	Seed	Paste	Antidote	1	Ojha Khatri et al. 2021	Dolakha

<i>Arisaema tortuosum</i> (Wall.) Schott	Araceae	Banko, Sarpako Makai	H	Seed, Fruit, Tuber	Corm & seed paste		5	Silwal 2020; Paudel et al. 2021; Malla 2019; Malla et al. 2015; Bhatt et al. 2023	Arghakhanchi, Kathmandu, Parbat, Kanchanpur
<i>Aristolochia indica</i> L.	Aristolochiaceae	Isharmule	C	Leaf, Root	Juice of leaf and powdered root	Oral, Topical	1	Singh 2016	Parsa
<i>Asclepias curassavica</i> L.	Asclepidaceae	Khursani phool	H	Root			1	Gautam 2011	Panchthar
<i>Aster diplostephioides</i> (DC.) Benth. ex C.B. Clarke	Asteraceae	Mara, Motolugmick	H	Flower	Ground flower is taken (half a spoonful) with a cup of hot water two times a day after meal	Oral	1	Bhattarai 2009	Manang, Mustang
<i>Azadirachta indica</i> A. Juss	Meliaceae	Neem	T	Leaf	Leaf juice		1	Khanal et al. 2020	Gulmi
<i>Bauhinia vahlii</i> Wight & Arn.	Fabaceae	Bhorla	C	Seed, Young Shoot, Leaf	paste of root, seed, and young shoot	Topical	4	Baral & Bhagat 2018; Sapkota 2013; Gautam 2011; Rai 2003	Baglung, Morang, Panchthar, Terhathum
<i>Bauhinia variegata</i> L.	Fabaceae	Koiralo	T	Bark, Stem, Root, Leaf, Flower	powdered bark is combined with Citrus limon juice, bark and stem are as antidote	Oral, Topical	4	Ambu et al. 2020; Acharya & Acharya 2009; Bhattarai 2008, Acharya 2023	Arghakhanchi, Kavreplanchowk, Rupandehi, Tanahun
<i>Barleria cristata</i> L.	Acanthaceae	Bhede kuro	H	Leaf, Root			1	Acharya 2023	Tanahun
<i>Boerhavia diffusa</i> L.	Nyctaginaceae	Purnarnava	H	Leaf, Root	Leaf and root extract	Oral	1	Bhatt et al. 2021	Kanchanpur
<i>Bombax ceiba</i> L.	Malvaceae	Simal	T	Flower, Fruit, Bark, Root			1	Mahara et al. 2022	Kapilvastu
<i>Bryophyllum pinnatum</i> (Lam.) Oken	Crassulaceae	Pattharchatt	H	Leaf	Leaf juice, ash of the burnt leaves as paste	Oral, Topical	2	Pradhan et al. 2020; Malla 2019;	Parbat, Ramechhap
<i>Calanthe plantaginea</i> Lindl.	Orchidaceae	Bismaro	H	Stem		Antidote	1	Kunwar 2018	Kailash Sacred Landscape
<i>Calotropis gigantea</i> (L.) Dryand.	Asclepiadaceae	Aank/Madar	S	Latex, Bark, Root, Flower	Bark and root paste, latex, bark of Calotropis gigantea and Thaysanolena maxima is crushed and applied	Topical	8	Gautam & Timilsina 2022; Pariyar et al. 2021; Kunwar 2018; Chaudhary & Rai 2017; Poudel & Singh 2016b; Poudel 2015; Bhattarai 2013; Raut et al. 2025	Bardiya, Chitwan, Kaski, Kailash Sacred Landscape, Sunsari, Surkhet, Dang
<i>Calotropis procera</i> (Aiton) Dryand	Asclepiadaceae	Aakha / Madar	S	Leaf	Latex	Topical	2	Bhatt et al. 2021; Bhatt et al. 2023	Kanchanpur

<i>Cannabis sativa L.</i>	Cannabaceae	Bhang	H	Whole plant	Paste	Topical	1	Bhatt et al. 2021	Kanchanpur
<i>Capsicum annuum L.</i>	Solanaceae	Dalley Khursaani	H	Fruit	Paste	Topical	1	Dewan et al. 2023	Sankhuwasabha
<i>Capsicum frutescens L.</i>	Solanaceae	Jirey Khursani	H	Fruit	Paste	Topical	1	Bhandari et al. 2013	Dang
<i>Careya arborea Roxb.</i>	Lecythidaceae	Kumbhi	T	Bark, Fruit	Paste	Topical	3	Acharya & Acharya 2009; Tamang et al. 2017; Bhattacharai & Tamang 2017	Chitwan, Dhading, Gorkha, Makwanpur, Rupandehi
<i>Caryota urens L.</i>	Arecaceae	Machha Jode/ Rangbang	T	Leaf, Bark	Paste	Topical	1	Bhattacharai 2020	Ilam
<i>Cassia fistula L.</i>	Fabaceae	Raj briksha	T	Seed, Fruit pulp, Leaf	Seed and fruit pulp paste, juice of seed, leaf paste, fruit powder	Oral, Topical	7	Gautam & Dhakal 2023; Bhattacharai 2020; Malla 2019; Lamichhane et al. 2014a; Timilsina & Singh 2014; Sapkota 2008; Bhattacharai 2008	Arghakhanchi, Baglung, Ilam, Lalitpur, Makwanpur, Nuwakot, Parbat
<i>Castanopsis tribuloides (Sm.) A.DC.</i>	Fagaceae	Musure Katus	T	Bark	Bark paste	Topical	4	Kunwar 2018; Joshi 2004; Joshi et al. 2011; Joshi & Joshi 2009	Kathmandu, Rasuwa
<i>Centella asiatica (L.) Urb.</i>	Apiaceae	Ghodtapre	H	Whole plant, Leaf	Paste	Topical, Oral	5	Rana et al. 2015; Hasan et al. 2013; Gautam 2013; Gurung 2007; Dewan et al. 2023	Kaski, Makwanpur, Sunsari, Sankhuwasabha
<i>Cheilanthes dalhousiae Hook.</i>	Pteridaceae	Rani sinka	H	Leaf			1	Rai & Singh 2015	Bhojpur
<i>Chromolaena odorata (L.) R.M.King & H.Rob.</i>	Asteraceae	Banmara	S	Whole plant	Prevention		1	Thorn et al. 2020	
<i>Cissampelos pareira L.</i>	Menispermaceae	Gajurgano/ Batulpate/Tanga	C	Root	Root decoction and paste	Oral, Topical	2	Joshi et al. 2020; Joshi 2014	Makwanpur
<i>Citrus limon (L.) Osbeck</i>	Rutaceae	Nibuwa	S	Fruit	Juice is combined with dried powdered leaves of <i>Bauhinia variegata</i>		1	Ambu et al. 2020	Kavreplanchok
<i>Clerodendrum infortunatum L.</i>	Lamiaceae	Bhat, Bhanti	S	Leaf, Root	Root and leaf paste	Oral, Topical	3	Bhatta et al. 2021; Bhattacharai 2020; Pariyar et al. 2021	Bardiya, Ilam, Kanchanpur
<i>Clitoria ternatea L.</i>	Fabaceae	Aparajeeta	C				1	Dani & Tiwari 2018	Kathmandu
<i>Colebrookea oppositifolia Sm.</i>	Lamiaceae	Dhurseli	S	Leaf	Leaf juice or paste		5	Gautam & Timilsina 2022; Tamang et al. 2017; Bhattacharai & Tamang 2017; Sigdel & Rokaya 2013; Khatri 2012	Chitwan, Dang, Dhading, Gorkha, Kaski, Makwanpur

<i>Colocasia esculenta</i> (L.) Schott	Araceae	Karkalo	H	Stem	Latex	Topical	1	Adhikari et al. 2019	Kaski
<i>Costus speciosus</i> (Koenig) Sm.	Zingiberaceae	Betlauri/Mumbhas	H	Rhizome, Stem, Root			3	Bhattarai & Tamang 2017; Lamichhane et al. 2014a; Tamang et al. 2017	Chitwan, Dhading, Gorkha, Lalitpur, Makwanpur
<i>Crateva religiosa</i> G.Forst.	Capparaceae	Sipligan	T	Fruit, Shoot, Bark	Juice of fruit, shoot and bark		1	Sapkota 2008	Baglung
<i>Cynodon dactylon</i> (L.) Pers.	Poaceae	Dubo	H	Whole plant	paste is applied with honey, decoction	Topical	2	Kunwar 2018; Bhatt et al. 2023	Kailash Sacred Landscape, Kanchanpur
<i>Dactylorhiza hatagirea</i> (D.Don) Soó	Orchidaceae	Panch Aunle	H	Root	Root powder and paste	Topical	2	Pradhan et al. 2020; Bhattarai 2009	Manang, Mustang, Ramechhap
<i>Daphne bholua</i> Buch.-Ham. ex D.Don	Solanaceae	Lokta	S	Bark	Paper made from bark is used as bandage	Topical	1	Ambu et al. 2020	Kavreplanchowk
<i>Datura metel</i> L.	Solanaceae	Bhokaray	S	Leaf, Seed	Leaf extract, seed paste	Oral, Topical	2	Bhatt et al. 2021; Kandel 2012	Kanchanpur, Nuwakot
<i>Delphinium nudatum</i> Wall.	Ranunculaceae	Nirmasi	H	Root, Rhizome	Root and Rhizome Paste		2	Aryal et al. 2016; Adhikari 2024	Dhading
<i>Delphinium grandiflorum</i> L.	Ranunculaceae	Alisyo/Atis	H	Root	Root juice		1	Prajapati 2012	Humla
<i>Delphinium himalaya</i> Munz	Ranunculaceae	Atis/ Majphal	H	Root	Root juice		2	Gewali 2009; Kunwar & Adhikari 2005	Dolpa
<i>Diploknema butyracea</i> (Roxb.) H.J.Lam	Sapotaceae	Chiuri	T		Repellent	Topical	1	Kunwar et al. 2010	Baitadi, Dadeldhura, Darchula
<i>Dracaena trifasciata</i> (Prain) Mabb.	Asparagaceae	Mangut	H	Leaf	Paste	Topical	1	Raut et al. 2025	Dang
<i>Dracocephalum heterophyllum</i> Benth.	Lamiaceae	Chichine Jhar	H	Leaf	Leaf paste		1	Pradhan et al. 2020	Ramechhap
<i>Eclipta prostrata</i> (L.) L.	Asteraceae	Bhringraj/ Kal jira	H	Whole plant	Paste		3	Gautam & Timilsina 2022; Bhatt et al. 2021; Dani & Tiwari 2018	Kanchanpur, Kaski, Kathmandu
<i>Eichhornia crassipes</i> (Mart.) Solms	Pontederiaceae	Talpatana	H	Leaf	Juice of leaf		1	Mahara et al. 2022	Kapilvastu
<i>Elephantopus scaber</i> L.	Asteraceae	Sahasra buti	H	Root	extract		1	Dhami 2008	Kanchanpur
<i>Euphorbia chamaesyce</i> L.	Euphorbiaceae	Dundhi	H	Whole plant	Paste		1	Manandhar 1985	Dang
<i>Euphorbia hirta</i> L.	Euphorbiaceae	Dudhe jhar/ Dudhi	H	Whole plant, Root	extract, root decoction		4	Singh, 2015a 2015b; Malla & Chhetri 2009; Dhami 2008	Kanchanpur, Kavreplanchowk, Parsa
<i>Euphorbia parviflora</i> L.	Euphorbiaceae	Dudhe jhar	H	Whole plant		Oral	1	Bhatt et al. 2021	Kanchanpur
<i>Euphorbia tirucalli</i> L.	Euphorbiaceae	Burkhill, Thohar	T	Latex	1 tbls. Of latex is taken with milk to cause vomiting	Oral	1	Singh 2021	Parsa

<i>Ficus auriculata</i> Lour.	Moraceae	Timilo	T	Resin			1	Neupane 2023	Achham
<i>Ficus religiosa</i> L.	Moraceae	Pipal	T	Bark	Bark juice		2	Silwal 2020; Malla 2019	Kathmandu, Parbat
<i>Fomitopsis pinicola</i> (Sw.) P. Karst.	Fomitopsidaceae	Jali chyau	F	Whole plant			1	Rijal 2011	Chitwan
<i>Galium asperifolium</i> Wall.	Rubiaceae	Sano majitho	H	Whole plant	Paste		1	Bhattarai 2018	Ilam
<i>Girardinia diversifolia</i> (Link) Friis	Urticaceae	Malemau	S	Root	Root paste		1	Rijal 2011	Chitwan
<i>Gossypium herbaceum</i> L.	Malvaceae	Ban Kapas	S	Leaf	Leaf juice		1	Malla 2019	Parbat
<i>Gymnema sylvestre</i> (Retz.) R.Br. ex Sm.	Asclepidaceae	Gurmar	C	Whole plant		Antidote	2	Singh 2017, 2016	Parsa
<i>Hedychium spicatum</i> Buch.-Ham. Ex Sm.	Zingiberaceae	Kapoor kacharo/ Panee saro	H				1	Lamichhane et al. 2014b	Langtang NP
<i>Hedyotis corymbosa</i> Wall.	Rubiaceae	Majithe jhar, Piringo	H	Whole plant	extract	Oral	1	Bhatt et al. 2021	Kanchanpur
<i>Helianthus annuus</i> L.	Asteraceae	Suraj Mukh	H	Leaf	crushed leaves		1	Mahara et al. 2022	Kapilavastu
<i>Herpetospermum pedunculosum</i> (Ser.) C.B.Clarke	Cucurbitaceae	Bankarela	C	Root	Root juice or paste		1	Pradhan et al. 2020	Ramechhap
<i>Hydrangea febrifuga</i> (Lour.) Y.De Smet & Granados	Hydrangeaceae	Basuli	H	Leaf	Leaf juice	Oral, Topical	1	Aryal et al. 2016	
<i>Hydrocotyle javanica</i> Thunb.	Araliaceae	Khochade, Sano ghortapre, Zupha	H	Whole plant	Juice or paste		2	Dhital et al. 2021; Kunwar 2018	Dolakha, Kailash Sacred Landscape
<i>Hypericum oblongifolium</i> Hook.	Hpericaceae	Khareto	S	Leaf	Leaf juice	Antidote	3	Malla 2019; Malla et al. 2015; Manandhar 1991	Kavreplanchowk, Parbat
<i>Imperata cylindrica</i> (L.) Raeusch.	Poaceae	Siru	H	Whole plant	to tie body parts to hinder blood circulation; grounded and consumed, and applied 21 times before meal of evening	Topical	2	Gubhaju & Guha 2019; Aryal et al. 2016	Palpa
<i>Inula cappa</i> (Buch.-Ham. ex D.Don) DC.	Asteraceae	Gai tihare	S	Young Shoot	extract	Topical	1	Shrestha & Dhillion 2003	Dolakha
<i>Jatropha curcas</i> L.	Euphorbiaceae	Sajiwani, Vyaghra eranda	S	Shoot	Young shoot		1	Kunwar 2018	Kailash Sacred Landscape
<i>Juncus prismatocarpus</i> R.Br.	Juncaceae	Tauke jhar	H	Leaf	Leaf juice		1	Joshi 2021	Chitwan
<i>Lantana camara</i> L.	Verbenaceae	Banamara	S	Whole plant			1	Baral & Bhagat 2018	Morang
<i>Lathyrus aphaca</i> L.	Fabaceae	Matar ghans	H	Leaf	Leaf extract		1	Bhatt et al. 2021	Kanchanpur
<i>Leea asiatica</i> (L.) Ridsdale	Leeaceae	Dhakkal sai	H	Leaf			1	Tamang et al. 2017	Chitwan, Dhading, Gorkha, Makwanpur
<i>Leea macrophylla</i> Roxb. ex Hornem.	Leeaceae	Galeni	S	Root	Root juice		2	Kunwar et al. 2007; Gautam 2011	Dhading, Panchthar

<i>Leucas aspera</i> (Willd.) Link	Lamiaceae	Ban tulasi / Tilaula	H	Leaf	Leaf sap		2	Dani & Tiwari 2018; Bhatt et al. 2023	Kathmandu, Kanchanpur
<i>Leucas cephalotes</i> (Roth) Spreng.	Lamiaceae	Guma	H	Leaf	Leaf paste		1	Mahara et al. 2022	Kapilvastu
<i>Lippia nodiflora</i> (L.) Rich.	Verbenaceae	Kurkure Jhar	H				1	Dani & Tiwari 2018	Kathmandu
<i>Litsea cubeba</i> (Lour.) Pers.	Lauraceae	siltimur	T		Repellent	Topical	1	Rai & Shrestha 2009	Bhojpur
<i>Luffa acutangula</i> Roxb.	Cucurbitaceae	Ghiraula	C	Fruit	Fruits are kept near the back of the neck and if a person cries, it indicates that a snake has bitten him		1	Bhandari et al. 2013	Dang
<i>Lycopodium clavatum</i> L.	Lycopodiaceae	Naagbeli	H	Lahara	Powder		1	Aryal et al. 2016	
<i>Marsilea quadrifolia</i> L.	Marsileaceae	Chaupatay	H	Leaf	Leaf juice	Oral	1	Bhatt et al. 2021	Kanchanpur
<i>Meconopsis regia</i> G.Taylor	Papaveraceae	Kesar	H	Root	Root juice, 3-5 teaspoonfull four times a day for 2-3 days	Antidote	1	Malla 2019	Parbat
<i>Mesua ferrea</i> L.	Calophyllaceae	Nageshwori	T	Fruit, Stem	Repellent		1	Acharya & Rokaya 2005	Kathmandu
<i>Millettia extensa</i> (Benth.) Baker	Fabaceae	Gaujo	C	Whole plant			1	Gautam & Timilsina 2022	Kaski
<i>Momordica charantia</i> L.	Cucurbitaceae	Ban Karela	C	Whole plant			1	Khatri 2012;	Kaski
<i>Moringa oleifera</i> Lam.	Moringaceae	Sajina, Saijan	T	Bark	Bark paste	Topical	1	Raut et al. 2018	Jhapa
<i>Mucuna pruriens</i> (L.) DC.	Fabaceae	Kauso	C	Leaf, Fruit	Leaf extract, and fruit		2	Singh 2017; Bhattarai & Tamang 2017	Makwanpur, Parsa
<i>Muraya koenigii</i> (L.) Spreng.	Rutaceae	Mitha nim	S	Leaf, Bark	Decoction of leaf	Oral	3	Singh 2017, 2021; Bhatt et al. 2023	Parsa, Kanchanpur
<i>Musa paradisiaca</i> L.	Musaceae	Kera	T	Stem	Stem juice		1	Tamang & Singh 2014	Ilam
<i>Mussaenda macrophylla</i> Wall.	Rubiaceae	Dhobini	S	Bark			1	Subba & Basnet 2014	Dhankuta, Tanahun
<i>Neolitsea pallens</i> (D.Don) Momiy. & H.Hara	Lauraceae	Simalte	T		seed oil	Antidote	1	Malla 2019	Parbat
<i>Neopicrorhiza scrophulariiflora</i> (Pennell) D.Y.Hong	Plantaginaceae	Kutki	H	Rhizome	Rhizome is pounded on a stone salb, boil in a cup of water and 5 spoonfuls of this filtered decoction is mixed with a cup of milk 2-3 times a day	Oral	2	Bhattarai 2009 Kunwar & Adhikari 2005	Manang, Mustang, Dolpa
<i>Nicotiana tabacum</i> L.	Solanaceae	Surti / Khaini	H	Leaf	Paste	Topical	1	Dewan et al. 2023	Sankhuwasabha

<i>Notochaete hamosa</i> Benth.	Lamiaceae	Kuro	H	Leaf	Leaf juice about 5-7 teaspoonfuls twice a day for 10-15 days	Antidote	2	Malla 2019; Malla et al. 2015	Parbat
<i>Nyctanthes arbortritis</i> L.	Oleaceae	Parijat	T	Bark, Root, Leaf, Flower	juice of bark and leaf	Oral	3	Gautam & Timilsina 2022; Bhattarai & Khadka 2017; Sapkota 2013	Baglung, Ilam, Kaski
<i>Ocimum sanctum</i> L.	Lamiaceae	Tulsi	S	Leaf, Stem, Root	juice		2	Malla 2019; Khatri 2012	Kaski, Parbat
<i>Oroxylum indicum</i> (L.) Kurz	Bignoniaceae	Talelo	T		Repellent		1	Malla 2019	Parbat
<i>Oxalis acetosella</i> L.	Oxalidaceae	Chariamilo	H	Leaf	Paste		1	Karki et al. 2023a	Okhaldhunga
<i>Oxalis corniculata</i> L.	Oxalidaceae	Sakirbu, Chari Amilo	H	Whole plant, Leaf	paste with the paste of Centella asiatica; decoction of leaf, leaf powder	Oral, Topical	4	Bhandari et al. 2023; Karki et al. 2023b; Singh 2015a 2017	Dolakha, Parsa, Gulmi
<i>Oxalis corymbosa</i> DC.	Oxalidaceae		H	Whole plant			1	Poudel et al. 2021	Arghakhanchi
<i>Paederia foetida</i> L.	Rubiaceae	Bire lahara	C	Root			1	Rijal 2011	Chitwan
<i>Pandanus nepalensis</i> H.St.John	Pandanaceae	Tarika	S	Leaf	leaf juice	Antidote	1	Malla 2019	Parbat
<i>Paris polyphylla</i> Sm.	Liliaceae	Satuwa	H	Rhizome, Root, Bulb, Leaf	Paste of rhizome, root, Powder of root	Topical, Eating	11	Kutal et al. 2021; Khanal et al. 2020; Kunwar 2018; Aryal et al. 2018; Kunwar et al. 2009; Gurung 2007; Bhattarai 1991; Munankarmi et al. 2025; Karki et al. 2023a; Neupane et al. 2024, Neupane 2023	Baitadi, Darchula, Gulmi, Kailash Sacred Landscape, Kaski, Makwanpur, Kavreplanchowk, Okhaldhunga, Parbat, Syangja, Achham
<i>Persicaria hydropiper</i> (L.) Spach	Polygonaceae	Pirrey jhar	H	Leaf, Branch, Flower	Paste	Topical	1	Munankarmi et al. 2025	Kavreplanchowk
<i>Pinus roxburghii</i> Sarg.	Pinaceae	Rani salla	T	Resin	Resin	Topical	1	Chaudhary & Rai 2017	Sunsari
<i>Pinus wallichiana</i> A.B.Jacks.	Pinaceae	Gobre salla	T	Resin	Resin	Topical	3	Prajapati 2012; Gewali 2009; Kunwar & Adhikari 2005	Dolpa, Humla
<i>Piper betle</i> L.	Piperaceae	Pan	H	Leaf			1	Chaudhary & Rai 2017	Sunsari
<i>Piper cubeba</i> L.f.	Piperaceae	Marich	C	Fruit	Fruit powder decoction and paste		1	Bhattarai et al. 2009	Nawalparasi
<i>Piper longum</i> L.	Piperaceae	Pipla	T	Fruit, Root			1	Mahara et al. 2022	Kapilvastu
<i>Piper nigrum</i> L.	Piperaceae	Marich	C	Fruit		Topical	1	Raut et al. 2025	Dang
<i>Pistacia chinensis</i> Bunge	Anacardiaceae	Kakarsingee	T	Gall			1	Aryal et al. 2018	Darchula
<i>Plantago centralis</i> Pilg.	Plantaginaceae		H	Root	Root juice		1	Karki et al. 2023b	Dolakha
<i>Pleurolobus gangeticus</i> (L.) J.St.-Hil. ex H.Ohashi	Fabaceae		H	Root	Paste		1	Gachhadhar et al. 2023	Morang

<i>Ranunculus sceleratus</i> L.	Ranunculaceae	Jaldhanya	H	Stem, Leaf			1	Bhatt et al. 2021	Kanchanpur
<i>Rauvolfia serpentina</i> (L.) Benth. ex Kurz	Apocynaceae	Sarpagandha	H	Root, Leaf, Flower, Whole plant	Root powder and paste, juice, hypnotic property toward snake, leaf, blossom worn around the neck, or a plant in the garden is believed to repel snakes	Oral, Topical	18	Chaudhary & Rajbhandari 2021; Bhattarai 2020; Joshi et al. 2020; Joshi et al. 2019; Rajbanshi & Thapa 2019; Bhattarai & Tamang 2017; Singh 2017; Chaudhary & Rai. 2017; Aryal et al. 2016; Poudel & Singh 2016a; Joshi 2014; Shah & Singh 2014; Shigdel & Rokaya 2011; Bhattarai et al. 2009; Ghimire & Bastakoti 2009; Muller-Booker 1993; Dangol & Gurung 1991; Bhattarai 1991	Chitwan, Dang, Ilam, Jhapa, Makwanpur, Nawalparasi, Parsa, Sindhuli, Sunsari
<i>Rhus chinensis</i> Mill.	Anacardiaceae		S	Root			1	Nemkul 2022	Nawalpur
<i>Ricinus communis</i> L.	Euphorbiaceae	Arandi, Alama	S	Leaf, Fruit	decoction	Antidote	1	Balami 2004	Kathmandu
<i>Rubia manjith</i> Roxb.	Rubiaceae	Majitho	C	Young Shoot, Whole plant	crushed young leaf, paste, decoction	Topical	5	Bhandari et al. 2021; Parajuli 2013a, 2013b; Dani & Tiwari 2018; Pandey 2013	Ilam, Kathmandu, Panchthar, Salyan
<i>Rubus ellipticus</i> Sm.	Rosaceae	Ainselu	S	Root, Shoot	Juice and paste		2	Pradhan et al. 2020; Sapkota 2008	Baglung, Ramechhap
<i>Sapindus mukorossi</i> Gaertn.	Sapindaceae	Rittha	T	Fruit			3	Dwa 2022; Kunwar et al. 2009 Burlakoti & Kunwar 2008	Darchula, Baitadi, Dadeldhura, Darchula, Kaski
<i>Schima wallichii</i> (DC.) Korth.	Theaceae	Chilaune	T	Bark, Seed	paste	Topical	2	Rijal 2011; Rai & Shrestha 2009	Bhojpur, Chitwan
<i>Semecarpus anacardium</i> L.fil.	Anacardiaceae	Bhalayo, Bheul	T	Fruit	repellent, by a solution of its fruit and cow manure; leaf and fruit ash antidote	Topical, Antidote	3	Thorn et al. 2020; Malla 2019; Kunwar et al. 2009	Central and western Terai, Baitadi, Darchula, Parbat
<i>Senna occidentalis</i> (L.) Link	Fabaceae	Sapgut	S	Whole plant	Paste	Topical	1	Raut et al. 2025	Dang
<i>Sida cordifolia</i> L.	Malvaceae	Balu	H				1	Dani & Tiwari 2018	Kathmandu
<i>Solanum annuum</i> C.V.Morton	Solanaceae	Khursani	H	Fruit	fried on oil	Topical	1	Adhikari et al. 2019	Kaski
<i>Solanum esuriale</i> Lindl.	Solanaceae	Kantakari	H	Root			1	Khatri 2012	Kaski
<i>Sphaeranthus indicus</i> L.	Asteraceae	Tauke jhar	H	Leaf	Leaf juice		1	Joshi 2021	Chitwan

<i>Spilanthes paniculata</i> Wall. ex DC.	Asteraceae	Bhuin timur, Mirmire, Khursani Jhar	H	Whole plant	Paste	Topical	4	Malla 2019; Singh et al. 2018; Dani & Tiwari 2018; Manandhar 1987	(Kathmandu, Lamjung, Palpa, Parbat
<i>Terminalia alata</i> Heyne ex Roth	Combretaceae	Darsi, Saj	T	Bark	Bark paste	Topical	2	Tamang et al. 2017; Bhattarai & Tamang 2017	Chitwan, Dhading, Gorkha, Makwanpur
<i>Thysanolaena latifolia</i> (Roxb. ex Hornem.) Honda	Poaceae	Amriso	S	Bark	Bark hair of Thysanolaena maxima and Calotropis gigantean is mixed	Oral, Topical	2	Poudel & Singh 2016b; Poudel 2015	Surkhet
<i>Trichosanthes cucumerina</i> L.	Cucurbitaceae	Chichindo	C	Fruit	A young fruit tip	Topical	2	Aryal et al. 2016; Dhami 2008	Kanchanpur
<i>Trichosanthes tricuspidata</i> Lour.	Cucurbitaceae	Kwajeng Sintak	C	Root	Root paste		1	Karki et al. 2023b	Dolakha
<i>Urena lobata</i> L.	Malvaceae	Nalukuro, Bishkhapre, Soranto	S	Leaf	Leaf juice, decocotion	Antidote, Oral	2	Malla 2019; Malla et al. 2015	Parbat
<i>Urtica ardens</i> Link	Urticaceae	Ghariya Sisno	H	Root	Root paste	Oral, Topical	1	Bhandari et al. 2021	Panchthar
<i>Urtica dioica</i> L.	Urticaceae	Sisnoo, Nelau	S	Root			1	Rijal 2011	Chitwan
<i>Vitex negundo</i> L.	Lamiaceae	Simali, Indrayani	S	Root	Smelling 1 spoon ground root in morning & evening, Juice	Oral, Smelling	2	Gubhaju & Gaha 2019; Aryal et al. 2016	Palpa
<i>Wrightia arborea</i> (Dennst.) Mabb.	Apocynaceae	Rani Khirro	T	Stem, Root	Juice		1	Gachhadhar et al. 2023	Morang
<i>Zantedeschia aethiopica</i> (L.) Spreng	Araceae	Darsan pipal	H	Stem	Latex of stem	Topical	2	Nagarkoti & Shrestha 2022; Tamang et al. 2017	Chitwan, Dhading, Gorkha, Lalitpur, Makwanpur
<i>Zanthoxylum acanthopodium</i> DC.	Rutaceae	Timur	T	Seed		Eating	1	Karki et al. 2023a	Okhaldhunga
<i>Zanthoxylum armatum</i> DC.	Rutaceae	Aakhe timur	S	Fruit	Fruit juice and paste	Oral, Topical	2	Adhikari et al. 2019; Munankarmi et al. 2025	Kaski, Kavreplanchowk
<i>Zanthoxylum oxyphyllum</i> Edgew.	Rutaceae	Siltimur	S	Flower, Fruit	Juice/extract/raw fruit	Antidote	3	Parajuli 2013a, 2013b; Bhattarai 2008	Arghakhanchi, Ilam
<i>Zingiber officinale</i> Roscoe	Zingiberaceae	Aduwa	H	Rhizome	Rhizome paste is applied and tied with Siru with mantra	Topical	1	Adhikari et al. 2019	Kaski
<i>Ziziphus mauritiana</i> Lam.	Rhamnaceae	Bayer	S	Leaf	Paste	Topical	1	Aryal et al. 2016	

