

Artemisia annua L. A review of its ethnobotanical history, bioactive compounds beyond Artemisinin, and pharmacological potentials

Abdulrahman Mahmoud Dogara, Rainer W. Bussmann

Correspondence

Abdulrahman Mahmoud Dogara¹, Rainer W. Bussmann^{2,3}

¹Biology Education Department, Tishk International University, Erbil, Iraq.

²Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia.

³Department of Botany, State Museum of Natural History, Karlsruhe, Germany

*Corresponding Author: abdulrahman.mahmud@tiu.edu.iq/ rainer.bussmann@iliauni.edu.ge

Ethnobotany Research and Applications 32:42 (2025) - http://dx.doi.org/10.32859/era.32.42.1-73 Manuscript received: 03/10/2025 - Revised manuscript received: 15/11/2025 - Published: 16/11/2025

Review

Abstract

Background: Plants are known to be reservoir of primary and secondary metabolites. Because secondary metabolites are naturally occurring compounds with the potential to improve human health, they are extremely important. Artemisia annua L. is used in traditional medicine to cure a wide range of conditions, such as coughs, diarrhea, malaria, and many more. Crude extracts and pure compounds of Artemisia annua L. have been the focus of numerous pharmacological investigations because of its extensive applications in traditional medicine. Existing review focuses on the plant application to treat malaria. Our search for relevant literature has yielded no comprehensive review of evaluations of A. annua. The review aimed to compile and evaluate its traditional uses, diverse chemical constituents, and its scientifically proven biological activities of A. annua.

Methods: Data on the A. annua, characteristic chemical constituents and biological activities were retrieved from internationally recognized scientific databases and reputable journals through online platforms such as Web of Science, PubMed, MDPI, Springer Nature, Wiley Online Library, and Elsevier. The World Flora Online (WFO) database (https://www.worldfloraonline.org) was used to taxonomically identify A. annua.

Results: The species traditionally has been used to cure various diseases such as malaria, cough, diarrhea, HIV, cancer, and others. It contains 251 different compounds under the groups of sesquiterpene, monoterpene, phenol, flavonoid and others. Pharmacologically, it has been reported to have some strong antioxidants, antibacterial, antimalarial, antiparasitic, and anticancer properties.

Conclusions: This review highlights dozens of non-artemisinin compounds have been identified; most of the *in vivo* research still uses crude extracts or pure artemisinin. Future work must focus on linking specific compounds, such as the flavonoids artemetin and casticin, to the observed *in vivo* anti-inflammatory, antiparasitic effects, anticancer and other biological activities.

Keywords: Artemisinin, Anticancer, Cytotoxicity, Drug discovery, Phytochemistry

Background

Plant resources have thus always been an important part of humans' history and have mostly been used as medicine and food and are now increasingly being used to treat common ailments (Dogara *et al.* 2025). The examination of medicinal plants uncovers numerous unique chemical compounds that provide advantageous pharmacological and therapeutic benefits. These materials can be utilized directly, or their extracts have served as precursors in the manufacture of medicinal compounds (Dogara *et al.* 2024). Research on medicinal plants has effectively fostered a strong impetus to identify lead compounds that confer advantages to human health.

Artemisia annua: Annual wormwood it has been successfully introduced into culture in many countries and in 2001 was recommended by WHO as the main source of artemisinin, a first-line therapy for malaria control. To date, countries producing artemisinin provide about a quarter of the world's health needs. 137 biologically active compounds, including 40 sesquiterpenes, 10 triterpenes, 7 coumarins, 46 flavonoids which can be the basis for drug synthesis, were sourced from Artemisia annua (Aadil et al. 2014; Hayat et al. 2009; Bussmann et al. 2025). It has been used to treat many diseases over the centuries, like malaria, and most well-known fever, inflammations bacterial infections and stomach related issues (Allen et al. 1997; Xinyan Han et al. 2022). Including artemisinin (Coroian et al. 2022), other key phytochemical compounds found in A. annua include flavonoids, essential oils, and phenolic acids, and coumarins, which all make a broad pharmacological profile (Abate et al. 2021).

Many scientific studies prove that *A. annua* is endowed with biologically active compounds, although, it is found to have anti-malarial effect because of artemisinin and its type (Liu *et al.* 1992). This plant too has shown to have strong anti-cancer activity (Zheng, 1994), its compounds, essential oils and crude extracts have been shown to have anti-bacterial and antifungal activities on several bacteria, fungi and protozoa (Donato *et al.* 2015). Recent study on artemisinin and its type have shown that this plant can be used for the treatment of many diseases (Coroian *et al.* 2022). It is therefore needed to create a comprehensive research that summarizes the traditional usage, chemical composition and biological activity. Also, the Importance of the plant in treatment has been realized because it is the only source of artemisinin, a sesquiterpene lactone that forms one of the most important drugs to treat malaria. In recent years, scientists have been giving more focus on the numerous biological actions of this plant. Thus, the extensive study is required to summarize and assess its conventional uses, various chemical components, and it's scientifically dated biological actions, other than artemisinin. The review will served as a means to identify the new medicinal uses of *A. annua* to justify its traditional use for future studies.

Methods

Data on *A. annua* and its unique chemical components and biological effects were found through well-known scientific resources and trusted journals through various online databases such as Web of Science, PubMed, MDPI, Springer Nature, Wiley Online Library and Elsevier. The search strategy incorporated the keyword "*Artemisia annua*, *A. annua*, *Artemisia*, *annua*" in combination with the following terms: "phenolic compounds," "flavonoids," "terpenoids," "alkaloids," "antioxidant," "antidiabetic," "antimicrobial," "anticancer," and "anti-hyperlipidemic." Taxonomic validation of *Artemisia annua* was conducted using the World Flora Online (WFO) database (https://www.worldfloraonline.org/). A review of all the relevant literature published until July 2025 was conducted to provide information on the phytochemical profiles and biological activities of *Artemisia annua*. The overall number of references included in this systematic review was 118 and covered 42 years (1984 to 2025) of research interest of this plant. Studies were included based on predefined criteria, and full-text articles were assessed for the presence of the search terms in their titles, abstracts, or main body text.

Synonyms of A. annua

Artemisia annua f. annua; Artemisia annua f. macrocephala Pamp.; Artemisia chamomilla C.Winkl.; Artemisia exilis Fisch. ex DC.; Artemisia hyrcana Spreng.; Artemisia plumosa Fisch. ex Besser; Artemisia stewartii C.B.Clarke; Artemisia suaveolens Fisch.; Artemisia wadei Edgew (Bussmann et al. 2025).

Botany and Ecology of A. annua

Annual. Plant aromatic, green, glabrous or with scattered, small, approximate hairs. Stems erect, ribbed, brownish or violet-brown, 30-100 cm high. Leaves alveolate-punctate-glandular; lower leaves petiolate, 3-5 cm long and 2-4; cm wide, ovate, thrice pinnately cut, their lobules oblong-lanceolate, short-acuminate, entire or with 1-2 teeth, 1-2 mm long and 0.5 mm wide; middle and cauline leaves twice pinnately cut; upper leaves sessile smaller and less compound; uppermost leaves bracteal, simple or with fewer lateral lobes. Capitula globose, 2.0-2.5 mm in diameter, numerous, divergent or drooping, on short peduncles, approximate on short branches, usually in long pyramidal paniculate inflorescence. Involucre glabrous. Outer involucral bracts linear-oblong, green; inner oval or almost round, with wide scarious border, lustrous. Receptacle convex, glabrous. Peripheral florets pistillate, 10-20, filiform, punctate-glandular; their stigma lobes narrowly linear, obtuse, exserted from corolla tube; disk florets bisexual, 12-30, their corollas cup-shaped-tubular, glabrous; anthers narrowly linear, apical appendages of anthers long, acute, basal appendages very short, subacute; style shorter than stamens, stigma lobes linear, straight, weakly divergent, apically ciliate. Achenes 0.8-0.6 mm long, oblongovate, flattened, with small round areola at apex, scarcely bordered. Flowering August-September. Ural, Caucasus, Altai, Middle Asia, in meadows, sandy areas, on rocks, solonetzous steppes, floodplain forests, river valleys and on their shores, fields, near settlements, along roads as weed.

On ruderal places, roadsides, in gardens and orchards, near water streams, in lower and middle mountain belts, on the elevation 700-1700 m. Flowers from July to September, fruits from August to October (Bussmann *et al.* 2025).

Ethnobotany of A. annua

Artemisia annua leaves are used as anthelmintic, for respiratory infections, fever, dysentery, and externally for rheumatism and scabies. Artemisia annua is used as anti-malarial in the Himalayas (Bussmann et al. 2025). In medieval Armenian medicine it was recommended to treat fevers, hemorrhoids, diseases of the stomach, liver, spleen, and bladder and kidney stones. A decoction and extract as tea is used to treat colds. Fresh crushed leaves, as well as their decoction and extract are used crushed and as soaking therapy for furuncles and abscess. A decoction and extract is used as tea in dysentery and fever (Bussmann et al. 2025). Tea made from leaves of Artemisia annua helps to cure wounds, when applied as poultice and serves as insect repellant. The extract and fresh leaves are also applied externally on wounds and burns. In the Altai extracts are used for testicles and uterus cancer. In Azerbaijan an extract is used to treat fractures (Bussmann et al. 2025). In the Ural, Northern Caucasus and parts of Middle Asia Artemisia annua leaves are used as anthelmintic, for respiratory infections, fever, dysentery, and externally for rheumatism and scabies. In Morocco, a decoction of leaves is used to treat infection problems. Leaves used as herbal tea. In modern traditional medicine of Tajikistan and Uzbekistan juice of fresh leaves of a one-year sage-brush dermal diseases - scabies, pustular diseases, herpes. From dry leaves prepare 10% ointment for treatment of eczema. Scientific research taped antioxidant, anti-inflammatory, analgetic, sedative, antibacterial, antiviral, hypolipidemic, antitumoral properties (Bussmann et al. 2025). In many countries the Annual Wormwood is an official antimalarial and anti-leishmaniasis agent. Its immunosuppressive, antirheumatic, contraceptive, anticholinesterase properties are perspective. In Kashmir, Jammu and Ladakh to treat jaundice (Bussmann et al. 2025).

In Pakistan, the whole plant and leaves of A. annua are used to treat malaria, cough, and common cold. A decoction of the entire plant is prepared for malaria, while leaves are used for fever, cough, and cold symptoms. Powdered leaves are also employed against diarrhea, and the oil is valued in local fragrances due to its pleasant aroma (Aadil et al. 2014; Hayat et al. 2009). In India, the root is utilized for abdominal pain, with an infusion taken orally (Khoja et al. 2022; Mir et al. 2021). A recent study showed that some parts of A. annua including leaves, whole plant, young shoots, and bark are used to treat prostate problems and malaria in Congo and these are crushed in either decoction, infusion, maceration, or direct use (Muhesi et al., 2023). The use of leaves and whole plant to treat malaria were also reported in Burundi, and it is also processed by way of decoction or infusion and ingested orally (Havyarimana et al. 2023). Moreover, it is also reported in Nigeria that, the leaves are decocted to treat hypertension, measles, malaria, and diabetes, and the extract is used to apply directly to treat skin conditions (Abdulrahman et al. 2022). Also, leaves and tea are popular for the treatment of malaria, eczema, and scabies in China, and decoctions are reportedly taken orally (Allen et al. 1997; Xinyan Han et al. 2022). Kenya uses leaves, tea, and the whole plant for replaced with, diarrhea, stomach pain, HIV, and malaria infusion or decoction (Willcox et al. 2011). Cameroonians used leaves infused for HIV (Noumi et al. 2011). Based on ethnobotanical data obtained, A. annua is used more frequently by different cultures to treat many diseases with the most common being malaria. The leaf and the whole aerial part of the plant are the most commonly used organ of the plant and are usually used orally as decoction or infusion. The most used part of the plant is the leaf and entire aerial component which is usually used in oral form as a decoction or infusion. There are regional differences (with reported use of roots in India to treat abdominal pain and leaves in Nigeria to treat diabetes and skin conditions). The similarity of the method of preparation, such as decoctions and infusions, across nations indicates the presence of common knowledge in traditional medicine. This prevalence of use of A. annua in traditional systems of medicine emphasizes the significance of this herb in these systems and justifies the fact that additional scientific evidence is needed to confirm its ethnomedicinal statements.

Local food uses of A. annua

In the Caucasus Flowering shoots of *A. annua* are sometimes used as a seasoning for meat and fish dishes (usually as substitute of *Artemisia dracunculus*). Likewise, *Artemisia annua* is used in food as aromatic and tasty seasoning for different meals. The herb of this variety of wormwood is used as a seasoning for food. The leaves are used as flavoring agent for liquors and as spice for cooking. (Bussmann *et al.* 2025).

Local handicraft and other uses of A. annua

In the Caucasus fodder for livestock, especially sheep, goats and camels. Planted as ornamental. A tincture made from leaves helps to heal wounds of cattle. A dye solution is prepared from leaves to obtain tobacco, green, yellow and olive colors. The solution is used for dyeing wool yarn as well as products made of wool (Bussmann *et al.* 2025).

Chemical composition of A. annua

The phytochemistry of *A. annua* is highly diverse with different classes of specialized metabolites (Table 1 and Fig. 1). Phenolic compounds form the largest and most varied group in the *A. annua* metabolome, underlining the strong phenylpropanoid pathway of this plant (Fig. 1). This large family encompasses simple phenols, phenolic acids, and the complex derivatives of these, which are powerful antioxidants and the key components of the plant's chemical defense system (Table 1). This great diversity encompasses widespread flavonoids such as quercetin and kaempferol glycosides along with more specialized methoxylated flavones such as artemetin and casticin. Sesquiterpenes are one of the pillars of this profile, and the most famous member of this family is artemisinin (Brown, 2010; Tu, 2011). After the outbreak of strains of

malaria that are resistant to the use of chloroquine, the Chinese government initiated the Project 523 in 1967 to find new antimalarial drugs using traditional remedies. *Artemisia annua* L. (qinghao) was the target of the research because it is a plant mentioned in ancient medical writings in China as a remedy of fever and chills. This discovery gave birth to the active compound, artemisinin which was later isolated in 1972 (Ma *et al.* 2020)

Having Monoterpenes in small amounts are thought to be the reason for its biological activities. Apart from these main classes, *A. annua* produces some other types of special metabolites such as anthocyanins, lignans, coumarins and a wide range of volatile aromatic compounds. This chemical stockpile mirrors the plant's complex metabolic diplomacy and provides a chemical foundation for its biological activities and likely synergies. Besides the detailed phytochemical analysis of *A. annua* unveils a plant of never seen before molecular intricacy whose drug effects cannot be linked to one substance but instead depend on the group of chemical types of diversity. A diverse range of polyphenols could be a sign of a synergistic relation to the better known sesquiterpene lactones which could increase artemisinin bioavailability and efficacy and decrease parasitic resistance (Elfawal *et al.* 2012; Weathers *et al.* 2014). The complex interplay of the component classes, the potent sesquiterpenes, the supporting and synergistic flavonoids and phenolics, and the required structural terpenoids, creates a strong phytochemical matrix from the species.

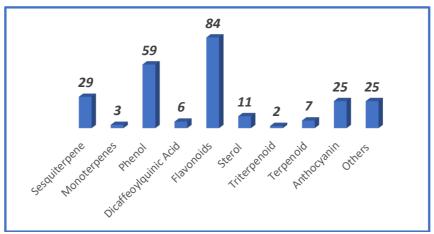


Figure 1. Classes of Compounds of A. annua (source author)

Biological activities

A. annua Antioxidant activities

The mechanism of action of *A. annua* involves an antioxidant effect, stopping damage biological systems by oxidative stress, which is a part of the 'stress and immune system' activities of the substance in the living organism. The major mechanism is a powerful, multi-channel antioxidant activity mediated by phenolic compounds and flavonoids as evidenced by the dramatic reduction of activity that occurred after enzyme treatment that empties the compounds (Wan *et al.* 2016). This practice is exhibited by: ABTS, DPPH, nitric oxide (Free radical scavenging) (Ryu *et al.* 2011; Ćavar *et al.* 2012). Power (FRAP assay) reduction (Skowyra *et al.* 2014; Ryu *et al.* 2011). Chelation of metals (Ryu *et al.* 2011; Ćavar *et al.* 2012). Blockage of lipid peroxidation (Iqbal *et al.* 2012; Chukwurah *et al.* 2014).

Administration of *A. annua* mitigates physiological stress by reducing plasmatic glucose and cortisol (Soares *et al.* 2020) and simultaneously promotes immune-protecting functions by increasing leukocyte activity, the presence of lysozyme and antibodies, and the volume of immune organs (Gholamrezaie *et al.* 2013; Soares *et al.* 2020). Similarly, one of the components of this combined effect is the antioxidant effect on the reduction of the level of lipid peroxidation (Soares *et al.* 2020).

Artemisia annua extracts exhibit a significant in vitro antioxidant activity and the strength of extraction depends on plant part, solvent used and assay type (Table 2). The overall antioxidant activity of the methanol leaf extract typically demonstrates the highest values of Trolox Equivalent Antioxidant Capacity (TEAC) and the greatest potency of lipid peroxidation inhibition (Iqbal et al. 2012; Skowyra et al. 2014). Flower and leaf extracts are always the most active when compared by part of the plant, especially when testing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays (Song et al. 2016). Moreover, with the use of enzymatic treatment, the phenol and flavonoid content is dramatically decreased, which proves the presence of these compounds as one of the main contributors to the antioxidant activity of the plant (Wan et al. 2016). It was shown that A. annua administration possesses a potent immunomodulatory effect in vivo. Food supplementation promotes cellular and humoral immunity, which is reflected in the increased leukocyte activity, antibody titers, and weights of immune organs such as the thymus (Gholamrezaie et al. 2013; Soares et al. 2020). Simultaneously, it eliminates physiological stress significantly decreasing the plasma cortisol, glucose, and lipid peroxidation (Soares et al. 2020).

Table 1. Chemical Composition of A. annua

Plant Part	Compound	Class	Molecular formula	Reference	
Seeds	1β-Hydroxy-4(15),5-eudesmadiene	Sesquiterpene	C ₁₅ H ₂₄ O	(Brown et al.	
	1β-Hydroxy-4(15),7-eudesmadiene	1	C ₁₅ H ₂₄ O	2003)	
	5α-Hydroperoxy-eudesma-4(15),11-diene		C ₁₅ H ₂₄ O ₂		
	4α,5α-Epoxy-6α-hydroxy amorphan-12-oic acid		C ₁₅ H ₂₂ O ₄		
	4α,5α-Epoxy-6α-hydroxy amorphan-12-ol	_	C ₁₅ H ₂₆ O ₃		
	1-Oxo-2β-[3-butanone]-3α-methyl-6β-[2- propanol formyl ester]-cyclohexane	_	C ₁₅ H ₂₄ O ₅		
	1-Oxo-2β-[3-butanone]-3α-methyl-6β-[2-propanoic acid]-cyclohexane	1	C ₁₅ H ₂₂ O ₄		
	1α-Aldehyde-2β-[3-butanone]-3α-methyl-6β- [2-propanoic acid]-cyclohexane		C ₁₅ H ₂₂ O ₄		
	α-Epoxy-dihydroartemisinic acid	1	C ₁₅ H ₂₂ O ₃		
	Norannuic acid formyl ester	1	C ₁₄ H ₂₂ O ₂		
	3α -Hydroxy-4 α ,5 α -epoxy-7-oxo-(8(7 \rightarrow 6))- abeo-amorphane		C ₁₅ H ₂₂ O ₄		
	15-nor-10-hydroxy-ophopan-4-oic acid		C ₁₄ H ₂₂ O ₃		
	3α,7α-Dihydroxy amorph-4-ene 3-acetate	1	C ₁₇ H ₂₈ O ₄		
	3α,15-Dihydroxycedrane	1	C ₁₅ H ₂₆ O ₂		
	Artemisinic acid	1	C ₁₅ H ₂₂ O ₂	(Brown,	
				2010; Kohle et al. 1997;	
				Zheng, 1994	
	Arteannuin B		C ₁₅ H ₂₂ O ₅	(Abate et al 2021; Lang et al. 2019;	
				Sy <i>et al.</i> 1998; Zheng 1994)	
	Artemisitene		C ₁₅ H ₁₈ O ₄	(Abate <i>et al.</i> 2021; Acton <i>et al.</i> 1985)	
Aerial part	Artemisinin (Qinghaosu)	-	C ₁₅ H ₂₂ O ₅	(Abate et al. 2021; Acton	
				et al. 1985; Carbonara e al. 2012; De	
				Jesus- Gonzalez <i>et</i>	
				al. 2003;	
				Foglio et al.	
				2002; Hao e	
				Klayman et	
				al. 1984;	
				Kohler <i>et al</i>	
				1997; Liu <i>et</i>	
				al. 1992; Sy	
				et al. 1998;	
				Woerdenba	
				et al. 1993;	
				Zheng, 1994	
	Arteannuic acid	•	1	C ₁₅ H ₂₂ O ₂	(Lang <i>et al.</i> 2019)
	Qinghaosu I and III	1	C ₁₅ H ₂₂ O ₅	(TU et al.	
	. 5		- 1322 - 3	2015)	

	Dihydro-epideoxyarteannuin B		C ₁₅ H ₂₄ O ₄	(Brown,
			013.12404	1992; Foglio
				et al. 2002)
	Deoxyartemisinin		C ₁₅ H ₂₂ O ₄	(Foglio et al.
				2002; Zheng,
				1994)
	Dihydroartemisinin		C ₁₅ H ₂₄ O ₅	(Abate et al.
				2021;
				Carbonara et
				al. 2012)
	3α,7-Dihydroxy-cadin-4-ene		C ₁₅ H ₂₆ O ₂	(Sy et al.
	5α-Hydroxy-eudesma-4(15),11-diene		C ₁₅ H ₂₄ O	1998)
	Artemisinic acid methyl ester		C ₁₆ H ₂₄ O ₂	
	3α-Hydroxy-desoxyartemisinin		C ₁₅ H ₂₄ O ₄	
	Dihydroarteannuin B		C ₁₅ H ₂₄ O ₅	
	Dihydroartemisinic acid		C ₁₅ H ₂₄ O ₂	(Abate et al.
				2021; Sy et
				al. 1998)
	4-Hydroxy-2-isopropenyl-5-methylene-hexan-	Monoterpene	C ₁₀ H ₁₆ O ₂	(Juteau <i>et al.</i>
	1-ol 1,10-Oxy-α-myrcene hydroxide	_	C ₁₀ H ₁₈ O ₂	2002)
	1,10-Oxy-α-myrcene hydroxide 1,10-Oxy-β-myrcene hydroxide		C ₁₀ H ₁₈ O ₂	
	Chlorogenic Acids	Phenol	C ₁₀ H ₁₈ O ₂	(Carbonara
	Chlorogenic Acids	Prierioi	C ₁₆ П ₁₈ U ₉	et al. 2012)
	Caffeic acid		C ₉ H ₈ O ₄	
	Quinic acid		C ₇ H ₁₂ O ₆	
	5-Nonadecylresorcinol-3-O-methyl ether		C ₂₆ H ₄₆ O ₂	(Brown, 1992)
Aerial parts	1,3-di-O-Caffeoylquinic acid	-	C ₂₅ H ₂₄ O ₁₂	(Abate <i>et al.</i> 2021)
	Acetyl eugenol		C ₁₂ H ₁₄ O ₃	
	4,5-di-O-Caffeoylquinic acid		C ₂₅ H ₂₄ O ₁₂	
	4-Ethylphenol		C ₈ H ₁₀ O	
	4-Vinylphenol		C ₈ H ₈ O	
	5-Nonadecenylresorcinol		C ₂₅ H ₄₂ O ₂	
	5-Pentacosenylresorcinol		C ₃₁ H ₅₄ O ₂	
	5-Pentacosylresorcinol		C ₃₁ H ₅₆ O ₂	
	2,3-Dihydroxy-1-guaiacylpropanone		C ₁₀ H ₁₂ O ₅	
	2-Methoxy-5-prop-1-enylphenol (Eugenol)		C ₁₀ H ₁₂ O ₂	
	3,4-DHPEA-EA (Hydroxytyrosol acetate)		C ₁₀ H ₁₂ O	
	Ferulaldehyde		C ₁₀ H ₁₀ O ₃	
	Hydroxytyrosol		C ₈ H ₁₀ O ₃	
	Hydroxytyrosol 4-O-glucoside		C ₁₄ H ₂₀ O ₈	
		7		
	p-HPEA-EDA (Oleocanthal)		C ₁₇ H ₂₀ O ₅	
	p-HPEA-EDA (Oleocanthal) Phenol	_	C ₁₇ H ₂₀ U ₅ C ₆ H ₆ O	
		-		
	Phenol	- - -	C ₆ H ₆ O	
	Phenol Phlorin (Phloroglucinol glucoside)	-	C ₆ H ₆ O C ₁₂ H ₁₆ O ₇	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol	-	C_6H_6O $C_{12}H_{16}O_7$ $C_6H_6O_3$	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂₀ H ₁₆ O ₁₃	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂₀ H ₁₆ O ₁₃ C ₉ H ₁₀ O ₅	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂₀ H ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid		$\begin{array}{c} C_6H_6O \\ C_{12}H_{16}O_7 \\ C_6H_6O_3 \\ C_7H_6O_3 \\ C_{20}H_{16}O_{13} \\ C_{9}H_{10}O_5 \\ C_{9}H_{10}O_5 \\ C_7H_6O_5 \end{array}$	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid		$\begin{array}{c} C_6H_6O \\ C_{12}H_{16}O_7 \\ C_6H_6O_3 \\ C_7H_6O_3 \\ C_{20}H_{16}O_{13} \\ C_{9}H_{10}O_5 \\ C_{9}H_{10}O_5 \\ C_7H_6O_5 \\ C_7H_6O_5 \\ C_{14}H_{16}O_{10} \\ \end{array}$	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside		$\begin{array}{c} C_6H_6O \\ C_{12}H_{16}O_7 \\ C_6H_6O_3 \\ C_7H_6O_3 \\ C_2OH_{16}O_{13} \\ C_9H_{10}O_5 \\ C_9H_{10}O_5 \\ C_7H_6O_5 \\ C_7H_6O_5 \\ C_14H_{16}O_{10} \\ C_{19}H_{14}O_{12} \\ \end{array}$	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside Valoneic acid dilactone		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂₀ H ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅ C ₇ H ₆ O ₅ C ₁₄ H ₁₆ O ₁₀ C ₁₉ H ₁₄ O ₁₂ C ₂₇ H ₁₈ O ₁₇	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside Valoneic acid dilactone 2,6-Dihydroxybenzoic acid		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂₀ H ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅ C ₇ H ₆ O ₅ C ₁₄ H ₁₆ O ₁₀ C ₁₉ H ₁₄ O ₁₂ C ₂₇ H ₁₈ O ₁₇ C ₇ H ₆ O ₄	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside Valoneic acid dilactone 2,6-Dihydroxybenzoic acid 3,5-Dihydroxybenzoic acid		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂ OH ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅ C ₇ H ₆ O ₅ C ₁₄ H ₁₆ O ₁₀ C ₁₉ H ₁₄ O ₁₂ C ₂₇ H ₁₈ O ₁₇ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside Valoneic acid dilactone 2,6-Dihydroxybenzoic acid Gentisic acid		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂ OH ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅ C ₇ H ₆ O ₅ C ₁₄ H ₁₆ O ₁₀ C ₁₉ H ₁₄ O ₁₂ C ₂₇ H ₁₈ O ₁₇ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄	
	Phenol Phlorin (Phloroglucinol glucoside) Pyrogallol 3-Hydroxybenzoic acid Ellagic acid glucoside Gallic acid ethyl ester Syringic acid Gallic acid 5-O-Galloylquinic acid Ellagic acid arabinoside Valoneic acid dilactone 2,6-Dihydroxybenzoic acid 3,5-Dihydroxybenzoic acid		C ₆ H ₆ O C ₁₂ H ₁₆ O ₇ C ₆ H ₆ O ₃ C ₇ H ₆ O ₃ C ₂ OH ₁₆ O ₁₃ C ₉ H ₁₀ O ₅ C ₉ H ₁₀ O ₅ C ₇ H ₆ O ₅ C ₁₄ H ₁₆ O ₁₀ C ₁₉ H ₁₄ O ₁₂ C ₂₇ H ₁₈ O ₁₇ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄	

1		1	1
3,5-Diferuloylquinic acid		C ₃₄ H ₃₂ O ₁₂	
p-Coumaroyl glucose		C ₁₅ H ₁₈ O ₈	
2,5-di-S-Glutathionyl caftaric acid		C ₃₄ H ₄₂ N ₆ O ₁₉ S ₂	
Hydroxy caffeic acid		C ₉ H ₈ O ₅	
Ferulic acid 4-O-glucoside		C ₁₆ H ₂₀ O ₉	
Feruloyl glucose		C ₁₆ H ₂₀ O ₉	
3-p-Coumaroylquinic acid		C ₁₆ H ₁₈ O ₈	
4-p-Coumaroylquinic acid		C ₁₆ H ₁₈ O ₈	
5-p-Coumaroylquinic acid		C ₁₆ H ₁₈ O ₈	
p-Coumaroylquinic acid		C ₁₆ H ₁₈ O ₈	
1,2'-Disinapoyl-2-feruloylgentiobiose		C ₅₃ H ₅₈ O ₂₇	
Avenanthramide 2c		C ₁₇ H ₁₅ NO ₅	
Avenanthramide K		C ₂₁ H ₂₁ NO ₇	
Methyl-3,4-di-O-caffeoylquinic acid		C ₂₆ H ₂₆ O ₁₂	
Methyl-3,5-di-O-caffeoylquinic acid		C ₂₆ H ₂₆ O ₁₂	
5-8'-Dehydrodiferulic acid		C ₂₀ H ₁₈ O ₆	
8-O-4'-Dehydrodiferulic acid		C ₂₀ H ₁₈ O ₆	
Verbascoside		C ₂₉ H ₃₆ O ₁₅	
3-Caffeoylquinic acid		C ₁₆ H ₁₈ O ₉	
4-Caffeoylquinic acid		C ₁₆ H ₁₈ O ₉	
5-Caffeoylquinic acid		C ₁₆ H ₁₈ O ₉	
Caffeic acid 4-O-glucoside		C ₁₅ H ₁₈ O ₉	7
Caffeoyl glucose		C ₁₅ H ₁₈ O ₉	7
3,4-Dicaffeoylquinic acid	Dicaffeoylquinic	C ₂₅ H ₂₄ O ₁₂	(Carbonara
3,5-Dicaffeoylquinic acid	Acid	C ₂₅ H ₂₄ O ₁₂	et al. 2012)
4,5-Dicaffeoylquinic acid		C ₂₅ H ₂₄ O ₁₂	1
3,4-Diferuloylquinic acid		C ₃₄ H ₃₂ O ₁₂	
3,5-Diferuloylquinic acid		C ₃₄ H ₃₂ O ₁₂	
4,5-Diferuloylquinic acid		C ₃₄ H ₃₂ O ₁₂	
Vitexin	Flavonoid	C ₂₁ H ₂₀ O ₁₀	(Carbonara
Isovitexin	Tidvolloid	C ₂₁ H ₂₀ O ₁₀	et al. 2012)
6-C-arabinosyl-8-C-glucosyl apigenin		C ₂₆ H ₂₈ O ₁₅	
6-C-glucosyl-8-C-arabinosyl apigenin		C ₂₆ H ₂₈ O ₁₅	
Luteolin-7-O-glucoside		C ₂₁ H ₂₀ O ₁₁	
Chrysoeriol rutinoside		C ₂₈ H ₃₂ O ₁₅	
Patuletin glycoside		C ₂₈ H ₃₂ O ₁₅ C ₂₂ H ₂₂ O ₁₂	
Jaceidin		C ₁₈ H ₁₆ O ₈	_
Cirsilineol			(Abata at al
Cirsiineoi		C ₁₈ H ₁₆ O ₇	(Abate <i>et al.</i> 2021;
			Carbonara et
			al. 2012; Sy
			et al. 1998)
Eriodictyol		C ₁₅ H ₁₂ O ₆	(Carbonara
		1.5 12 - 0	et al. 2012)
Chrysosplenetin		C ₁₉ H ₁₈ O ₈	(Brown,
		013111000	1992; Sy <i>et</i>
			al. 1998)
Coumarin		C ₉ H ₆ O ₂	(Brown,
		55502	1992)
Scopoletin		C ₁₀ H ₈ O ₄	(Abate et al.
-3565.5		010004	2021;
			Carbonara et
			al. 2012)
Artemetin		C ₂₀ H ₂₀ O ₈	(Abate et al.
, a centeur		C201 120 C8	2021;
			Brown,
			1992; Sy et
			al. 1998;
			Zheng, 1994)
5-Hydroxy-3,6,7,4'-methoxyflavone		C ₁₈ H ₁₆ O ₇	(Carbonara
5 Hydroxy 5,0,7,7 methoxyllavolic		C181 1160/	et al. 2012)
 	L		Et ul. 2012)

1			
	Quercetagetin 6,7,3',4'-tetramethyl ether	C ₁₉ H ₁₈ O ₈	(Zheng, 1994)
	Chrysosplenol D	C ₁₈ H ₁₆ O ₇	(Abate et al.
	' '		2021; Lang
			et al. 2019)
	Casticin	C ₁₉ H ₁₈ O ₈	(Lang et al.
		3151 118 28	2019; Liu <i>et</i>
			al. 1992)
	5-Hydroxy-3,4',6,7-tetramethoxyflavone	C ₁₉ H ₁₈ O ₈	(Sy et al.
	Penduletin	C ₁₈ H ₁₆ O ₇	1998)
	Retusin	C ₂₀ H ₂₀ O ₇	
	Pachypodol	C ₂₀ H ₂₀ O ₇	
		1	/Abata at al
	Eupatorin	C ₁₈ H ₁₆ O ₇	(Abate et al.
			2021; Liu <i>et</i>
A! - I	Dibardor maretia 2 O de anacesida	6 11 0	al. 1992)
Aerial	Dihydroquercetin 3-O-rhamnoside	C ₂₁ H ₂₂ O ₁₁	(Abate et al.
parts	5. 8. 17.0 1	<u> </u>	2021)
	Eriodictyol 7-O-glucoside	C ₂₁ H ₂₂ O ₁₁	
	Dihydroquercetin	C ₁₅ H ₁₂ O ₇	
	(-)-Epigallocatechin	C ₁₅ H ₁₄ O ₇	
	(+)-Gallocatechin	C ₁₅ H ₁₄ O ₇	
	Theaflavin 3,3'-O-digallate	C ₄₃ H ₃₂ O ₂₀	
	Prodelphinidin dimer B3	C ₃₀ H ₂₆ O ₁₃	
	(-)-Epicatechin 3-O-gallate	C ₂₂ H ₁₈ O ₁₀	
	(+)-Catechin 3-O-gallate	C ₂₂ H ₁₈ O ₁₀	
	Narirutin 4'-O-glucoside	C ₃₃ H ₄₂ O ₁₉	
	Didymin	C ₂₈ H ₃₄ O ₁₄	
	Poncirin	C ₂₈ H ₃₄ O ₁₄	
	6-Geranylnaringenin	C ₂₅ H ₂₈ O ₄	
	Naringin 6'-malonate	C ₃₃ H ₄₀ O ₁₆	
	Apigenin 7-O-diglucuronide	C ₂₇ H ₂₆ O ₁₇	
	Luteolin 6-C-glucoside	C ₂₁ H ₂₀ O ₁₁	
		1	—
	Luteolin 7-O-glucoside	C ₂₁ H ₂₀ O ₁₁	
	Pebrellin	C ₂₂ H ₂₂ O ₁₂	
	Luteolin 7-O-diglucuronide	C ₂₇ H ₂₆ O ₁₈	
	Apigenin 7-O-(6"-malonyl-apiosyl-glucoside)	C ₂₉ H ₃₀ O ₁₇	
	Arcapillin	C ₁₈ H ₁₆ O ₈	
	Luteolin 7-O-glucuronide	C ₂₁ H ₁₈ O ₁₂	
	Kaempferol 3-O-glucuronide	C ₂₁ H ₁₈ O ₁₂	
	Luteolin 7-O-malonyl-glucoside	C ₂₄ H ₂₂ O ₁₄	
	5,4'-Dihydroxy-3,3'-dimethoxy-6:7-	C ₂₅ H ₂₂ O ₁₅	
	methylenedioxyflavone 4'-O-glucuronide		
	Gardenin B	C ₁₉ H ₁₈ O ₈	
	7,3',4'-Trihydroxyflavone	C ₁₅ H ₁₀ O ₅	
	Baicalein	C ₁₅ H ₁₀ O ₅	
	Hispidulin	C ₁₆ H ₁₂ O ₆	
	Diosmin	C ₂₈ H ₃₂ O ₁₅	
	Neodiosmin	C ₂₈ H ₃₂ O ₁₅	
	Kaempferide	C ₁₆ H ₁₂ O ₆	
	Myricetin 3-O-arabinoside	C ₂₀ H ₁₈ O ₁₂	
	Kaempferol 3-O-(2"-rhamnosyl-6"-acetyl-	C ₂₀ 11 ₈ O ₁₂ C ₃₆ H ₄₄ O ₂₀	
	galactoside) 7-O-rhamnoside	U36∏44U20	
		6 11 0	
	Myricetin 3-O-glucoside	C ₂₁ H ₂₀ O ₁₃	
	Quercetin 3-O-rhamnosyl-rhamnosyl-	C ₃₃ H ₄₀ O ₂₁	
	glucoside		
	Kaempferol 3-O-glucosyl-rhamnosyl-glucoside	C ₃₃ H ₄₀ O ₂₀	
	3-Methoxynobiletin	C ₂₂ H ₂₂ O ₉	
	Kaempferol 3-O-(2"-rhamnosyl-galactoside) 7-	C ₃₃ H ₄₀ O ₁₉	
	O-rhamnoside		
	Kaempferol 3-O-xylosyl-rutinoside	C ₃₂ H ₃₈ O ₁₉	

	Kannafaral 2 O alwara dalamana ad	1	6 11 0	
	Kaempferol 3-O-glucosyl-rhamnosyl-		C ₃₃ H ₄₀ O ₂₀	
	galactoside Rhamnetin	=	C II O	_
	Isorhamnetin	+	C ₁₆ H ₁₂ O ₇ C ₁₆ H ₁₂ O ₇	_
	Kaempferol 3-O-rhamnosyl-rhamnosyl-	+	C ₁₆ П ₁₂ О ₇ C ₃₃ Н ₄₀ О ₂₀	
	glucoside		C33П40U20	
	Quercetin 3-O-glucoside	+	C H O	
	5,3',4'-Trihydroxy-3-methoxy-6:7-	+	C ₂₁ H ₂₀ O ₁₂	
	methylenedioxyflavone 4'-O-glucuronide		C ₂₄ H ₂₀ O ₁₅	
	Isorhamnetin 7-O-rhamnoside	+	C ₂₂ H ₂₂ O ₁₁	
		-		_
	Quercetin 3-O-galactoside	-	C ₂₁ H ₂₀ O ₁₂	_
	Patuletin 3-O-(2"-feruloylglucosyl)(1-6)-		C ₄₃ H ₄₈ O ₂₄	
	[apiosyl(1-2)]-glucoside	-	C II O	_
	Isorhamnetin 3-O-glucoside	-	C ₂₂ H ₂₂ O ₁₂	_
	Myricetin 3-O-rhamnoside	=	C ₂₁ H ₂₀ O ₁₂	
	Quercetin 4'-O-glucoside	=	C ₂₁ H ₂₀ O ₁₂	
	Jaceidin 4'-O-glucuronide	_	C ₂₄ H ₂₂ O ₁₅	
	Myricetin	4	C ₁₅ H ₁₀ O ₈	\dashv
	Daidzin	-	C ₂₁ H ₂₀ O ₉	_
	Biochanin A	-	C ₁₆ H ₁₂ O ₅	_
	Glycitein	-	C ₁₆ H ₁₂ O ₅	_
	Isorhamnetin 3-O-glucoside 7-O-rhamnoside	-	C ₂₈ H ₃₂ O ₁₆	_
	6,8-Dihydroxykaempferol	4	C ₁₅ H ₁₀ O ₈	_
	Glycitin		C ₂₂ H ₂₂ O ₁₀	
	6"-O-Malonylgenistin		C ₂₄ H ₂₂ O ₁₂	
Leaves	Stigmasterol	Sterol	C ₂₉ H ₄₈ O	(Zheng, 1994)
	Ergosterol		C ₂₈ H ₄₄ O	(Lu <i>et al.</i> 2000)
	3β,5α,6β-Trihydroxyergosta-7,22-diene		C ₂₈ H ₄₆ O ₃	
	3β-Hydroxy-ergosta-5-ene		C ₂₈ H ₄₈ O	
	3-Oxo-ergosta-4,6,8(14),22-tetraene		C ₂₈ H ₄₂ O	
	3β-Hydroxy-5α,8α-epidioxy-ergosta-6,22- diene		C ₂₈ H ₄₆ O ₃	
	3β-Hydroxy-5α,8α-epidioxy-ergosta- 6,9(11),22-triene		C ₂₈ H ₄₄ O ₃	
	6-Isoprenylindole-3-carboxylic acid		C ₁₄ H ₁₅ NO ₂	
	3β,5α-Dihydroxy-6β-acetoxy-ergosta-7,22-		C ₃₀ H ₄₈ O ₄	
	diene			
	3-Oxo-ergosta-4-ene		C ₃₆ H ₅₂ O ₄	
	3β,5α-Dihydroxy-6β-phenylacetyloxy-ergosta-7,22-diene		C ₃₈ H ₅₆ O ₃	
Aerial parts	24-Methylcholestanol ferulate		C ₃₈ H ₅₄ O ₃	(Abate <i>et al.</i> 2021)
-	24-Methylcholesterol ferulate		C ₃₈ H ₅₄ O ₃	<u> </u>
	24-Methylenecholestanol ferulate		C ₃₀ H ₅₀ O	
Leaves	Friedelin	Triterpenoid	C ₃₀ H ₅₀ O	(Zheng, 1994)
	Friedelan-3β-ol		3β-ol: C ₃₀ H ₅₂ O	- ,
Aerial	Abscisic acid methyl ester	Terpenoid	C ₁₅ H ₂₀ O ₄	(Abate et al.
parts	Arteannoide B	Terperiora	C ₁₅ H ₂₂ O ₄	2021)
	Arteannoide M			
			C ₁₅ H ₂₂ O ₄	
	Arteannoide Q		C ₁₅ H ₂₂ O ₅	
	Artemather		C ₁₅ H ₂₂ O ₅	
	Artemether		C ₁₆ H ₂₆ O ₅	1
A 1	Carnosic acid	A +l-	C ₂₀ H ₂₈ O ₄	(0)
Aerial parts	Peonidin 3-O-rutinoside	Anthocyanin	C ₂₈ H ₃₃ O ₁₅ ⁺	(Abate <i>et al.</i> 2021)
	Pelargonidin 3-O-sambubioside		C ₂₆ H ₂₉ O ₁₄ ⁺	
	Cyanidin 3-O-(6"-p-coumaroyl-glucoside)		C ₃₀ H ₂₇ O ₁₂ ⁺	

	Delabistica 2 O abservat abservation		C 11 O +	
	Delphinidin 3-O-glucosyl-glucoside		C ₂₇ H ₃₁ O ₁₇ ⁺	
	Delphinidin 3,5-O-diglucoside		C ₂₇ H ₃₁ O ₁₇ ⁺	
	Pelargonidin 3-O-glucosyl-rutinoside		C ₃₂ H ₄₁ O ₁₉ ⁺	
	Delphinidin 3-O-(6"-acetyl-galactoside)		C ₂₃ H ₂₃ O ₁₃ ⁺	
	Delphinidin 3-O-(6"-acetyl-glucoside)		C ₂₃ H ₂₃ O ₁₃ ⁺	
	Malvidin 3-O-(6"-acetyl-galactoside)		C ₂₅ H ₂₇ O ₁₃ ⁺	
	Cyanidin 3-O-(6"-succinyl-glucoside)		C ₂₅ H ₂₅ O ₁₃ ⁺	
	Petunidin 3,5-O-diglucoside		C ₂₈ H ₃₃ O ₁₇ ⁺	
	Cyanidin 3-O-glucosyl-rutinoside		C ₃₃ H ₄₁ O ₂₀ ⁺	
	Pelargonidin 3-O-(6"-succinyl-glucoside)		C ₂₅ H ₂₅ O ₁₂ ⁺	
	Cyanidin 3-O-(6"-malonyl-3"-glucosyl-		$C_{33}H_{39}O_{21}^{+}$	
	glucoside)			
	Petunidin 3-O-glucoside		C ₂₂ H ₂₃ O ₁₂ ⁺	
	Cyanidin 3-O-(6"-malonyl-glucoside)		C ₂₄ H ₂₃ O ₁₃ ⁺	
	Malvidin 3-O-glucoside		C ₂₃ H ₂₅ O ₁₂ ⁺	
	Malvidin 3-O-galactoside		C ₂₃ H ₂₅ O ₁₂ ⁺	
	Delphinidin 3-O-glucoside		C ₂₁ H ₂₁ O ₁₂ ⁺	
	Petunidin 3-O-galactoside		C ₂₂ H ₂₃ O ₁₂ ⁺	
	Delphinidin 3-O-arabinoside		C ₂₀ H ₁₉ O ₁₁ ⁺	
	Delphinidin 3-O-xyloside		C ₂₀ H ₁₉ O ₁₁ ⁺	
	Peonidin		C ₁₆ H ₁₃ O ₆ ⁺	
	Delphinidin 3-O-feruloyl-glucoside		C ₃₁ H ₂₉ O ₁₄ ⁺	
	Pelargonidin 3,5-O-diglucoside		C ₂₇ H ₃₁ O ₁₆ ⁺	
Aerial parts	Conidendrin	Lignan	C ₂₀ H ₂₀ O ₆	(Abate <i>et al.</i> 2021)
	Isolariciresinol		C ₂₀ H ₂₄ O ₆	·
	Cyclolariciresinol		C ₂₀ H ₂₄ O ₆	
	Lariciresinol		C ₂₀ H ₂₄ O ₆	
	Medioresinol		C ₂₁ H ₂₄ O ₇	
	Trachelogenin		C ₂₁ H ₂₂ O ₇	
	Matairesinol		C ₂₀ H ₂₂ O ₆	
	Pinoresinol		C ₂₀ H ₂₂ O ₆	
	Secoisolariciresinol		C ₂₀ H ₂₆ O ₆	
	Secoisolariciresinol-sesquilignan		C ₃₀ H ₃₈ O ₉	
Aerial	Arteannuoside A-B		C ₂₃ H ₂₈ O ₁₂	(Wu et al.
parts				2025)
	Annusesquilignanoside		C ₃₆ H ₄₆ O ₁₃	(Wu <i>et al.</i> 2025)
Aerial parts	4-Hydroxycoumarin	Coumarin	C ₉ H ₆ O ₃	(Abate <i>et al.</i> 2021)
	Mellein		C ₁₀ H ₁₀ O ₃	
Aerial parts	Curcumin	Curcuminoid	C ₂₁ H ₂₀ O ₆	(Abate <i>et al.</i> 2021)
Aerial	Juglone	Naphthoguinone	C ₁₀ H ₆ O ₃	(Abate et al.
parts	3		-,5 -0-5	2021)
Aerial	Ligstroside	Secoiridoid	C ₂₅ H ₃₂ O ₁₂	(Abate et al.
parts				2021)
	Oleoside dimethylester		C ₁₈ H ₂₆ O ₁₁	
	Oleuropein-aglycone		C ₁₉ H ₂₂ O ₁₀	
Aerial	Resveratrol 3-O-glucoside	Stilbene	C ₂₀ H ₂₂ O ₈	(Abate <i>et al.</i>
parts	Resveratrol		C ₁₄ H ₁₂ O ₃	2021)
	Piceatannol 3-O-glucoside		C ₂₀ H ₂₂ O ₉	

Anti-inflammation activities of A. annua

The anti-inflammatory and immunomodulatory effects of A. annua are mediated through suppression of key signaling pathways (Fig. 2). Compounds inhibit NFkB and MAPK (p38, JNK) activation (Li et~al.~2015), reducing pro-inflammatory cytokine production (TNF- α , IL-6, IL-1 β , MCP-1) (Hunt et~al.~2015; Li et~al.~2015; Wu et~al.~2025). Additionally, they modulate acetylcholinesterase (Acquaviva et~al.~2023; Chougouo et~al.~2016), tyrosinase (Acquaviva et~al.~2023), and amylase activities (Acquaviva et~al.~2023) and enhance skin barrier function via FLG upregulation and TSLP suppression (Fig. 2). The extract elevated itching thresholds suppressed TSLP expression, and enhanced FLG mRNA levels (Zhao et~al.~2024). In mice, croton oil-induced ear edema was reduced by casticin (0.5–1.5 μ mol/cm²) and chrysosplenol D (1–1.5 μ mol/cm²), comparably to indomethacin (55.63–84.58%) (Li et~al.~2015). Aqueous extract administration decreased mRNA and protein expression of IgE, IL-4, IL-6, IL-13, IL-17, TNF- α , and TSLP in AD mouse models and inhibited p38 MAPK and NFkB phosphorylation in ear tissues (Xinyan Han et~al.~2022). The multi-target activities highlight its possible use as an inflammatory and immune-related disorder treatment.

Also, these compounds have various enzyme inhibitory properties (Table 2). They are highly acetylcholinesterase inhibitory and artemisinin and chrysosplenetin are the most active, whereas they exhibit diverse activity against butyrylcholinesterase, tyrosinase, and amylase depending on the extraction solvent (Chougouo *et al.* 2016; Acquaviva *et al.* 2023). The therapeutic potential is further indicated by the in vivo evidence of the reduced ear edema in mouse models and the reduction of the signs of atopic dermatitis due to the inhibition of Thymic Stromal Lymphopoietin (TSLP) and various cytokines (Li *et al.* 2015; Zhao *et al.* 2024; Xinyan Han *et al.* 2022).

Antibacterial activities of A. annua

The antibacterial mechanism of action of *A. annua* could be attributed to multiple actions or processes, including disruption of the bacterial cell membranes by crude extract, essential oil, pure compound or biofilm formation inhibition or synergistic effect (Fig. 3). Targeting bacterial protein synthesis and oxidative stress pathways. This plant extract shows promising antibacterial action against a broad spectrum of gram-positive and gram-negative bacteria. This activity was ascribed to the presence of secondary metabolites, antioxidant molecules capable of mitigating oxidative damage pathways, which is promising for the advancement of innovative therapeutics.

Essential oil from *A. annua* demonstrated wide-ranging pesticides, especially on Gram-positive bacteria such as *S. aureus* and *B. subtilis* with several studies reported to have shown large inhibition zones (Table 2). Additionally, both pure artemisinin and plant extracts exhibit anti-mycobacterial effects against *M. tuberculosis*, indicating the existence of synergistic active agents that increase it (Martini *et al.* 2020). The performance of antibacterial is strongly dependent on the type of solvent used. Ethanol and methanol extracts have a consistent wide-range of activity against the pathogens such as *E. coli*, *S. aureus*, and *P. aeruginosa* (Massiha *et al.* 2013; Tajehmiri *et al.* 2014). More importantly, aqueous extracts, being less broad spectrum, demonstrate strong, concentration dependent activity, at high concentrations surpassing penicillin with individual strains such as *B. cereus* and *E. faecalis* (Massiha *et al.* 2013). On the contrary, non-polar solvents such as hexane and petroleum ether usually exhibit low to no activity (Gupta *et al.* 2009). *A. annua* can be nano-formulated to promote its efficacy. Silver nanoparticles produced with the use of *A. annua* (*A. annua*/AgNPs) are more active, and the inhibition zone size of these nanoparticles is sometimes larger than that of plant extract (Shaaban *et al.* 2024; Basavegowda *et al.* 2014).

Antifungal activities of A. annua

The possible mechanism of action of *A. annua* against fungal strain is ascribed to the disruption of cell membrane, inhibition of spore germination, and oxidative stress induction. The crude extract, pure compound or synergistic both alter the metabolic pathways, protein synthesis reduction and enhancing antioxidant enzyme activity.

Artemisia annua essential oils and extracts show broad antifungal effects (Table 2). Essential oil is remarkably active, exhibiting a high level of effectiveness against yeasts, Candida *albicans*, Saccharomyces *cerevisiae*, more significant than the most common antifungal agent Nystatin (Juteau *et al.* 2002; Verdian *et al.* 2008). The suppression of a broad spectrum of pathogens by endophytic cultures isolated on *A. annua* is concentration-dependent with *Gaemannomyces graminis* and *Rhizoctonia cerealis* being examples (Liu *et al.* 2001). The essential oil possesses fungicidal properties at extremely low doses against such pathogens as *S. sclerotiorum* and *B. cinerea* (Soylu *et al.* 2005). Solvents are also essential, as in the case of extracting leaves with methanol where leaf extracts had extreme inhibitory powers against *F. oxysporum compared* to extracts of roots and stems (Ma *et al.* 2019). Artemisinin is an effective inhibitor of *M. aeruginosa* with the application of physiological stress indicated by the low content of proteins and the change of antioxidant enzymes activities (Ni *et al.* 2012).

Antiparasitic activities of A. annua

Artemisia annua exerts its anticoccidial and antiparasitic effects through multiple mechanisms, including direct parasiticidal action (coagulation of parasite cells (Ekanem et al. 2010), disruption of trophozoite attachment (Ekanem et al. 2010), inhibition of parasite proliferation (Brisibe et al. 2008), and reduction of oocyst shedding (Brisibe et al. 2008; Coroian et al. 2022; Wiedosari et al. 2018). It also modulates host responses by improving feed conversion rates (Coroian et al. 2022; Drăgan et al. 2014), enhancing weight gain (Brisibe et al. 2008; Drăgan et al. 2014), and reducing intestinal lesions and inflammation (Allen et al. 1997; Coroian et al. 2022; Wiedosari et al. 2018). The alteration of gut microbiota and metabolites

(Liu et al. 2025), further contributes to its efficacy, while components like artemisinin and essential oils induce oxidative stress and rapid mortality in parasites (Ekanem et al. 2010; Pirali-Kheirabadi et al. 2011).

Artemisia annua exhibits a high level of antiparasitic activity especially in the case of Avian coccidiosis caused by Eimeria species. In chickens, dietary supplementation with A. annua leaves, leaf powder or extracts also consistently lowers the primary disease measures such as the faecal oocyst counts (to a minimum of 95.6% reduction), gut lesion scores (to a maximum of 80% reduction) and the occurrence of bloody diarrhea, and it also positively affects performance parameters such as body weight gain and feed ratio (Allen et al. 1997; Drăgan et al. 2014; Oh et al. 1995). This anticoccidial activity is equivalent to and in some cases better than commercial anticoccidial drugs as indicated by high scores of Anticoccidial Index (ACI) (Oh et al. 1995; Goodarzi et al. 2004). Artemisinin is an active compound that is very effective. Artemisinin has significant activity than the entire extract of the plant and displays an equivalent performance to healthy birds that are not infected (Goodarzi et al. 2004; Ekanem et al. 2010). The extract has been demonstrated to possess anticoccidial effects through the regulation of gut microbiota (Liu et al. 2025) and other antiparasitic inhibitory effects against T. gondii and Giardia (de Oliveira et al. 2009; Gholami et al. 2014). Moreover, a clinical trial points to the fact that A. annua sublingual immunotherapy (SLIT) is better in terms of nasal symptoms and the decrease in medication use in patients, which suggests a larger range of immunomodulatory usage (Yang et al. 2022).

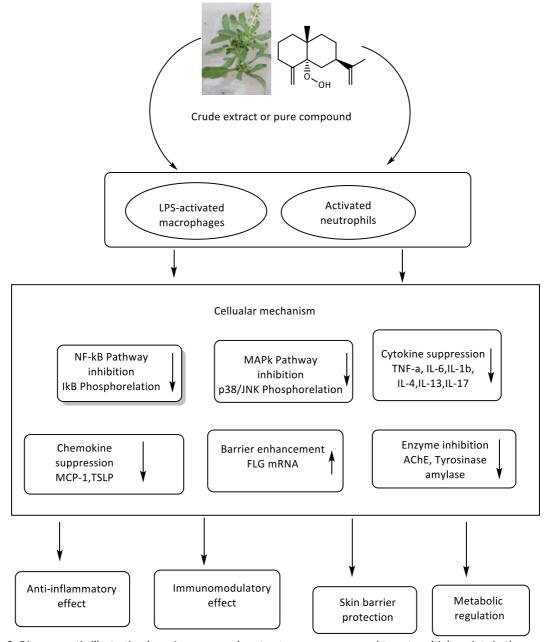


Figure 2. Diagrammatic illustration how *A. annua* crude extract or pure compound target multiple points in the process of inflammation (source author)

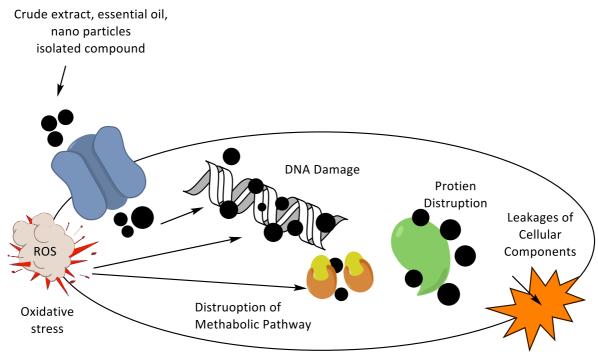


Figure 3. Mechanism of action of A. annua against bacterial strain (source author).

Antiviral activities of A. annua

Artemisia annua tea infusion was extremely active, with IC₅₀ values as low as 2.0 μg/mL (Lubbe et~al.~2012). Hot-water leaf extracts containing artemisinin, total flavonoids, or dry leaf mass exhibited antiviral activity with IC₅₀ values ranging from 0.1 to 8.7 μM, 0.01 to 0.14 μg, and 23.4 to 57.4 μg, respectively (Nair et~al.~2021). Hot-water leaf extracts inhibited the newly evolved strains of SARS-CoV-2, with predicted IC₅₀ values ranging from 1.1 to 7.9 μM (Nair et~al.~2022). The results indicated that A.~annua and the EtOAc fractions F2, F5, and F8 exhibited antiviral effects on infected cells at 24 hours post-infection, with virus titters dropping to 10^2 TCID₅₀/mL (EtOAc 50 μg/mL) (Baggieri et~al.~2023). Mefloquine-artesunate had the most significant antiviral efficacy, with a % inhibition of 72.1% at the anticipated maximum blood concentration (Cmax) (Gendrot et~al.~2020).

The possible mechanism of action of *A. annua*, could be by disruption of the viral replication and infection. The extracts or pure compounds probably suppress viral protease activity and regulate host cell pathways, decreasing viral titers, and inhibiting the development of infection.

Table 2. Biological activities of A. annua

Activity	Methods	PP	Infusion	Activity	Reference
Antioxidant	ABTS, DPPH, FRAP, RP	Leaves	80% aqueous ethanol	ABTS, umol TE/g; 108.85, DPPH, % 64.18, DPPH; % 64.18, FRAP, umol FeSO4/g; 205.41, RP; 0.3974,	(Wan et al. 2016)
	DPPH, ABTS, RP, ORAC		Essential oil	DPPH IC $_{50}$ (mg/mL) 27.07 and thymol 4.28, ABTS IC $_{50}$ (mg/mL) 5.97 and thymol 0.0025, RP $_{50}$ (mg/mL) 127.17, ORAC ((mmolTEc/g) 5.09 and thymol 4.48, Metal-chelating ability/HA50 (mg/mL) 20.40 and and thymol 19.04	(Ćavar et al. 2012)
	ABTS, NO, FRAP	Leaves	80% ethanol, aqueous	ABTS; leaves aqueous IC ₅₀ 224.41 μg/mL, leaves ethanol 179.25 μg/mL, stem aqueous 540.61 μg/mL and stem ethanol 974.40 μg/mL,	(Ryu et al. 2011)

			1		T
	Lipid Peroxidation, DPPH, TEAC	Leaves	hexane, chloroform, ethyl acetate,	NO; IC ₅₀ leaves aqueous >2000 μg/mL, leaves ethanol 1937.56 μg/mL, >2000 μg/mL for the stem extract, Fe ²⁺ chelating; IC ₅₀ leaves aqueous 265.98 μg/mL, leaves ethanol 1868.45 μg/mL, stem aqueous 785.60 μg/mL and stem ethanol 1382.45 μg/mL, FRAP; Leaves aqueous 71.73, leaves ethanol 136.96, stem aqueous 143.59 and stem ethanol 124.06 μM FeSO ₄ eq respectively. Lipid peroxidation; chloroform (24.24%), methanol (10.72%),	(Iqbal et al. 2012)
			methanol and	TEAC (μmol Trolox/g);	
	ABTS, FRAP, ORAC	Leaves	aqueous Ethanol-aqueous	17.59, hexane 8.12 ABTS; 314.99 μΜ	(Skowyra et
	, is is, i hai , ohac	Leaves	Linanoi uqueous	(TE)/g DW, ORAC; 736.26 μM TE/g DW, FRAP; 212.18 μM TE/g DW.	al. 2014)
	Lipid peroxidation, erythrocyte hemolysis,hydroxyl radical scavenging, nitric oxide radical scavenging,hydrogen peroxide radical scavenging	Leaves	ethanol, absolute methanol, 70% ethanol and 70% methanol)	Lipid peroxidation (79.81%-86.70%), erythrocyte hemolysis (40.02%-49.91%), IC ₅₀ values for hydroxyl radical scavenging at 2.39–3.81 mg/mL, nitric oxide radical scavenging at 107.24–144.49 μg/mL, and hydrogen peroxide radical scavenging at 28.53–53.20 μg/mL.	(Chukwurah et al. 2014)
Antibacterial	Diffusion method	Aerial parts	Essential oil	S. aureus (GIC_{50} : $3x10^{-4}$ mg/mL; CI : $5x10^{-4}$ mg/mL) and E. hirae (GIC_{50} : 0.05 mg/mL; CI : 0.1 mg/mL), Penicilline G GIC_{50} : $3x10^{-4}$ mg/mL; CI : $8x10^{-4}$ mg/mL	(Juteau et al. 2002)
	Disc diffusion	Leaves	Chloroform, methanol, ethanol	Chloroform S. aureus (7 mm), E. coli (10 mm), S. aureus (12 mm), B. cereus (10 mm), Bacillus sp. (10 mm), E. faecalis (7 mm), UPEC (12 mm), and P. aeruginosa (10 mm), ethanol S. aureus (8 mm), E. coli (16 mm), S. aureus (11 mm), B. cereus (8	(Massiha et al. 2013)

			mm), Bacillus sp. (12 mm), E. faecalis (10 mm), UPEC (11 mm), and P. aeruginosa (10 mm), methanol S. aureus (10 mm), E. coli (14 mm), S. aureus (10 mm), B. cereus (8 mm), Bacillus sp. (10 mm), E. faecalis (8 mm), UPEC (12 mm), and P. aeruginosa (12 mm) and positive control (P- S-C) of S. aureus (12 mm), E. coli (13 mm), S. aureus (14 mm), B. cereus (13 mm), Bacillus sp. (15 mm), E. faecalis (14 mm), UPEC (16 mm), and P. aeruginosa (13 mm).	
Agar diffusion		Essential oil	S. aureus ATCC 6538 (20 mm), S. aureus ATCC 25923 (28 mm), B. subtilis (20mm), E. faecalis (27 mm), S. pneumoniae (50mm), E.	(Ćavar et al. 2012)
			coli (20mm), P. aeruginosa (15 mm), and H. influenzae (60 mm)	
MIC	Leaves	Dichloromethane	M. tuberculosis (4.81 mg/mL)	(Martini et al. 2020)
Disk Diffusion, MIC			B. subtilis (1 mm), S. aureus (2-3 mm), B. thuringiensis (1 mm), and Salmonella sp. (1-2 mm).	(Appalasamy et al. 2014)
Disk Diffusion, MIC	Flower	Essential oil	Essential oil; S. aureus (MIC 32 mg/mL) and E. coli (MIC 64 mg/mL)	(VERDIAN et al. 2008)
Agar well diffusion	Leaves	Methanol, ethanol	Ethanol; S. aureus (15 mm), E. coli (12 mm), K. pneumoniae (13 mm), S. enterica (13.5 mm), and Sh. dysenteriae (13 mm); methanol; S. aureus (16.5 mm), E. coli (11.5 mm), K. pneumoniae (13 mm), S. enterica (15.5 mm), and Sh. dysenteriae (12.5 mm); and the ciprofloxacin; S. aureus (25 mm), E. coli (17 mm), K. pneumoniae (20 mm), S. enterica (22	(Tajehmiri et al. 2014)

				mm), and Sh.	
	D: 1100 :			dysenteriae (19 mm).	(5
	Disc diffusion	Ag nanoparticles, leaves		Ag nanoparticles E. aerogenes (22), E. aerogenes (23), leaves E. aerogenes (20), E.	(Basavegowdo et al. 2014)
	Disc diffusion	Flower	Essential oil	aerogenes (23). E. coli (1.27 mm), S. Enteritidis (2.33 mm), S. Typhi (1.27 mm),	(Donato et al. 2015)
				S. Typhi (1.25 mm), Y. enterocolitica (1.50 mm), Yersinia enterocolitica (1.50 mm), L. monocytogenes (1.60 mm)	
Antifungal	Diffusion method	Aerial parts	Essential oil	C. albicans and S. cerevisiae, with identical efficacy (GIC₅o: 0.1 mg/mL; CI: 0.2 mg/mL), Nystatine (GIC₅o: 3x10⁻³ mg/mL; CI: 6x10⁻³ mg/mL).	(Juteau et al. 2002)
	Diffusion method	Stem	Endophyte cultures	Endophyte cultures inhibited the growth of all the tested pathogens	(Liu et al. 2001)
	Agar diffusion		Essential oil	Candida krusei (30 mm)	(Ćavar et al. 2012)
	Disk Diffusion, MIC	Flower	Essential oil	Essential oil; MIC 2 mg/mL (S. cerevisiae and C. albicans0	(VERDIAN et al. 2008)
	Agar diffusion	Leaves, root, stem	Methanol	Leaves inhibit F. oxysporum (36.94%)	(Ma et al. 2019)
Inflammation		Aerial parts		At 100 Mm: Arteannuoside (A) 68 %, arteannuoside (B) 71 % and annusesquilignanoside 61 %. At 50 μM: 33 %, 39 %, and 45 % inhibition respectively.	(Wu et al. 2025)
	In vivo(rat)			Extract markedly suppressed TNF-α production by activated neutrophils in a dosedependent manner.	(Hunt et al. 2015)
			Aqueous	Itching threshold elevation, TSLP suppression, FLG mRNA enhancement.	(Zhao et al. 2024)
Antiparasites	In vivo (chicken)	Leaves	Chickens fed	Chickens fed a 5% A. annua diet lower lesion score (1.50), un supplemented control group (2.70).	(Allen et al. 1997)
	In vivo (fish)		Ethanol	Extract clear the body of the fish similar to the control.	(Ekanem et al. 2010)

Antivirus	In vivo (Hu sheep) In vivo (chicken) HIV bioassay	Leaves	Distilled water and 70% ethanol Chickens fed Tea infusion	Alistipes showed a positive connection with OPG (P>0.05) and a substantial negative correlation with ADG (P<0.05). Intestinal C. perfringens numbers and lesion severity were reduced by the n-hexane extract at 250 mg/kg HIV virus IC ₅₀ 2.0 µg/mL	(Liu et al. 2025) (Engberg et al. 2012) (Lubbe et al. 2012)
	SARS-CoV-2 Vero E6 cells	Leaves Leaves	Dichloromethane Aqueous	Extracts against SARS- CoV-2 IC ₅₀ <12 μ M SARS-CoV-2; IC ₅₀ 1.1 to 7.9 μ M.	(Nair et al. 2021) (Nair et al. 2022)
Antimalaria	Cell suspension	Whole plant	Flavonoids	Artemisinin (IC ₅₀ of 3.3 x 10 ⁻⁸ M), while the flavonoids artemetin, casticin, chrysoplenetin, chrysosplenol-D, cirsilineol, and eupatorin had IC ₅₀ values of 1.0 x 10 ⁻⁵ M, 2.0 x 10 ⁻⁵ M, 2.3 x 10 ⁻⁵ M, 3.2 x 10 ⁻⁵ M, 3.6 x 10 ⁻⁵ M, and 6.5 x 10 ⁻⁵ M, respectively. When combined with 5 μM flavonoid, the IC ₅₀ of artemisinin was 2.6 x 10 ⁻⁸ M with artemetin, 2.6 x 10 ⁻⁸ M with casticin, 2.25 x 10 ⁻⁸ M with chrysoplenetin, 1.5 x 10 ⁻⁸ M with chrysosplenol-D, 1.6 x 10 ⁻⁸ M with cirsilineol, and 3.0 x 10 ⁻⁸ M with eupatorin.	(Liu et al. 1992)
	Invite	Whole plant		387.625, 226.350, and 12.099 against WT, C580Y, and R539T parasites, respectively)	(Roesch et al. 2025).
	In vivo	Whole plant		Diminish the parasite	Elfawal <i>et al.</i> 2012
Anti-amoebic activity	In vivo (mice)	Aerial parts	Ethanol, chloroform	Pure artemisinin IC_{50} of 0.09 mg/mL at 24 hours and 0.12 mg/mL at 48 hours, methanol IC_{50} 15.0 mg/mL at 24 hours, 12.5 mg/mL at 48 hours, and 8.1 mg/mL at 72 hours, chloroform extract IC_{50} 17.4 mg/mL at 24 hours, 14.1 mg/mL at 48 hours, and 9.2 mg/mL at 72 hours.	(Derda et al. 2016)

Anticancer	Cytotoxicity	Above ground portion	Isolated compounds	Artemisinin (1) P-388 murine lymphocytic leukemia cells ($ED_{50} = 9.62 \times 10^{-2} \mu g/mL$) and HT-29 human colon adenocarcinoma cells ($ED_{50} = 4.41 \mu g/mL$, Quercetagetin 6,7,3',4'-tetramethyl ether (9) A-549 human lung carcinoma ($ED_{50} = 4.81 \times 10^{-1} \mu g/mL$) and HT-29 human colon adenocarcinoma ($ED_{50} = 1.25 \mu g/mL$)	(Zheng, 1994)
	In vivo (pet)	Herba Artemisiae annuae	Aqueous	One cat and one dog with fibrosarcoma survived 40 and 37 months, respectively, without tumour recurrence.	(Breuer et al. 2014)
	In vivo (Dogs, cats)	A. annua preparation (Luparte)		Survival rate increases >18 months	(Saeed et al. 2019)
		Leaves	Hot Aqueous	Arteannuin Q; IC ₅₀ 20.0 μM, artemisinic acid, 16.7 μM, and annulide and 21.5 μM, against the HCT116 cell line respectively.	(Xiao Han et al. 2022)
Toxicity	In vivo (rat)	Leaves, stems	Ethanol	Leaves and stem 5000mg/kg not toxic	(Nkuitchou- Chougouo et al. 2022)
	In vivo (rat)	Leaves	Hexane	Leaves lethal dose (LD ₅₀) 2750 mg/kg	(Ogbole et al. 2014)

Note: PP; Plant Parts

Antimalarial activities of A. annua

The antiplasmodial action of *Artemisia annua* is primarily driven by artemisinin, which induces oxidative stress in parasites through endoperoxide-mediated radical formation (Czechowski *et al.* 2019). Flavonoids like chrysosplenol-D and cirsilineol enhance artemisinin bioavailability and potency synergistically (Liu *et al.* 1992). Whole-plant extracts improve artemisinin absorption and efficacy *in vivo* compared to isolated compounds, likely due to matrix effects that increase bioavailability (Elfawal *et al.* 2012). Resistance mechanisms decrease extract activity, but high selectivity indices against resistant strains imply that they still target weak points of parasites (Roesch *et al.* 2025). When combined with some plant molecules, they show opposition to each other, which shows how complicated the combined effects of natural extracts can be (Suberu *et al.* 2013).

Artemisinin alone exhibited a high strength when tested, with IC50 values low as 3.3 X 10⁻⁸ M (Liu *et al.* 1992). Other plants can change how well artemisinin works. Most flavonoids do not have much of an effect, but compounds such as chrysosplenol-D can greatly enhance it (Liu *et al.* 1992). Importantly, the entire plant extract often shows improved effects in vivo in comparison to pure artemisinin, a phenomenon known as a full plant matrix, which enhances the drug's bioavailability (Elfawal *et al.* 2012). An aqueous extract with 20 mg/kg artemisinin worked just as well in mice as a dose of the pure drug with 140 mg/kg (Zime-Diawara *et al.* 2015). However, the presence of other compounds in the extract may cause antagonistic interactions, and extracts exhibit much less activity against artemisinin-resistant parasite strains (Suberu *et al.* 2013; Roesch *et al.* 2025).

Anticancer activities of A. annua

The plant mechanism of action acts is initiated through various ways. Artemisinin and its types make cells die and stop their growth in the S and G2/M phases (Efferth et~al.~2003; Isani et~al.~2019), this is cause by rising the iron inside cells to cause stress (Salaroli et~al.~2022). Flavonoids like casticin and chrysosplenol D make pro-death signals stronger (Fu et~al.~2022). Parts of the extract change some main proteins (like ERK, Akt, GSK-3 β , β -catenin) and cut some other cells (like VCAM-1) so the cancer can't spread (Ko et~al.~2016; Son et~al.~2023). Resistance to the tumour may come from overexpression of MYC,

TFR, and VEGFC (Michaelsen *et al.* 2015). Also, tissue-specificity of the toxic effects (e.g. damage to ovary) shows that there is a real need to develop new drugs that will be more specific (Ajah *et al.* 2010). Induction of apoptosis, cell cycle arrest, and the modulation of intracellular iron and reactive oxygen species (Fu *et al.* 2022; Isani *et al.* 2019; Allemailem, 2022).

Artemisia annua extracts and their derivatives, such as artemisinin and flavonoids, exhibit substantial and broad-spectrum anticancer efficacy in vitro. Artemisinin exhibits considerable efficacy against human colon adenocarcinoma (HT-29) and murine lymphocytic leukemia (P-388) cells (Zheng, 1994). On the other hand, flavonoids like quercetagetin 6,7,3',4'-tetramethyl ether are effective against a wide range of lung and colon cancer cell lines (Zheng, 1994). Case reports, including one that indicated *A. annua* capsules resulted in a transient tumor remission in a patient with advanced prostate cancer (Michaelsen *et al.* 2015), alongside research demonstrating enhanced survival rates in dogs and cats with sarcomas (Breuer *et al.* 2014; Saeed *et al.* 2019), substantiate in vivo efficacy.

Other activities of A. annua

As a contraceptive the plants exhibit significant efficacy (Abolaji *et al.* 2014). It also has anti-amoebic properties, with pure artemisinin being the most effective compound. However, the effectiveness of plant extracts depended a lot on the solvent used for extraction and how long they were exposed to it. Methanol and chloroform extracts were the most effective, while hot water infusions were the least effective (Derda *et al.* 2016). Also, *A. annua* extracts have the potential to lower blood sugar levels by blocking alpha-glucosidase, with ethanol-aqueous extracts being the most effective (Acquaviva *et al.* 2023).

Toxicity of A. annua

The high dose of stem and leaf extract (5000 mg/kg) did not cause any toxicity in rats in terms of liver, kidney, lung, and heart functions (Nkuitchou-Chougouo *et al.* 2022). Also the same study found that curiosity and motor activity was significantly stimulated by the extract. In fact, one other research underlined that the median deadly dose (LD5₀) was 2750 mg/kg body weight containing natural chemicals such as sugars, cardiac glycosides, flavonoids, and terpenes (Ogbole *et al.* 2014). The findings show that A. annua is normally well tolerated at certain doses and can work as a stimulant but its safety depends on the dose.

Hepatic toxicity of A. annua

The ethanol extract of leaves has a protective value against gentamycin damage of the liver. The histological analysis proved that pre-treatment with the extract lowered the steatosis of hepatocytes and portal vein congestion and lowered the immunoreactivity of pro-inflammatory COX-2 gene (Althobaiti *et al.* 2024). At the same time, the extract has an effect on the important metabolic parameters. Administration of the ethanol leaf extract significantly decreased blood glucose levels. However, it also induced a mixed lipid profile, characterized by a decrease in high-density lipoprotein (HDL) cholesterol and an increase in low-density lipoprotein (LDL) cholesterol and the atherogenic index. Notably, the extract did not negatively impact liver function, hematological indices, or testosterone levels (Eteng *et al.* 2013).

Conclusion and future research

This comprehensive review notes the enormous healing value of A. annua as reported from various traditional uses of different cultures, chemical components of the plant, and its healing properties. Conditions such as malaria and fever through diabetes, skin disorders and respiratory illnesses are treated through traditional preparations, mainly decoctions, infusions and oils with regional variations relating to local knowledge and practices. The wide phytochemical profile of A. annua gives it an impressive versatile set of notable biological functions. Although the plant is best known by its most famous compound, artemisinin, a combination of different bioactive molecules, including flavonoids (e.g., casticin, chrysosplenol D), other sesquiterpenes (e.g., artemisinic acid, arteannuin B); and various polyphenols is largely responsible due to its efficacy. A. annua has a broad-spectrum activity. Casticin and chrysosplenol D flavonoids play a significant role in inhibiting proinflammatory cytokines IL-6, TNF- 2), as well as, inhibiting important signaling pathways NF-2. Quercetagetin 6,7,3',4'tetramethyl ether and other terpenes including arteannuin Q are dose-dependently cytotoxic to the various cancer cell lines by inducing apoptosis and cell cycle arrest. The toxicological research suggests that the extracts have a high safety margin, and the extracts were not toxic to major organs at a certain dosage. This review highlights a major gap in the literature: while dozens of non-artemisinin compounds have been identified, the vast majority of in vivo research still uses crude extracts or pure artemisinin. Future work must focus on linking specific compounds, such as the flavonoids artemetin and casticin, to the observed in vivo anti-inflammatory, anti-microbial and antiparasitic effects. Furthermore, little research has been done on the precise biochemical pathways through which phytochemicals work. It is necessary to investigate the extract's mode of action. To conduct in silico analysis of each identified compound to FastTrack the in vitro investigation of each compound. Numerous details on protein expression, functionality, interaction, network structure, and biosynthesis pathways will be revealed by proteomic studies of A. annua. These data can be extremely helpful for developing novel drugs and for gaining a thorough understanding of disease preventive processes.

Declarations

List of abbreviations: ChE: Acetylcholinesterase, BChE: Butyrylcholinesterase, DPPH: 2,2-diphenyl-1-picrylhydrazyl , FRAP: Ferric Reducing Antioxidant Power, ORAC: Oxygen Radical Absorbance Capacity , ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), IC₅₀: Half-maximal inhibitory concentration, MIC: Minimum inhibitory concentration,

MBC: Minimum bactericidal concentration, GIC_{50} : Growth inhibitory concentration (50%), EC_{50} : Half-maximal effective concentration, ED_{50} : Effective dose (50%), ROS: Reactive oxygen species, TLR: Toll-like receptor, LPS: Lipopolysaccharide, NF- κ B: Nuclear factor kappa B, MAPK: Mitogen-activated protein kinase, TNF- α : Tumor necrosis factor alpha, IL-6: Interleukin 6, IL-1 β : Interleukin 1 beta, MCP-1: Monocyte chemoattractant protein-1, TSLP: Thymic stromal lymphopoietin, VCAM-1: Vascular cell adhesion molecule 1, NSCLC: Non-small cell lung cancer

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: Not applicable

Competing interests: Not applicable

Funding: Not applicable

Authors contributions: A.M.D and R.W.B; Conceptualized the idea, retrieved the data and drafted the manuscript. All authors read and approved the final version of the manuscript.

Literature cited

Aadil KR, Barapatre A, Sahu S, Jha H, Tiwary BN. 2014. Free radical scavenging activity and reducing power of *Acacia nilotica* wood lignin. International Journal of Biological Macromolecules 67:220-227.

Abate G, Zhang L, Pucci M, Morbini G, Mac Sweeney E, Maccarinelli G, Ribaudo G, Gianoncelli A, Uberti D, Memo M. 2021. Phytochemical analysis and anti-inflammatory activity of different ethanolic phyto-extracts of *Artemisia annua* L. Biomolecules 11:975.

Abdulrahman MD, Bradosty SW, Hamad SW, Ibrahim MT, Lema AA, Sunusi N, Usman M, Ashiru I, Ahmad NB, Wada N. 2022. Traditional Methods for Treatment and Management of Measles in Northern Nigeria: Medicinal plants and their molecular docking. Ethnobotany Research and Applications 23.

Abolaji AO, Eteng MU, Ebong PE, Dar A, Farombi EO, Choudhary MI. 2014. *Artemisia annua* as a possible contraceptive agent: a clue from mammalian rat model. Natural Product Research 28:2342-2346.

Acquaviva A, Nilofar, Bouyahya A, Zengin G, Di Simone SC, Recinella L, Leone S, Brunetti L, Uba AI, Cakilcioğlu U. 2023. Chemical characterization of different extracts from *Artemisia annua* and their antioxidant, enzyme inhibitory and anti-inflammatory properties. Chemistry & Biodiversity 20:e202300547.

Acton N, Klayman DL. 1985. Artemisitene, a new sesquiterpene lactone endoperoxide from *Artemisia annua*. Planta Medica 51:441-442.

Ajah P, Eteng M. 2010. Phytochemical screening and histopathological effects of single acute dose administration of *Artemisia annua* L. on testes and ovaries of Wistar rats. African Journal of Biochemistry Research 4:179-185.

Allemailem KS. 2022. Aqueous extract of *Artemisia annua* shows in vitro antimicrobial activity and an in vivo chemopreventive effect in a small-cell lung cancer model. Plants 11:3341.

Allen PC, Lydon J, Danforth HD. 1997. Effects of components of *Artemisia annua* on coccidia infections in chickens. Poultry Science 76:1156-1163.

Althobaiti SA, Qahl SH, Toufig H, Almalki DA, Nasir O, Soliman MM. 2024. Protective impacts of *Artemisia annua* against hepatic toxicity induced by gentamicin. Toxicology Research 13:tfad121.

Appalasamy S, Lo KY, Ch'ng SJ, Nornadia K, Othman AS, Chan L-K. 2014. Antimicrobial activity of artemisinin and precursor derived from in vitro plantlets of *Artemisia annua* L. BioMed Research International 2014:215872.

Baggieri M, Gioacchini S, Borgonovo G, Catinella G, Marchi A, Picone P, Vasto S, Fioravanti R, Bucci P, Kojouri M. 2023. Antiviral, virucidal and antioxidant properties of *Artemisia annua* against SARS-CoV-2. Biomedicine & Pharmacotherapy 168:115682.

Basavegowda N, Idhayadhulla A, Lee YR. 2014. Preparation of Au and Ag nanoparticles using *Artemisia annua* and their in vitro antibacterial and tyrosinase inhibitory activities. Materials Science and Engineering: C 43:58-64.

Bernatoniene J, Nemickaite E, Majiene D, Marksa M, Kopustinskiene DM. 2024. In Vitro and In Silico Anti-Glioblastoma Activity of Hydroalcoholic Extracts of *Artemisia annua* L. and *Artemisia vulgaris* L. Molecules 29:2460.

Breuer E, Efferth T. 2014. Treatment of iron-loaded veterinary sarcoma by *Artemisia annua*. Natural Products and Bioprospecting 4:113-118.

Brisibe EA, Umoren UE, Brisibe F, Magalhäes PM, Ferreira JF, Luthria D, Wu X, Prior RL. 2009. Nutritional characterisation and antioxidant capacity of different tissues of *Artemisia annua* L. Food Chemistry 115:1240-1246.

Brisibe EA, Umoren UE, Owai PU, Brisibe F. 2008. Dietary inclusion of dried *Artemisia annua* leaves for management of coccidiosis and growth enhancement in chickens. African Journal of Biotechnology 7.

Brown G. 1992. Two new compounds from Artemisia annua. Journal of Natural Products 55:1756-1760.

Brown GD. 2010. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of *Artemisia annua* L. (Qinghao). Molecules 15:7603-7698.

Brown GD, Liang G-Y, Sy L-K. 2003. Terpenoids from the seeds of Artemisia annua. Phytochemistry 64:303-323.

Bussmann, RW; Paniagua-Zambrana, NY; Khutsishvili, M; Kikvidze, Z; Müller, L; Mehdiyeva, N; Alizade, VM; Mursal, N; Salimov, R; Batsatsashvili, K; Sikharulidze, S; Tchelidze, D; Maisaia, I; Aliev Muradalievich, A; Vagabova Askeralievna, F; Fayvush, G; Aleksanyan, A; Khamraeva, RT; Khojimatov, OK. (2025). *Artemisia absinthium* L., *Artemisia annua* L., *Artemisia campestris* L.; *Artemisia chamaemelifolia* Vill.; *Artemisia dracunculus* L., *Artemisia fragrans* Willd., *Artemisia leucodes* Schrenk, *Artemisia marschalliana* Spreng., *Artemisia scoparia* Waldst. & Kit., *Artemisia splendens* Willd.; *Artemisia szovitsiana* (Besser) Grossh., *Artemisia vulgaris* L., *Eclipta prostrata* (L.) L. - ASTERACEAE in: Bussmann, RW; Paniagua-Zambrana, NY; Kikvidze, Z. (eds). Ethnobotany of Mountain Regions - Ethnobotany of the Caucasus, doi: 10.1007/978-3-319-50009-6 XXX-1

Carbonara T, Pascale R, Argentieri MP, Papadia P, Fanizzi FP, Villanova L, Avato P. 2012. Phytochemical analysis of a herbal tea from *Artemisia annua* L. Journal of Pharmaceutical and Biomedical Analysis 62:79-86.

Ćavar S, Maksimović M, Vidic D, Parić A. 2012. Chemical composition and antioxidant and antimicrobial activity of essential oil of *Artemisia annua* L. from Bosnia. Industrial Crops and Products 37:479-485.

Chougouo RD, Nguekeu YM, Dzoyem JP, Awouafack MD, Kouamouo J, Tane P, McGaw LJ, Eloff JN. 2016. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of *Artemisia annua* growing in Cameroon. Springerplus 5:1525.

Chukwurah PN, Brisibe EA, Osuagwu AN, Okoko T. 2014. Protective capacity of *Artemisia annua* as a potent antioxidant remedy against free radical damage. Asian Pacific Journal of Tropical Biomedicine 4:S92-S98.

Coroian M, Pop LM, Popa V, Friss Z, Oprea O, Kalmár Z, Pintea A, Borşan S-D, Mircean V, Lobonțiu I. 2022. Efficacy of *Artemisia annua* against coccidiosis in broiler chickens: A field trial. Microorganisms 10:2277.

Czechowski T, Rinaldi MA, Famodimu MT, Van Veelen M, Larson TR, Winzer T, Rathbone DA, Harvey D, Horrocks P, Graham IA. 2019. Flavonoid versus artemisinin anti-malarial activity in *Artemisia annua* whole-leaf extracts. Frontiers in Plant Science 10:984.

de Almeida GF, Horsted K, Thamsborg SM, Kyvsgaard NC, Ferreira JF, Hermansen JE. 2012. Use of *Artemisia annua* as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance. Veterinary Parasitology 186:178-187.

De Jesus-Gonzalez L, Weathers P. 2003. Tetraploid *Artemisia annua* hairy roots produce more artemisinin than diploids. Plant Cell Reports 21:809-813.

de Oliveira TC, Silva DAO, Rostkowska C, Béla SR, Ferro EA, Magalhães PM, Mineo JR. 2009. Toxoplasma gondii: effects of *Artemisia annua* L. on susceptibility to infection in experimental models in vitro and in vivo. Experimental Parasitology 122:233-241.

Derda M, Hadaś E, Cholewiński M, Skrzypczak Ł, Grzondziel A, Wojtkowiak-Giera A. 2016. *Artemisia annua* L. as a plant with potential use in the treatment of acanthamoebiasis. Parasitology Research 115:1635-1639.

Dogara AM, Ibrahim MT, Mahmud AA, Danladi MD, Lema AA, Muhammad U, Tahir AS. 2024. Antioxidant, Alpha glucosidase inhibition, Chemical composition, and Molecular docking of Thesium viride AW Hill. Arabian Journal of Medicinal and Aromatic Plants 10:1-19.

Dogara AM, Ibrahim MT, Mahmud AA, Danladi MD, Lema AA, Usman M, Tahir AS, Tabti K. 2025. Biological activity, chemical composition, and molecular docking of *Eugenia punicifolia* (Kunth) DC. Journal of Umm Al-Qura University for Applied Sciences 11:294-307.

Donato R, Santomauro F, Bilia AR, Flamini G, Sacco C. 2015. Antibacterial activity of Tuscan *Artemisia annua* essential oil and its major components against some foodborne pathogens. LWT-Food Science and Technology 64:1251-1254.

Drăgan L, Györke A, Ferreira JF, Pop IA, Dunca I, Drăgan M, Mircean V, Dan I, Cozma V. 2014. Effects of *Artemisia annua* and Foeniculum vulgare on chickens highly infected with Eimeria tenella (Phylum Apicomplexa). Acta Veterinaria Scandinavica 56:22.

Du T, Zhu W, Zhang C, Liang X, Shu Y, Zhou J, Zhang M, He Y, Tu J, Feng Y. 2025. Bacteriostatic Activity and Resistance Mechanism of *Artemisia annua* Extract Against *Ralstonia solanacearum* in Pepper. Plants 14:651.

Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch M-E, Volm M, Tew KD. 2003. Molecular modes of action of artesunate in tumor cell lines. Molecular Pharmacology 64:382-394.

Ekanem AP, Andi Brisibe E. 2010. Effects of ethanol extract of *Artemisia annua* L. against monogenean parasites of *Heterobranchus longifilis*. Parasitology Research 106:1135-1139.

Elfawal MA, Towler MJ, Reich NG, Golenbock D, Weathers PJ, Rich SM. 2012. Dried whole plant *Artemisia annua* as an antimalarial therapy. PLoS One 7:e52746.

Engberg RM, Grevsen K, Ivarsen E, Fretté X, Christensen LP, Højberg O, Jensen BB, Canibe N. 2012. The effect of *Artemisia annua* on broiler performance, on intestinal microbiota and on the course of a Clostridium perfringens infection applying a necrotic enteritis disease model. Avian Pathology 41:369-376.

Eteng MU, Abolaji AO, Ebong PE, Brisibe EA, Dar A, Kabir N, Iqbal Choudhary M. 2013. Biochemical and haematological evaluation of repeated dose exposure of male Wistar rats to an ethanolic extract of Artemisia annua. Phytotherapy Research 27:602-609.

Fatemi A, Asasi K, Razavi SM. 2017. Anticoccidial effects of *Artemisia annua* ethanolic extract: prevention, simultaneous challenge-medication, and treatment. Parasitology Research 116:2581-2589.

Foglio MA, Dias PC, Antônio MA, Possenti A, Rodrigues RAF, da Silva ÉF, Rehder VLG, de Carvalho JE. 2002. Antiulcerogenic activity of some sesquiterpene lactones isolated from *Artemisia annua*. Planta Medica 68:515-518.

Fu C, Zhang K, Wang M, Qiu F. 2022. Casticin and chrysosplenol D from *Artemisia annua* L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. Phytomedicine 100:154095.

Gendrot M, Duflot I, Boxberger M, Delandre O, Jardot P, Le Bideau M, Andreani J, Fonta I, Mosnier J, Rolland C. 2020. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. International Journal of Infectious Diseases 99:437-440.

Gholami S, Azadbakht M, Ziaei Hezarjaribi H, Rahimi-Esboei B. 2014. Anti-Giardial Activity of Chloroformic Extract of Tanacetum parthenium and *Artemisia annua* in vitro. Research in Molecular Medicine 2:46-51.

Gholamrezaie SL, Mohammadi M, Jalali SJ, Abolghasemi S, Roostaei AM. 2013. Extract and leaf powder effect of *Artemisia annua* on performance, cellular and humoral immunity in broilers.

Goodarzi M, Yeganehparast M, Esmaeilinia K. 2004. Anticoccidial effects of *Artemisia annua* on Eimeria tenella in broilers and comparison with salinomycin and amprolium.

Gupta PC, Dutta B, Pant D, Joshi P, Lohar D. 2009. In vitro antibacterial activity of *Artemisia annua* Linn. growing in India. International Journal of Green Pharmacy (IJGP) 3.

Habibi Z, Ghanian S, Ghasemi S, Yousefi M. 2013. Chemical composition and antibacterial activity of the volatile oil from seeds of *Artemisia annua* L. from Iran. Natural Product Research 27:198-200.

Han X, Chai Y, Lv C, Chen Q, Liu J, Wang Y, Chou G. 2022. Sesquiterpenes from *Artemisia annua* and their cytotoxic activities. Molecules 27:5079.

Han X, Chen Z, Yuan J, Wang G, Han X, Wu H, Shi H, Chou G, Yang L, Wu X. 2022. *Artemisia annua* water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice. Journal of Ethnopharmacology 291:115160.

Hao J-y, Han W, Huang S-d, Xue B-y, Deng X. 2002. Microwave-assisted extraction of artemisinin from *Artemisia annua* L. Separation and Purification Technology 28:191-196.

Havyarimana C, Nkengurutse J, Ngezahayo J, Aida C-S, Masharabu T. 2023. Antimalarial and mosquito repellent plants: insights from Burundi. Ethnobotany Research and Applications 25:1-28.

Hayat MQ, Khan MA, Ashraf M, Jabeen S. 2009. Ethnobotany of the genus Artemisia L. (Asteraceae) in Pakistan.

Hunt S, Yoshida M, Davis CE, Greenhill NS, Davis PF. 2015. An extract of the medicinal plant *Artemisia annua* modulates production of inflammatory markers in activated neutrophils. Journal of Inflammation Research 9:14.

Iqbal S, Younas U, Chan KW, Zia-Ul-Haq M, Ismail M. 2012. Chemical composition of *Artemisia annua* L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules 17:6020-6032.

Isani G, Bertocchi M, Andreani G, Farruggia G, Cappadone C, Salaroli R, Forni M, Bernardini C. 2019. Cytotoxic Effects of *Artemisia annua* L. and Pure Artemisinin on the D-17 Canine Osteosarcoma Cell Line. Oxidative Medicine and Cellular Longevity 2019:1615758.

Ji Y, Zhang Y-C, Pei L-B, Shi L-L, Yan J-L, Ma X-H. 2011. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Molecular and Cellular Biochemistry 351:99-108.

Juteau F, Masotti V, Bessiere JM, Dherbomez M, Viano J. 2002. Antibacterial and antioxidant activities of *Artemisia annua* essential oil. Fitoterapia 73:532-535.

Khoja AA, Andrabi SAH, Mir RA. 2022. Traditional medicine in the treatment of gastrointestinal diseases in northern part of Kashmir Himalayas. Ethnobotany Research and Applications 23:1-17.

Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD, Dobek AS. 1984. Isolation of artemisinin (qinghaosu) from *Artemisia annua* growing in the United States. Journal of Natural Products 47:715-717.

Ko YS, Lee WS, Panchanathan R, Joo YN, Choi YH, Kim GS, Jung JM, Ryu CH, Shin SC, Kim HJ. 2016. Polyphenols from *Artemisia annua* L inhibit adhesion and EMT of highly metastatic breast cancer cells MDA-MB-231. Phytotherapy Research 30:1180-1188.

Kohler M, Haerdi W, Christen P, Veuthey J-L. 1997. Extraction of artemisinin and artemisinic acid from *Artemisia annua* L. using supercritical carbon dioxide. Journal of Chromatography A 785:353-360.

Lang SJ, Schmiech M, Hafner S, Paetz C, Steinborn C, Huber R, El Gaafary M, Werner K, Schmidt CQ, Syrovets T. 2019. Antitumor activity of an *Artemisia annua* herbal preparation and identification of active ingredients. Phytomedicine 62:152962.

Li Y-J, Guo Y, Yang Q, Weng X-G, Yang L, Wang Y-J, Chen Y, Zhang D, Li Q, Liu X-C. 2015. Flavonoids casticin and chrysosplenol D from *Artemisia annua* L. inhibit inflammation in vitro and in vivo. Toxicology and Applied Pharmacology 286:151-158.

Liu CH, Zou WX, Lu H, Tan RX. 2001. Antifungal activity of *Artemisia annua* endophyte cultures against phytopathogenic fungi. Journal of Biotechnology 88:277-282.

Liu KC-SC, Yang S-L, Roberts M, Elford B, Phillipson J. 1992. Antimalarial activity of *Artemisia annua* flavonoids from whole plants and cell cultures. Plant Cell Reports 11:637-640.

Liu S, Li S, Cheng S, Liu M, Li J, Li S, Li X, Zhang L, Jian F. 2025. Effect of *Artemisia annua* on anticoccidial action, intestinal microbiota and metabolites of Hu lambs. BMC Veterinary Research 21:41.

Lu H, Zou WX, Meng JC, Hu J, Tan RX. 2000. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science 151:67-73.

Lubbe A, Seibert I, Klimkait T, van der Kooy F. 2012. Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Journal of Ethnopharmacology 141:854-859.

Ma L, Wei L, Chen X, Wang W, Lu J, Li Y, Yao L. 2024. Chemical composition, antioxidative and antimicrobial activities of essential oil of wild *Artemisia annua* from Ningxia, China. Natural Product Research 38:4340-4346.

Ma N, Zhang Z, Liao F, Jiang T, Tu Y. The birth of artemisinin. Pharmacology & Therapeutics 2020.216:107655.

Ma Y-N, Chen C-J, Li Q-Q, Xu F-R, Cheng Y-X, Dong X. 2019. Monitoring antifungal agents of *Artemisia annua* against Fusarium oxysporum and Fusarium solani, associated with Panax notoginseng root-rot disease. Molecules 24:213.

Marinas IC, Oprea E, Chifiriuc MC, Badea IA, Buleandra M, Lazar V. 2015. Chemical composition and antipathogenic activity of *Artemisia annua* essential oil from Romania. Chemistry & Biodiversity 12:1554-1564.

Martini MC, Zhang T, Williams JT, Abramovitch RB, Weathers PJ, Shell SS. 2020. *Artemisia annua* and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. Journal of Ethnopharmacology 262:113191.

Massiha A, Khoshkholgh-Pahlaviani MM, Issazadeh K, Bidarigh S, Zarrabi S. 2013. Antibacterial activity of essential oils and plant extracts of Artemisia (*Artemisia annua* L.) in vitro. Zahedan Journal of Research in Medical Sciences 15:14-18.

Michaelsen F-W, Saeed ME, Schwarzkopf J, Efferth T. 2015. Activity of *Artemisia annua* and artemisinin derivatives, in prostate carcinoma. Phytomedicine 22:1223-1231.

Mir TA, Khare RK, Jan M. 2021. Medicinal plants used against gastrointestinal complaints in district Budgam of Jammu and Kashmir-An ethnomedicinal study. Ethnobotany Research and Applications 22:1-16.

Mouton J, Jansen O, Frédérich M, van der Kooy F. 2013. Is artemisinin the only antiplasmodial compound in the *Artemisia annua* tea infusion? An in vitro study. Planta Medica 79:468-470.

Muhesi EK, Betti JL, Din N, Kapiri MM, Afiong HNN, Fils PB. 2023. Ethnobotanical knowledge of Prunus africana (Hook. f.) Kalkman (Rosaceae) by people living in community forests in North Kivu, Eastern Democratic Republic of Congo. Ethnobotany Research and Applications 26:1-28.

Nair MS, Huang Y, Fidock DA, Polyak SJ, Wagoner J, Towler M, Weathers P. 2021. *Artemisia annua* L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of Ethnopharmacology 274:114016.

Nair MS, Huang Y, Fidock DA, Towler M, Weathers P. 2022. *Artemisia annua* L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta. Journal of Ethnopharmacology 284:114797.

Nambejja C, Ogwang P, Engeu Onegi B, Anyama N, Matu E. 2016. *Artemisia annua* L.-Vernonia amygdalina Del: a potential herbal artemisinin combination treatment against malaria.

Ni L, Acharya K, Hao X, Li S. 2012. Isolation and identification of an anti-algal compound from *Artemisia annua* and mechanisms of inhibitory effect on algae. Chemosphere 88:1051-1057.

Nkuitchou-Chougouo RD, Kouakou L, Djoko E, Tchiesso GR, Dimo T, Koffi AA. 2022. Acute oral toxicity evaluation of hydroethanolic extract from stem and leaf powder of A. annua (Asteraceae) in laboratory rats. GSC Biological and Pharmaceutical Sciences 21:230-241.

Noumi E, Manga P. 2011. Traditional medicines for HIV/AIDS and opportunistic infections in North-West Cameroon: case of skin infections. American Journal of Tropical Medicine and Hygiene 1:44-64.

Ogbole EA, Ogundeko T, Asalu AF, Builders M, Aguiyi J. 2014. Acute toxicity studies of locally cultivated *Artemisia annua* leaf extract in Rats. World Journal of Pharmaceutical Sciences 1864-1870.

Oh H, Youn H, Noh J, Jang D, Kang Y. 1995. Anticoccidial effects of an extract of Artemisia annua on Eimeria tenella.

Pirali-Kheirabadi K, da Silva JT. 2011. In-vitro assessment of the acaricidal properties of *Artemisia annua* and Zataria multiflora essential oils to control cattle ticks. Iranian Journal of Parasitology 6:58.

Roesch C, Ashraf K, Vantaux A, Marin AA, Maher SP, Franetich J-F, Kloeung N, Ke S, Vo HTM, Mazier D. 2025. Assessment of the in vitro activity and selectivity of Artemisia afra and *Artemisia annua* aqueous extracts against artemisinin-resistant Plasmodium falciparum. Malaria Journal 24:150.

Ryu J-H, Lee S-J, Kim M-J, Shin J-H, Kang S-K, Cho K-M, Sung N-J. 2011. Antioxidant and anticancer activities of *Artemisia annua* L. and determination of functional compounds.

Saeed ME, Breuer E, Hegazy M-EF, Efferth T. 2019. Retrospective study of small pet tumors treated with *Artemisia annua* and iron. International Journal of Oncology 56:123-138.

Salaroli R, Andreani G, Bernardini C, Zannoni A, La Mantia D, Protti M, Forni M, Mercolini L, Isani G. 2022. Anticancer activity of an *Artemisia annua* hydroalcoholic extract on canine osteosarcoma cell lines. Research in Veterinary Science 152:476-484.

Shaaban MT, Abdel-Hamid MS, Orabi SH, Korany RM, Elbawab RH. 2024. Assessment of the antibacterial efficacy of silver nanoparticles-based *Artemisia annua* against methicillin-resistant Staphylococcus aureus-infected lung tissues in albino rats. Journal of Analytical Science and Technology 15:25.

Sharopov FS, Salimov A, Numonov S, Safomuddin A, Bakri M, Salimov T, Setzer WN, Habasi M. 2020. Chemical composition, antioxidant, and antimicrobial activities of the essential oils from Artemisia annua L. growing wild in Tajikistan. Natural Product Communications 15:1934578X20927814.

Singh NP, Ferreira JF, Park JS, Lai HC. 2011. Cytotoxicity of ethanolic extracts of *Artemisia annua* to Molt-4 human leukemia cells. Planta Medica 77:1788-1793.

Skowyra M, Gallego MG, Segovia F, Almajano MP. 2014. Antioxidant properties of *Artemisia annua* extracts in model food emulsions. Antioxidants 3:116-128.

Soares MP, Cardoso IL, Ishikawa MM, de Oliveira AdSS, Sartoratto A, Jonsson CM, de Queiroz SCdN, Duarte MCT, Rantin FT, Sampaio FG. 2020. Effects of *Artemisia annua* alcohol extract on physiological and innate immunity of Nile tilapia (Oreochromis niloticus) to improve health status. Fish & Shellfish Immunology 105:369-377.

Son S-R, Kim JY, Min JW, Kong CH, Park K, Jeon M, Kang WC, Jung SY, Choi J-H, Jang DS. 2023. Effects of *Artemisia annua* L. on postmenopausal syndrome in ovariectomized mice. Journal of Ethnopharmacology 317:116800.

Song Y, Desta KT, Kim GS, Lee SJ, Lee WS, Kim YH, Jin JS, Abd El-Aty A, Shin HC, Shim JH. 2016. Polyphenolic profile and antioxidant effects of various parts of *Artemisia annua* L. Biomedical Chromatography 30:588-595.

Soylu E, Yiğitbaş H, Tok F, Soylu S, Kurt Ş, Baysal Ö, Kaya A. 2005. Chemical composition and antifungal activity of the essential oil of *Artemisia annua* L. against foliar and soil-borne fungal pathogens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection 229-239.

Suberu JO, Gorka AP, Jacobs L, Roepe PD, Sullivan N, Barker GC, Lapkin AA. 2013. Anti-plasmodial polyvalent interactions in *Artemisia annua* L. aqueous extract—possible synergistic and resistance mechanisms. PLoS One 8:e80790.

Sy L-K, Brown GD. 1998. Three sesquiterpenes from Artemisia annua. Phytochemistry 48:1207-1211.

Tajehmiri A, Issapour F, Moslem MN, Lakeh MT, Kolavani MH. 2014. In vitro antimicrobial activity of *Artemisia annua* leaf extracts against pathogenic bacteria. Advanced Studies in Biology 6:93-97.

Tu Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine 17:1217-1220.

Tu Y, Ni M, Zhong Y, Li L, Gui S, Zhang M, Liang X. 2015. Studies on the constituents of *Artemisia annua* L. Yao Xue Xue Bao 366-370.

van Loggenberg S, Willers C, van der Kooy F, Gouws C, Hamman JH, Steyn JD. 2022. Evaluating in vitro cytotoxic effects of Artemisia afra and *Artemisia annua* infusions against selected lung cancer cell lines. South African Journal of Botany 150:404-411

Verdian Rizi M, Sadat Ebrahimi SE, Haji Agha Alizadeh H, Fazeli M, Pirali Hamedani M. 2008. Chemical composition and antimicrobial activity of *Artemisia annua* L. essential oil from Iran.

Wan X, Niu Y, Zheng X, Huang Q, Su W, Zhang J, Zhang L, Wang T. 2016. Antioxidant capacities of *Artemisia annua* L. leaves and enzymatically treated *Artemisia annua* L. in vitro and in broilers. Animal Feed Science and Technology 221:27-34.

Weathers PJ, Towler M, Hassanali A, Lutgen P, Engeu PO. 2014. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? World Journal of Pharmacology 3:39.

Wiedosari E, Wardhana AH. 2018. Anticoccidial activity of Artemisinin and Extract of *Artemisia annua* leaves in chicken infected by Eimeria tenella. Jurnal Ilmu Ternak dan Veteriner 22:196-204.

Willcox ML, Burton S, Oyweka R, Namyalo R, Challand S, Lindsey K. 2011. Evaluation and pharmacovigilance of projects promoting cultivation and local use of *Artemisia annua* for malaria. Malaria Journal 10:84.

Woerdenbag HJ, Bos R, Salomons MC, Hendriks H, Pras N, Malingré TM. 1993. Volatile constituents of *Artemisia annua* L. (Asteraceae). Flavour and Fragrance Journal 8:131-137.

Wu C, Yan Y, Wang Y, Sun P, Qi R. 2020. Antibacterial epoxy composites with addition of natural *Artemisia annua* waste. e-Polymers 20:262-271.

Wu Q-G, Li S-M, Hu Y-Q, Cao F, Wang Y-L, Chou G-X. 2025. Chemical constituents from *Artemisia annua* with potential anti-inflammatory activities. Journal of Asian Natural Products Research 1-12.

Yang J, Shen Z, Liu L, Kang W, Shao Y, Zhang P, Quan F. 2022. Clinical efficacy and safety of Artemisia annua-sublingual immunotherapy in seasonal allergic rhinitis patients based on different intervention time. International Archives of Allergy and Immunology 183:852-859.

Zhao Y, Zhu L, Yang L, Chen M, Sun P, Ma Y, Zhang D, Zhao Y, Jia H. 2024. In vitro and in vivo anti-eczema effect of *Artemisia annua* aqueous extract and its component profiling. Journal of Ethnopharmacology 318:117065.

Zheng G-Q. 1994. Cytotoxic terpenoids and flavonoids from Artemisia annua. Planta Medica 60:54-57.

Zime-Diawara H, Ganfon H, Gbaguidi F, Yemoa A, Bero J, Jansen O, Evrard B, Moudachirou M, Frederich M, Quetin-Leclercq J. 2015. The antimalarial action of aqueous and hydro alcoholic extracts of *Artemisia annua* L. cultivated in Benin: In vitro and in vivo studies. Journal of Chemical and Pharmaceutical Research 7:817-823.

Supplementary Figure 1 - Compunds identifies from Artemisia annua

5α-Hydroperoxy-eudesma-4(15),11-diene

4α,5α-Epoxy-6α-hydroxy amorphan-12-oic acid

 $4\alpha,5\alpha$ -Epoxy- 6α -hydroxy amorphan-12-ol

 3α , 7α -Dihydroxy amorph-4-ene 3-acetate

 3α ,15-Dihydroxycedrane

Artemisinic acid

Arteannuin B

Artemisitene

Artemisinin

Arteannuicacid

Deoxyartemisinin

Dihydroartemisinin

 3α ,7-Dihydroxy-cadin-4-ene

5α-Hydroxy-eudesma-4(15),11-diene

Dihydroartemisinic acid

4-Hydroxy-2-isopropenyl-5-methylene-hexan-1-ol

Sesquiterpenes

Caffeic acid

Quinic acid

5-Nonadecylresorcinol-3-O-methyl ether

Acetyl eugenol

4-Ethylphenol

4-Vinylphenol

5-Nonadecenylresorcinol

5-Pentacosenylresorcinol

5-Pentacosylresorcinol

2-Methoxy-5-prop-1-enylphenol

Hydroxytyrosol acetate

Ferulaldehyde

$$\begin{array}{c} \text{OH} \\ \\ \text{NH}_2 \end{array}$$

Hydroxytyrosol

Hydroxytyrosol 4-O-glucoside

Oleocanthal

Phenol

Phloroglucinol glucoside

3-Hydroxybenzoic acid

Ellagic acid glucoside

Gallic acid ethyl ester

Syringic acid

Gallic acid

Ellagic acid arabinoside

2,6-Dihydroxybenzoic acid

3,5-Dihydroxybenzoic acid

Gentisic acid

Protocatechuic acid:

p-Coumaroyl glucose

Hydroxycaffeic acid

Ferulic acid 4-O-glucoside

Feruloyl glucose

3-p-Coumaroylquinic acid

4-p-Coumaroylquinic acid

Avenanthramide 2c

Verbascoside

3-Caffeoylquinic acid

4-Caffeoylquinic acid

5-Caffeoylquinic acid

Caffeic acid 4-O-glucoside

Caffeoyl glucose

Phenolsic compounds

3,4-Dicaffeoylquinic acid

4,5-Dicaffeoylquinic acid

Isovitexin

6-C-arabinosyl-8-C-glucosyl apigenin

6-C-glucosyl-8-C-arabinosyl apigenin

Luteolin-7-O-glucoside

Jaceidin

Chrysosplenetin

Coumarin

Scopoletin

Artemetin

Chrysosplenol D

Casticin

OH OH

5-Hydroxy-3,4',6,7-tetramethoxyflavone

Penduletin

Retusin

Pachypodol

Eupatorin

Dihydroquercetin 3-O-rhamnosid

Eriodictyol 7-O-glucoside

Dihydroquercetin

(-)-Epigallocatechin

(+)-Gallocatechin

(-)-Epicatechin -O-gallate

(+)-Catechin 3-O-gallate

Didymin

Poncirin

6-Geranylnaringenin

Apigenin 7-O-diglucuronide

Luteolin 6-C-glucoside

Luteolin 7-O-glucoside

Pebrellin

Luteolin 7-O-diglucuronide

Arcapillin

Luteolin 7-O-glucuronide

Kaempferol 3-O-glucuronide

Luteolin 7-O-malonyl-glucoside

 ${\it 5,4'-Dihydroxy-3,3'-dimethoxy-6:7-methylenedioxyflavone~4'-O-glucuronid}$

Gardenin B

7,3',4'-Trihydroxyflavone

Baicalein

Hispidulin

Diosmin

Neodiosmin

Kaempferide

Myricetin 3-O-arabinoside

Myricetin 3-O-glucoside

3-Methoxynobiletin

Rhamnetin

Isorhamnetin

Quercetin 3-O-glucoside

 $5,3',4'-Trihydroxy-3-methoxy-6:7-methylenedioxy flavone\ 4'-O-glucuronide$

Isorhamnetin 7-O-rhamnoside

Isorhamnetin 3-O-glucoside

Myricetin 3-O-rhamnoside

Quercetin 4'-O-glucoside (Spiraeoside)

Myricetin

Daidzin

Biochanin A

Glycitein

Isorhamnetin 3-O-glucoside 7-O-rhamnoside

6,8-Dihydroxykaempferol

Glycitin

6"-O-Malonylgenistin

Flavonoids

Stigmasterol

Ergosterol

3-Oxo-ergosta-4,6,8(14),22-tetraene

6-Isoprenylindole-3-carboxylic acid

3-Oxo-ergosta-4-ene

24-Methylcholestanol ferulate

24-Methylcholesterol ferulate

24-Methylenecholestanol ferulate

Friedeli

Sterols and Triterpenes

Abscisic acid methyl ester

Artemether

Carnosic acid