

From traditional remedy to modern medicine: Review of the genus *Euphorbia*

Abdulrahman Mahmoud Dogara, Rainer W. Bussmann

Correspondence

Abdulrahman Mahmoud Dogara^{1*}, Rainer W. Bussmann^{2,3}

¹Biology Education Department, Tishk International University, Erbil, Iraq.

²Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia.

³Department of Botany, State Museum of Natural History, Karlsruhe, Germany

*Corresponding Author: abdulrahman.mahmud@tiu.edu.iq

Ethnobotany Research and Applications 33:42 (2026) - <http://dx.doi.org/10.32859/era.33.42.1-33>

Manuscript received: 07/01/2026 – Revised manuscript received: 30/01/2026 – Published: 31/01/2026

Research

Abstract

Background: Plants have been used in human medicine since ancient times. Natural products continue to play a crucial role in the drug discovery process. Genus *Euphorbia* is widely known for its therapeutic properties all over the world. We aim to update traditional medicinal uses, chemical composition, pharmacological activities and clinical trial of Genus *Euphorbia*.

Methods: Data pertinent to the genus *Euphorbia* and its distinctive compounds were obtained from globally recognized scientific databases and esteemed publications via online platforms, including Web of Science, PubMed, MDPI, Springer Nature, Wiley Online Library, and Elsevier. The inquiry utilized the term "*Euphorbia*" alongside the following terms: "phenolic compounds," "flavonoids," "terpenoids," "alkaloids," "phenylpropanoids."

Results: Traditionally, the genus is used to treat skin diseases, cancer, diabetes, hypoglycemia, healing wounds, toothache. Four hundred and two compounds (402) were identified across the genus with dominant diterpenoids, triterpenoids, flavonoids and phenols. Compounds were found to be active against cancer cells, viruses, microbes and inflammation. Clinical trial show members of the genus to be effective against hemorrhoids, varicose veins, human nonmelanoma skin cancers, dengue and cracked feet.

Conclusions: The genus *Euphorbia* is a highly potential avenue of pharmacognostic research and drug discovery based on secondary metabolites. It has a vast chemical repertoire of various terpenoid compositions, which provides a good source of chemically diverse and clinically important compounds. It is also essential to conduct structure-activity relationship studies to determine the molecular characteristics that endow activity and to provide a means of rationally developing new derivatives.

Keywords: Compound, *Euphorbia*, Clinical trial, Plants

Background

Plants have been used in human medicine since ancient times, as they form most of the source of therapeutics in the entire population of the world (Dogara, 2023). In generation after generation, indigenous knowledge systems have recognized an

enormous pharmacopeia of plant species, which supposedly have healing properties, and have provided invaluable starting points in the quest of discovering a new drug (Dogara *et al.* 2024).

The genus *Euphorbia* (family Euphorbiaceae) is one of the best illustrations of a taxon with long ethnomedicinal history. It is currently among the largest and most morphologically diverse genera of flowering plants with more than 2000 species and is found in tropical, subtropical, and temperate regions (Riina *et al.* 2013). Many species of this genus have played a central role in conventional medical practices across the globe, being employed to treat a broad range of conditions such as skin conditions, wounds, gastrointestinal diseases, inflammation, and microbial infections (Jassbi, 2006; Yang *et al.* 2014). Many *Euphorbia* species secrete the characteristic milky latex, which is often the origin of any bioactivity reported, and indicates a refined knowledge of plant properties in traditional situations (Yang *et al.* 2014).

The rich history of traditional application has driven wide-ranging scientific investigation into the phytochemical basis of the action of *Euphorbia*. Studies have revealed a complex chemical composition filled with bioactive diterpenoids, triterpenoids, flavonoids and polyphenols (Anju *et al.* 2022). As a result, a considerable amount of *in vitro* and *in vivo* evidence has shown that these extracts and compounds have many pharmacological activities, including potent anticancer, anti-inflammatory, antimicrobial, and antioxidant properties (Chen *et al.* 2021; Li *et al.* 2022).

Although the biological activities of *Euphorbia* species crude extracts have been well documented in existing reviews (Amtaghri *et al.* 2022; Benjamaa *et al.* 2022; Kemboi *et al.* 2020; Shi *et al.* 2008), a direct correlation between individual phytoconstituents and their pharmacological activity has not been carried out. Moreover, there is no critical transition period between these well-defined compound activities and the application in humans that is studied. Hence, the review is the first to concentrate on biological activities of isolated compounds that are explicitly reported giving a clear mechanism of the bioactivity of the genus. Combining this compound-based methodology with a novel critical examination of human clinical trials, this study is the crucial step in filling this gap between phytochemistry, pre-clinical mechanism and clinical relevance.

Materials and Methods

Data pertinent to the genus *Euphorbia* and its distinctive compounds were obtained from globally recognized scientific databases and esteemed publications via online platforms, including Web of Science, PubMed, MDPI, Springer Nature, Wiley Online Library, and Elsevier. The inquiry utilized the term “*Euphorbia*” alongside the following terms: “phenolic compounds,” “flavonoids,” “terpenoids,” “alkaloids,” “antioxidant,” “antidiabetic,” “antimicrobial,” “anticancer,” and “anti-hyperlipidemic.” The species nomenclature of *Euphorbia* was obtained from the <https://www.worldfloraonline.org/> (WFO), and all pertinent literature was examined up to July 2025 to extract information concerning the biological activities and phytochemical elements of *Euphorbia* species. Articles referencing *Euphorbia* were included according to the defined criteria. Full-text papers were examined for the designated search phrases in their titles, abstracts, or whole contents. The genus *Euphorbia* encompasses a diverse array of species with documented ethnomedicinal uses, including *Euphorbia trigona* Mill, *Euphorbia lactea* Haw, *Euphorbia canariensis* L, *Euphorbia resinifera* O.Berg, *Euphorbia milii* Des Moul, *Euphorbia tirucalli* L, *Euphorbia peplus* L, *Euphorbia helioscopia* L, *Euphorbia marginata* Pursh, *Euphorbia pulcherrima* Willd. ex Klotzsch, *Euphorbia amygdaloides* L, *Euphorbia characias* L, *Euphorbia macroclada* L, *Euphorbia crasspedia* Boiss, *Euphorbia falcate* L, *Euphorbia dendroides* L, *Euphorbia wallichii* L, *Euphorbia thymifolia* L, *Euphorbia laurifolia* Lam, *Euphorbia prostrata* Aiton, *Euphorbia hirta* L, and *Euphorbia caducifolia* Haines. *Euphorbia allepica* L

Traditional Uses

The given information (Table 1) demonstrates the vast ethnobotanical importance of *Euphorbia* genus (*Euphorbia*) of which traditional uses have been reported in a wide geographical scope encompassing Europe, Asia, Africa, and the Americas. Regardless of morphological variations, the species under this genus show extraordinary convergence in their conventional applications especially in the treatment of skin related diseases and internal disorders. The latex is the most used part of the plant, a milky exudate rich and potent in phytochemical.

Table 1. Traditional uses of genus *Euphorbia*

Country	Species	Vernacular name	Parts used	Traditional uses	Method of preparation and administration	Reference
Turkey	<i>Euphorbia peplus</i> and <i>E. geniculata</i>	Sütleg��n and Ortega	roots, seeds, latex, stem wood, stem barks, leaves, and whole plants	migraine, intestinal parasites and as wart ewes	Cooked, boiled, applied directly to skin	(��zbilgin et al. 2012)
Hungary	<i>E. trigona</i>	h��rom��l�� kutyatej	aerial parts	skin disorder	Blended	(Hammadi et al. 2021)
China	<i>E. lactea</i>	gu�� w��n ji��n, d��i j��n, l��ng g��	leaves and stems	Digestive and respiratory disorders, inflammation, intestinal parasites, and tumors	Maceration	(Zhao et al. 2023)
Canary Islands	<i>E. canariensis</i>	Card��n	latex	skin warts	Applied directly, and used externally	(Alotaibi et al. 2024)
Morocco	<i>E. resinifera</i>	Zagg��m or Tikiu	Stems, fruits flowers, roots, leaves, stems, bark, and latex	cancer, diabetes, hypoglycemia, healing wounds, hair tonic, hair care	Poultice, Infusion, Powder, Infusion, Latex in water, decoction	(Hmidouche et al. 2023)
India	<i>E. miliifolia</i>	Ainkona kalli (Tamil), Kanta Mukut (Bangla)	seeds, leaves and whole plant	trichiasis, hepatitis, cancer, ringworm and snake bites, and warts	Laxative, powder and whole Plant ashes are used, formulations	(Mahendiran et al. 2023)
Brazil	<i>E. tirucalli</i>	avel��s	bark/latex, root, and stems	cancer, cancroids, epitheliomas, sarcomas, tumors, warts, skin diseases, and sexual impotent	Poultice, decoction, infusion	(Gupta et al. 2013)
Pakistan	<i>E. helioscopia</i>	gunda buti	leaves, seeds, stems and whole plant	skin diseases, warts, intestinal parasites, migraine, vermifuge, cholera, constipation and gonorrhea	Powder, topical (on skin), oral ingestion	(Mustafa et al. 2021)
Southern Africa	<i>E. marginata</i>		leaves and latex	astringent (leucorrhea), liniment for swelling, galactagogue (milk flow)	Infusion, chewing	(Kgosiemang et al. 2025)

Ethnobotany Research and Applications

4

Mexico	<i>E. pulcherrima</i>	Poinsettia	leaves and latex	Fevers, skin condition, and wounds	Decoction	(pulcherrima Photo et al.)
Italy	<i>E. amygdaloïdes</i>	Eufobia delle faggete	latex, seeds and roots	wart removal, toothache, wounds, and abscesses	Decoction, topical (sap)	(Gafforov et al. 2024)
Greece	<i>E. characias</i>	Tithymallos the Harakias	latex/sap and aerial parts	healing, anti-asthmatic, and antipyretic (fever-reducing)	Topical application, oral (purgative), applied externally	(Christodoulakis et al. 2015)
Indonesia	<i>E. hirta</i>	Daun biji kacang, Patikan kebo	leaves, roots and barks	female disorders, respiratory ailments (cough, coryza, bronchitis, and asthma), worm infestations in children, dysentery, jaundice, pimples, gonorrhea, digestive problems, and tumors	Boiled, decoction, topical or ingestion, poultice	(Kumar et al. 2010)
Iran	<i>E. macroclada</i>	Daghdaghan	Latex	wart treatment, wound healing, leukemia, asthma, skin diseases, tumors, and as an antidote to treat snake venom	Applied topically	(Rammal et al. 2013)
Lebanon	<i>E. craspedia</i>	Not available	Latex	toothache	Topically	(Paniagua-Zambrana et al. 2025), (Yeşil et al. 2021)
Algeria	<i>E. dendroides</i>	Tree spurge	Roots and latex	remove warts excising thorns, and as a fish poison	Applied directly, used internally as purgative, or as emetic (to induce vomiting)	(Ghout et al. 2018), (Benjamaa et al. 2022)
Pakistan	<i>E. wallichii</i>	Kaali Heerbi	leaves, roots and latex	treating edema, skin diseases, cutaneous anthrax, and exanthema	Fully topical, oral, decoction, infusion, poultice	(Hassan et al. 2016), (Pan et al. 2006)

Ethnobotany Research and Applications

India	<i>E. thymifolia</i>	laghududhika or choti-dudhi	leaves, seeds, roots and latex	blood purifier, sedative, hemostatic, aromatic, stimulant, astringent in diarrhea and dysentery, anthelmintic, demulcent, laxative, constipation, menorrhoea, gonorrhoea, ringworm, skin diseases, and menstrual disorder	Powder, oral, decoction, infusion, poultice	(Mali et al. 2013)
Ecuador	<i>E. laurifolia</i>	Lechero tree	Latex	Skin warts	Applied topically	(Velázquez-Martí et al. 2018), (Avila et al. 2010)
Chile	<i>Euphorbia klotzschii</i>	Leche, Lecherito del campo Pastoleche, Verdulaga, Pastolechero, Lecheleche,	Latex	Wounds heal and to remove warts on the skin		(Echeverría et al. 2020)
	<i>E. candelabrum</i>	Mubububngu,	Stem, bark	The stem is used to expel the placenta, bark is used for skin diseases	Decoction	(Bussmann et al. 2021)
Georgia	<i>Euphorbia allepica</i>	რძიანა—Rdziana	Milky juice	Laxative		(Bussmann et al. 2024)

One of the most impressive cross-continental trends of traditional medicine is the application of *Euphorbia* latex as a means of getting rid of warts. This particular application was described independently in Canary Island (*E. canariensis*) practices (Alotaibi *et al.* 2024), Indian (*E. milii*) practices (Mahendiran *et al.* 2023), Brazil (*E. tirucalli*) practices (Gupta *et al.* 2013), Pakistan (*E. helioscopia*) practices (Mustafa *et al.* 2021), Iran (*E. macrooclada*) practices (Rammal *et al.* 2013), Algeria (*E. dendroides*) practices (Ghout *et al.* 2018), and Ecuador (*E. laurifolia*) practices (Velázquez-Martí *et al.* 2018). The semiarid traditional populations resort to *E. tirucalli* to treat various diseases such as influenza, asthma, cough, intestinal parasites, earache and even skin tumors and even cancer. They make it in cataplasma form or in bottle form with the latex of the plant (da Silva Ribeiro *et al.* 2021). *Euphorbia esula* are used to treat a number of conditions; the powder is applied topically to treat tumors and is used in treating the tuberculosis and syphilis (Liu *et al.* 2020). The milky juice (latex) is applied as an external agent in the treatment of warts and calluses and the relief of leishmaniasis and scabies (Liu *et al.* 2020). The root is used as a laxative, a remedy against jaundice and heart disease (Liu *et al.* 2020).

This repeated application to virus-induced viral growths in independent cultures suggests a strong and effective antiviral or caustic effect in the latex of most species in this genus. In addition to warts, *Euphorbia* is commonly used in a wide variety of other dermatological concerns, such as general skin disease, wounds, abscess, and ringworm (Gafforov *et al.* 2024; Hassan *et al.* 2016; Kumar *et al.* 2010; Mahendiran *et al.* 2023; Mali *et al.* 2013; Mustafa *et al.* 2021).

The history of *Euphorbia* species usage goes well beyond the topical use. Additionally, they are traditionally used to treat parasitic and infectious diseases, especially anthelmintics against intestinal parasites in Turkey (*E. peplus*, *E. geniculata*) (Özbilgin *et al.* 2012), Pakistan (*E. helioscopia*) (Mustafa *et al.* 2021), and Indonesia (*E. hirta*) (Kumar *et al.* 2010). Moreover, many have been adopted in the treatment of digestive diseases (*E. thymifolia* in India against diarrhea and dysentery) (Mali *et al.* 2013) and respiratory diseases (*E. hirta* against asthma and bronchitis in Indonesia) (Kumar *et al.* 2010). Of great pharmacological value is the traditional use of some of the species in the treatment of severe systemic diseases, including cancer and tumors as recorded with *E. resinifera* in Morocco (Hmidouche *et al.* 2023), *E. milii* in India (Mahendiran *et al.* 2023), *E. tirucalli* in Brazil (Gupta *et al.* 2013) and *E. macrooclada* in Iran (Rammal *et al.* 2013). Diabetes and hypoglycemia (*E. resinifera*) (Hmidouche *et al.* 2023), hepatitis (*E. milii*) (Mahendiran *et al.* 2023), and leukemia (*E. macrooclada*) (Rammal *et al.* 2013). The extensive and converged historical utilization of these plants especially in treating contemporary diseases such as cancer, offers a solid ethnobotanical platform to expand

Botanical descriptions of the genus *Euphorbia*

Euphorbia spurge is one of the largest genera of flowering plants, consisting of more than 2000 species and widely distributed throughout the entire world, almost everywhere (Riina *et al.* 2013). Its species are very diversely shaped organisms, both in morphological terms, which do not exceed 15 cm in size, and in morphological terms, large, centennial, cactus-like succulents, referred to as evolutionary convergence (Riina *et al.* 2013). The most characteristic synapomorphy of the genus is the makeshift inflorescence known as a cyathium, a complex pseudanthium, which itself resembles a single, genuine flower (Webster, 1994).

The cyathium is composed of an involucre like cup with peripheral nectar glands that has often petals on it in search of attracting pollinators (Webster, 1994). The multiple highly reduced male flowers are crowded under the involucre on the pedicels, each bearing a single stamen (Evans *et al.* 1977). There is one, central, female flower, which has been reduced, to a single three-lobed ovary on a pedicel and grows through the middle of the cyathium (Evans *et al.* 1977). Almost all species contain a typical white or milky latex which is released on damage and is one of the most definitive key characters (Yang *et al.* 2011). This latex is generally poisonous and irritating and comprises a variety of diterpenoid esters that are a form of herbivore defense (Evans *et al.* 1977).

Vegetative morphology has been reversible; leaves typically simple and entire but leaves can be absent altogether in many succulent species where the stems are photosynthetically active. Its fruit is a unique, dehiscent, three-lobed capsule also known as a schizocarp that dries, splits and releases its seeds upon maturity. The seeds can be flexion or rectangular and have a caruncle, a fleshy projection that is used to disperse the seeds by ants (myrmecochory). In succulents, stipules become persistent spines which are the main defense mechanism, a primary difference between succulents and true cacti morphology. Phylogenetic analyses support *Euphorbia* to be a monophyletic group, and it is argued that its evolution to such a breadth of morphologies and distribution around the globe occurred due to the evolution of the cyathium and adaptive features such as succulence and latex (Althobaiti, 2023).

Chemical Composition

A thorough review of the literature summarized below reveals a total of 402 unique secondary metabolites that have been discovered over a variety of species (Table 2). The chemical composition of the *Euphorbia* genus, as described in the table, is dominated with the presence of terpenoid metabolism (diterpenoids + triterpenoids = approximately 225 compounds), which marks the chemical identity of the genus. This is accompanied by the presence of a high number of phenolic compounds (flavonoids + phenols = 72 compounds) that contribute to its antioxidant capacity (Fig. 1 and 2). The presents of other classes confirm that *Euphorbia* species are multi-faceted chemical factories with the capability to produce a broad spectrum of metabolites which clearly explains its broad spectrum of documented biological activities and ability to adapt to various ecological niches. These various compounds are always most abundant in the latex and aerial parts.

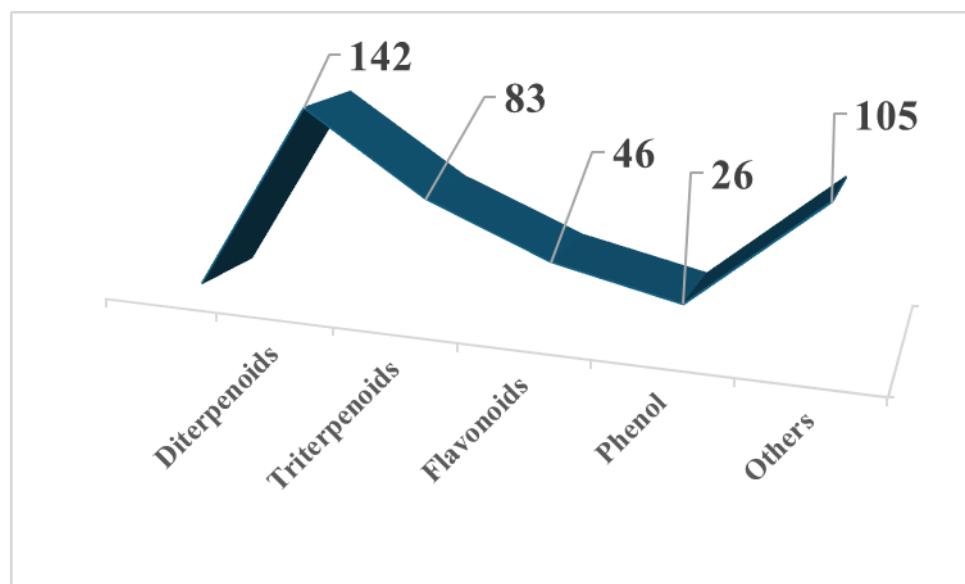
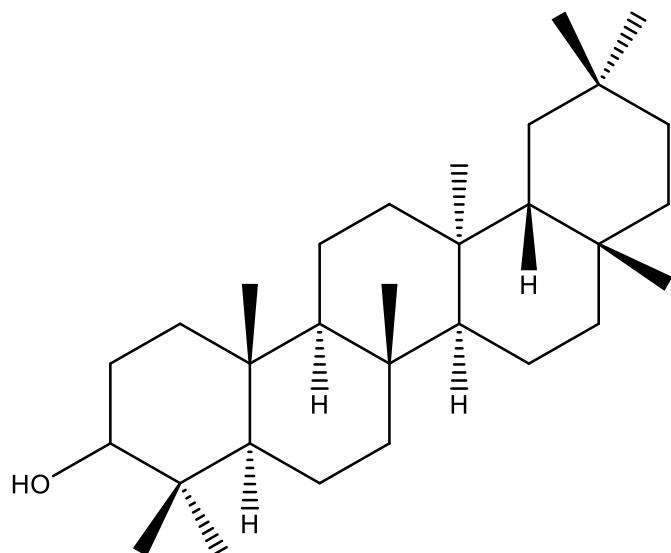
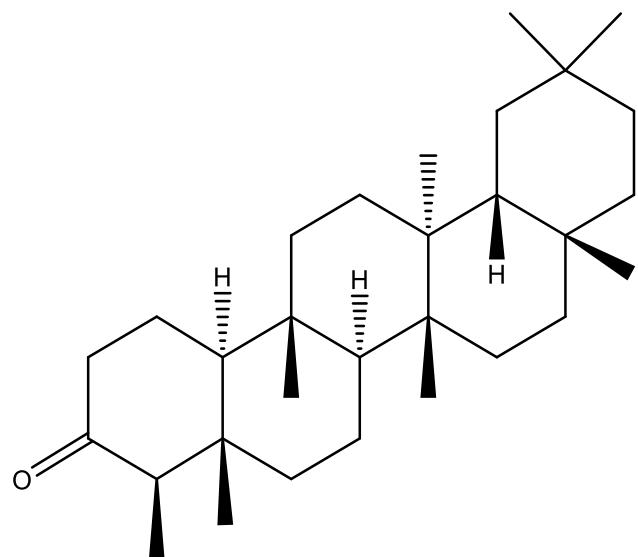
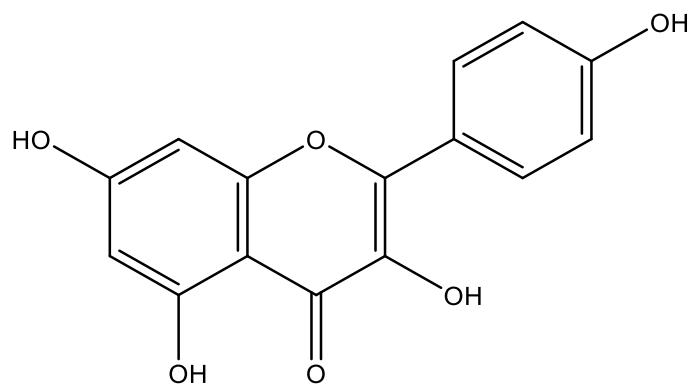
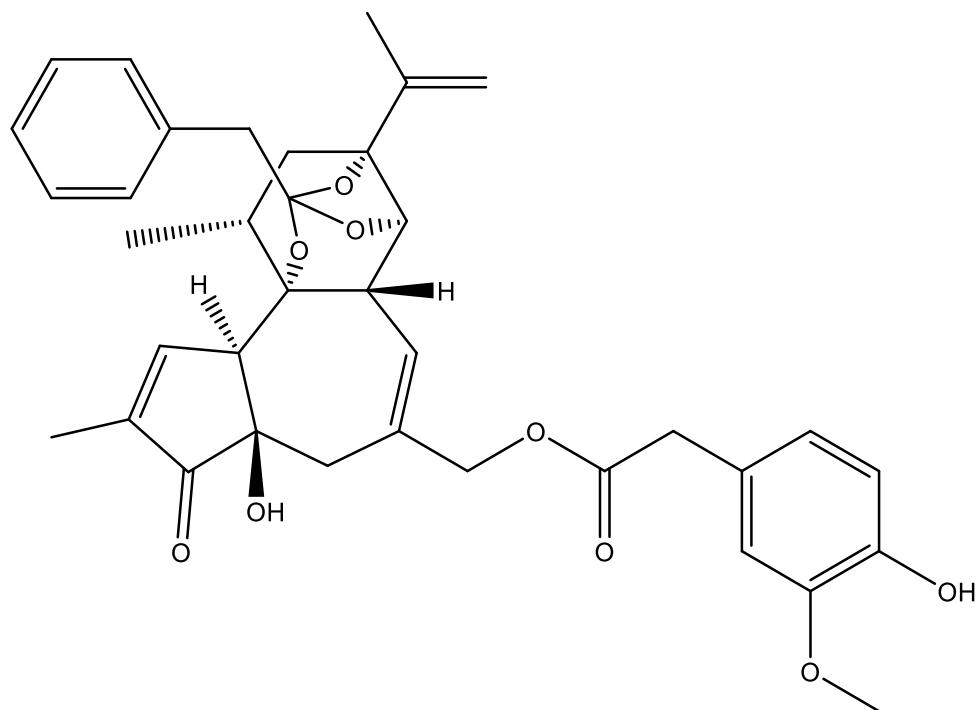
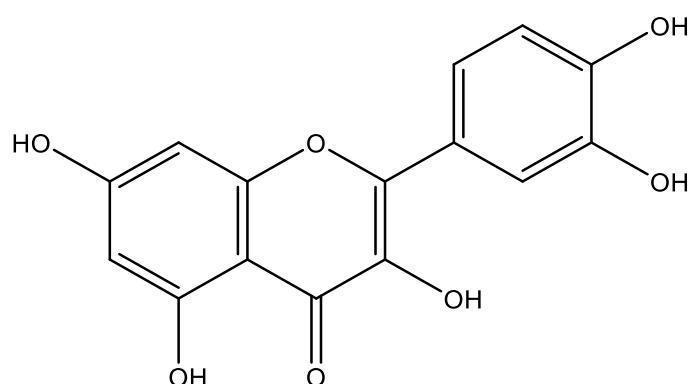
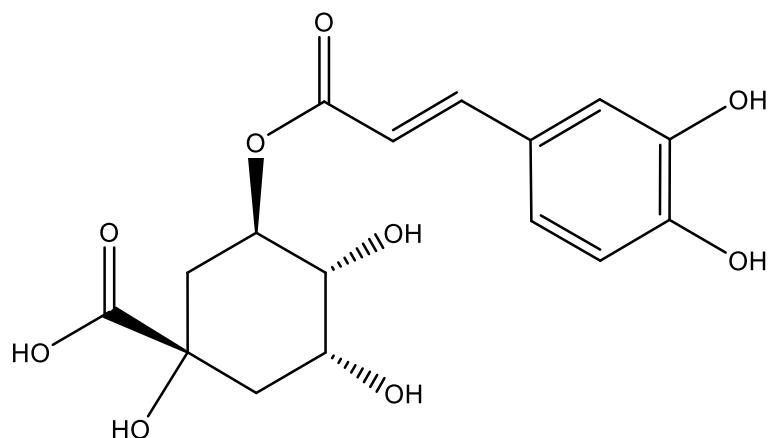




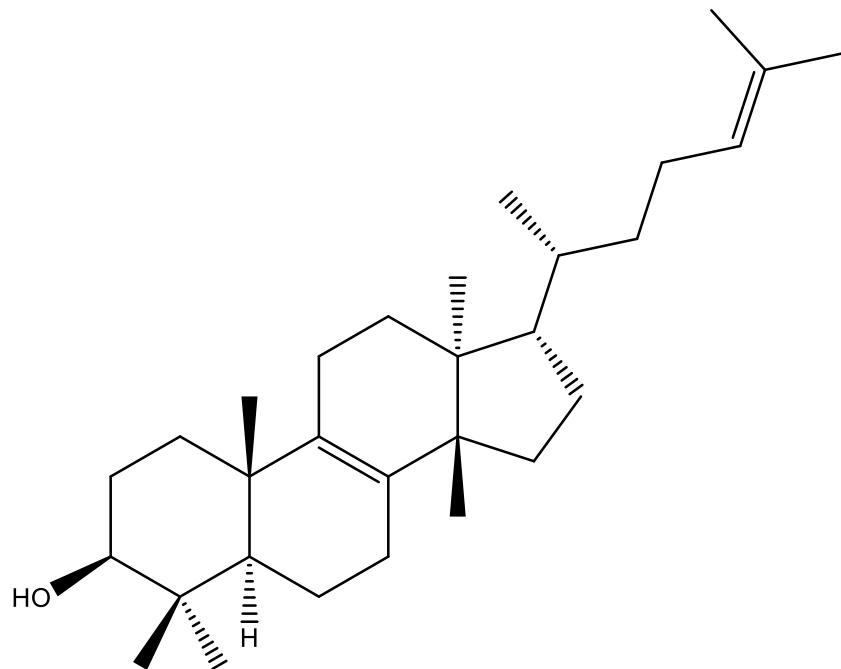
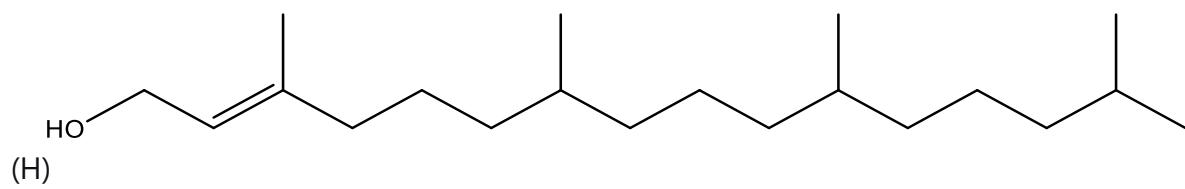
Figure. 1. Summary of major compound classes in genus *Euphorbia*: Note: The Numbers above represent the numbers of compounds in each class

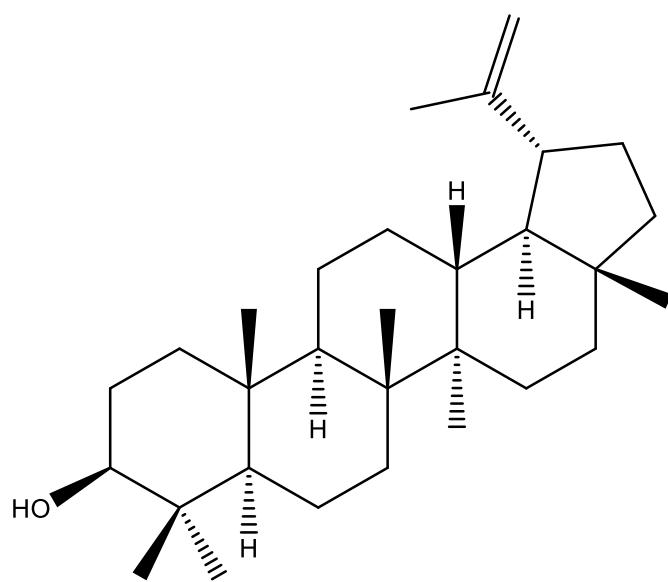

(A)

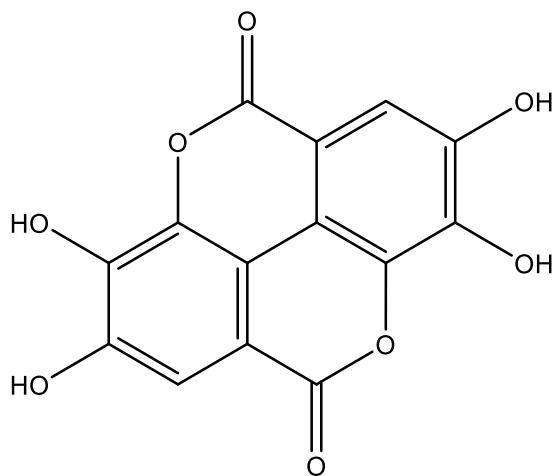

(B)

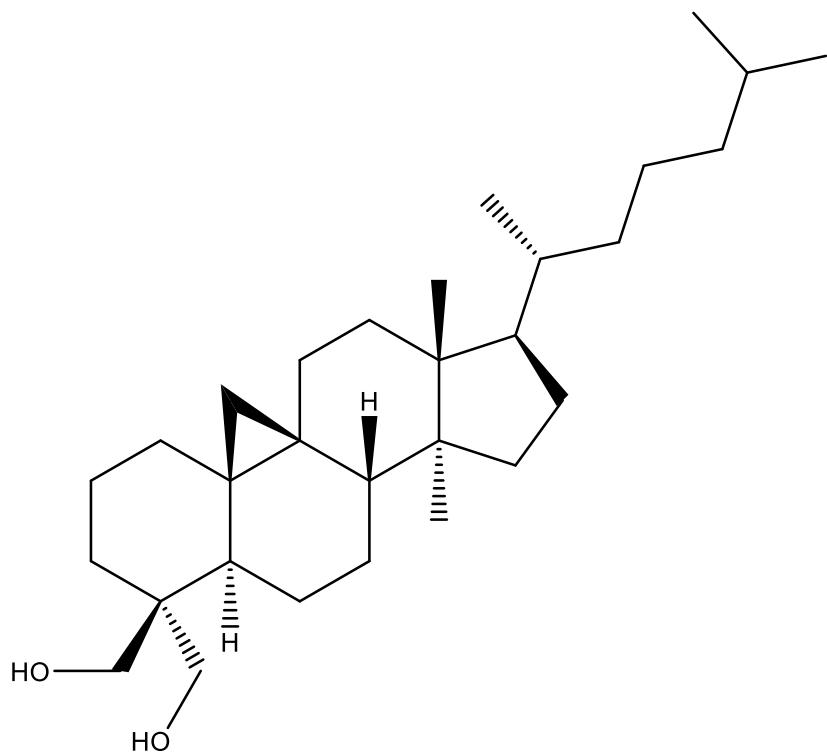

(C)

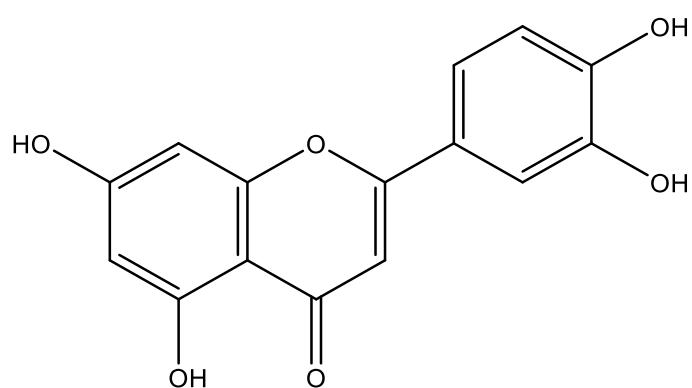

(D)

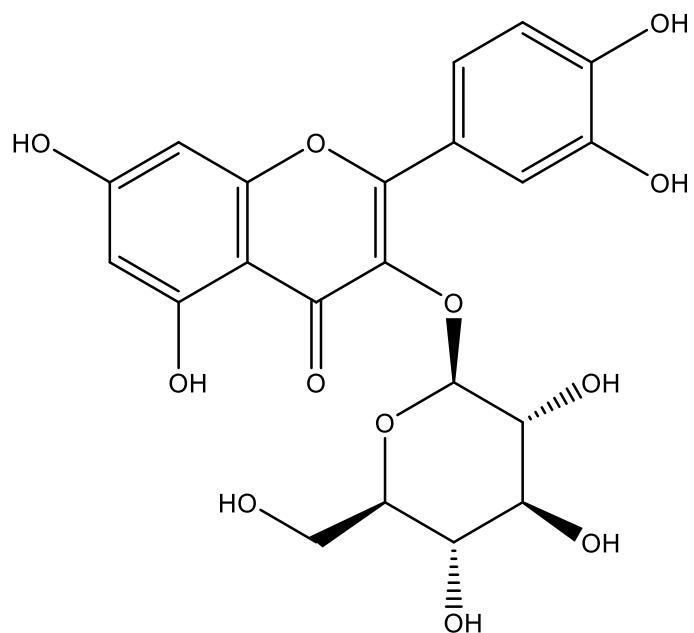


(E)

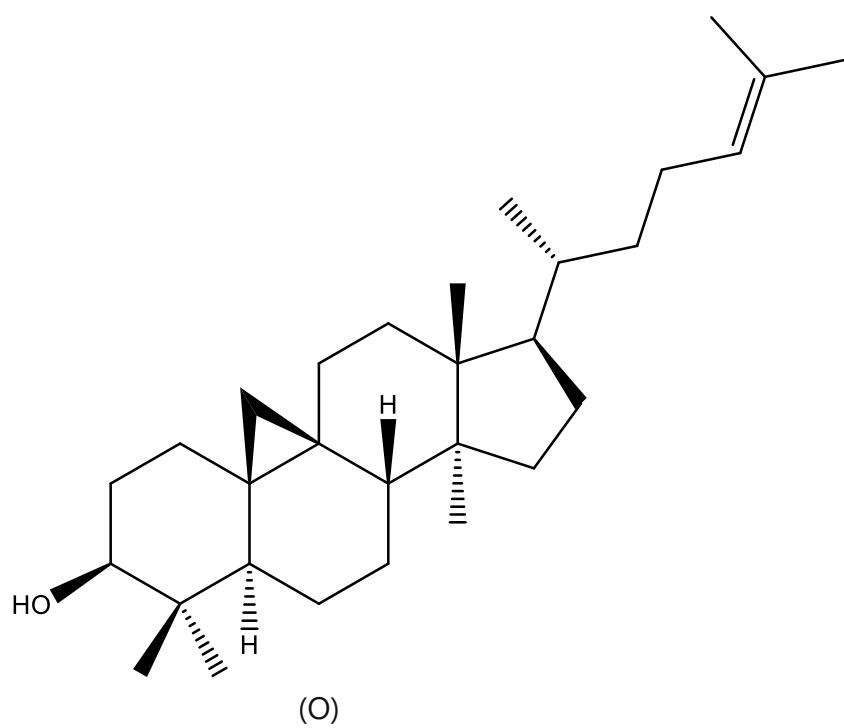

(F)


(G)


(I)


(J)


(K)


(L)

(M)

(N)

(O)

Figure 2. Chemical structures of the major compounds identified from genus *Euphorbia*. (A) Taraxerol (B) Friedelin (C) Harmaline (D) Kaempferol (E) Resiniferatoxin (F) Quercetin (G) Chlorogenic acid (H) Phytol (I) Euphol (J) Lupeol (K) Ellagic acid (L) Cycloartane diols (M) Luteolin (N) Quercetin glycosides (O) Cycloartenol

Table 2. Chemical Composition of genus *Euphorbia*

Species	Parts of plant	Identification	Compound	Class	Reference
<i>E. trigona</i>	latex extracts	HPTLC	Epi-friedelinyl acetate, 3 β -friedelinol, taraxerol, rhoiptlenone, stigmasterol and stearic acid	Triterpenoids	(Anju <i>et al.</i> 2022)
	Aerial parts	HPLC	17-O-acetyl-3-[(Z)-2-methyl-2-butenoyl]-20-deoxy-17-hydroxyingenol, 20-O-acetyl-3-O-(Z)-2-methyl-2-butenoyl]ingenol, 5, 17,20-O-triacetyl-[(Z)-2-methyl-2-butenoyl]-17-hydroxyingenol, 3, 12-O-diacetyl-7-O-[(E)-2-methyl-2-butenoyl]-8,12-diepjingol	Diterpernes	(Tada <i>et al.</i> 1989)
	Aerial parts	HPLC	3,12-diacetate 7-tiglate, 8-O-methyl-ingol 3,12-diacetate 7-tiglate, 8-O-methyl-ingol 3,12-diacetate 7-benzoate, 3,7,12-triacetate 8-benzoate, 3,7,12-triacetate 8-tiglate, 17-acetoxyingenol 3-angelate 20-acetate, 17-acetoxyingenol 3-angelate 5,20-diacetate, 17-acetoxy-20-deoxyingenol 3-angelate, 17-acetoxy-20-deoxyingenol 5-angelate	Diterpernes	(Hammadi <i>et al.</i> 2021)
	Stem	Column Chromatography	Euphol, Cycloartenol, Cycloartanol, Lupeol, α -amyrin, β -amyrin, Betulinic acid, Taraxerol, β -sitosterol, Taraxerol acetate, Friedelin, Friedelan 3 α - and 3 β -ols, 24-ethylene cycloartanol, Epi-friedelinyl acetate, 3 β , Friedelinol, Rhoiptlenone lanostan 8-24 dien, 3 β -ol	Triterpenoids	(Anjaneyulu <i>et al.</i> 1985; Nielsen <i>et al.</i> 1977)
<i>E. lactea</i>	Leaves	NMR and CG-MS	3,12-di-O-acetyl-8-O tigloyl-ingol	Triterpene	(Fernandez-Arche <i>et al.</i> 2010)
	Latex	TLC, NMR	Friedelin, friedelan-3 β -ol, taraxerol, and friedelan-3 α -ol,	Diterpene	(Avila <i>et al.</i> 2010)
	Latex	TLC, NMR		Triterpenoidal	(Wongprayoon <i>et al.</i> 2022)
	Latecx (bud)	GCMS, HPLC	2,6 Octadiene,2,4-dimethyl-(1B2), 1H-Cycloprop[e]azulen-4 ol,decahydro-1,1,4,7-tetramethyl-[1ar-(1a α ,4 α ,4a α ,7 α ,7a α ,7b α)]- (2B2)	Terpenoids	
	Aerial	Silica gel column chromatography, ODS column chromatography, and gel LH-20 chromatography.	Euphlactenoid A, Euphorantin I, Jolkinolide E,	Triterpenoids	(Zhao <i>et al.</i> 2023)
	Aerial	Silica gel column chromatography, ODS column chromatography, and	3 β -Hydroxy-25-methyloxylano-sta-8,23-diene, Inoterpene B,	Triterpenoid	(XU <i>et al.</i> 2017)

<i>E. canariensis</i>	Aerial	gel LH-20 chromatography. Silica gel column chromatography, ODS column chromatography, and gel LH-20 chromatography.	3 β -Hydroxystigmast-5-en-7-one	Steroid	(XU <i>et al.</i> 2017)		
	Latex	TLC, NMR	3,12-di-O-acetyl-8-O-tigloyl-ingol,	Diterpene	(Ahmed <i>et al.</i> 1999)		
			TLC, CC	3,12-di-O-acetylingol 8-tiglate, 3,5,16,20_tetraacetate, 16-hydroxyingenol	Diterpene	(Upadhyay <i>et al.</i> 1975)	
	Latex	LC-HR/MS Column chromatography, TLC	2-epi-latazienone 2,3-diepiingol Abstract 7,12-diacetate-8-isobutyrate, ingenol-3-angelate- 17-benzoate, ingenol-3-angelate- 17-benzoate-20-acetate and 3,5,7,8,9,15-hexahydroxyjatroph-6(17),1 l-dien-14-one-5,8-bis(2- methylbutyrate)-7-(2-methylpropionate)	Diterpenes	(Miranda <i>et al.</i> 1998)		
			LC-ESI-MS/MS	Triethanolamine , 1,2-aminoalcohols		(Alotaibi <i>et al.</i> 2024)	
	Latex	Droplet countercurrent chromatography., NMR	Choline Harmaline, trigonelline, Nicotine	Choline Alkaloids Pyrrolidinylpyridines Phenols Flavonoids,			
			4-hydroxy-3-methoxy cinnamaldehyde Kaempferol-3-O-alpha-l-rhamnoside, formononetin, (-)-riboflavin, genistein, daidzein, Acacetin-7-O-neohesperidoside, Naringenin, 3 3' 4' 5'-tetrahydroxy-7-methoxyflavone 3-(4-hydroxy-3-methoxyphenyl) prop-2-enoicacid, 1-O-b-d-glucopyranosyl sinapate Scopoletin, daphnetin, 3,4-dimethoxycinnamic acid		hydroxycinnamic acids Coumarins Xanthines Quinic acids Hippuric acids Retinoids Methoxyphenols Dipeptides		
			Caffeine Chlorogenic acid 4-Aminohippuric acid All-trans-retinoic acid Syringaldehyde Leupeptin hemisulfate salt			Diterpenoids	(Lin <i>et al.</i> 1983)
			3-O-acetyl-16-0-benzoyl-20-0-[(Z)-2-methyl-2-butenoyl]-16-hydroxyingenol, 3-0-[(Z)-2-methyl-2-butenoyl]-16-0-benzoyl-16-hydroxyingenol, and 3-0-acetyl-20-0-[(2)-2- methyl-2-butenoyl]ingenol				

<i>E. resinifera</i>	Terpenoids	UHPLC-HRMS-	12-Deoxy-16 hydroxyphorbol 13,16-diesters	Diterpenoid	(Ezzanad <i>et al.</i> 2021)
		Column chromatography, NMR	Euphorbioside, euphorbioside-9-(3-dimethylamino-benzoate), euphorbioside-9-(4-dimethylamino-benzoate) (3), euphorbioside-9-(2-methylamino-benzoate) and euphorbioside -9-(4-methylamino-benzoate).	Diterpenoid	(Farah <i>et al.</i> 2014)
	Stem (Latex)		Euphorbioside A, Euphorbioside B	Terpenoids	(Fattorusso <i>et al.</i> 2002)
	Aerial part	HPLC	Ingenol	Terpenoids	(Girin <i>et al.</i> 1993)
	Latex	Column Chromatography	3 β -hydroxy-12 α -methoxylanosta-7,9(11),24-triene, 3 β -hydroxy-12 α -methoxy-24-methylene-lanost-7,9(11)-dien, 3,7-dioxo-lanosta-8,24-diene, and 3,7-dioxo-24-methylene-lanost-8-en	Terpenoids	(M.-M. Li <i>et al.</i> 2021)
	Latex	HPLC-DAD	Euphatexol, Euphatexol, Euphatexol, Euphatexol, Euphatexol	Terpenoids	(Li <i>et al.</i> 2022)
	Latex	HPLC-DAD, LC-MS	Euphol, Euphorbol	Terpenoids	(Mallon <i>et al.</i> 2014)
	Latex	HPLC	latazienone, 2-epi-latazienone , 15 β -acetoxy-7 β -nicotinoyloxy-3 β ,8 α -di-(2-methylpropanoyloxy)-4 α H,9 α H,11 α H-lathyra 5E,12E-dien-14-one	Diterpenes	(Durán-Peña <i>et al.</i> 2017)
	Latex		Resiniferatoxin, Proresiniferatoxin, Resiniferonol, 2-deoxy-phorbol-13-angelate 12-deoxy-phorbol-13-isobutyrate	Terpenoids	(Hergenhahn <i>et al.</i> 1975)
	Latex	Gas Chromatography, Column Chromatography	Ingenol-3-acylates, 12-deoxyphorbol-13-ester-20-acetates	Terpenoids	(Hergenhahn <i>et al.</i> 1984)
<i>E. resinifera</i>	Latex	HPLC	Cycloartan-1,24-diene-3-one, cycloartan-1,24-diene-3-ol, 3 β -hydroxy-lanosta-8,24-diene-11-one, Inonotusane C, eupha-8,24-diene-3 β -ol-7,11-dione, eupha-24-methylene-8-ene-3 β -ol-7,11-dione, and eupha-8,24-diene-3 β ,11 β -diol-7-one.		(Li <i>et al.</i> 2021)
	Latex	Gas chromatogram	Phorbic Acid, Glycoside, Lipid, Euphorbioside C	Terpenoids	(Nordal <i>et al.</i> 1969)
	Latex	column chromatography	Euphatexol A, Euphatexol B		(Ourhzif <i>et al.</i> 2021)
	Latex	GCMS	Ethyl linoleate, Methyl arachidonate, Methyl ester 9,11-(1,1'-bicyclopropyl)-octanoic acid, 3,4-Trimethyl-3-cyclohexanyl-1-carboxaldehyde, 1,3,4-Trimethyl-3-cyclohexanyl-1-carboxaldehyde	Fatty Acid Ester	(Talbaoui <i>et al.</i> 2020)
			1 Heptacosane	Terpenoid	(Talbaoui <i>et al.</i> 2020)
			Ledane, Cis-Z- α -Bisabolene epoxide	Hydrocarbon	(Talbaoui <i>et al.</i> 2020)
				Sesquiterpenoid	(Talbaoui <i>et al.</i> 2020)

<i>E. milii</i>	Latex	RP-HPLC	1,4-bis-(2'-cyclopropyl-2'-methylcyclopropyl)-but-2-en-1-one Euphorol A, .Euphorol B(2), Euphorol C, Euphorol D, Euphorol E, Euphorol F, Euphorol G, Euphorol H , Euphorol	Unsaturated Bis-Ketone Terpenoids	(Talbaoui <i>et al.</i> 2020) (Wang <i>et al.</i> 2016)
	Latex	HPLC	3 β -hydroxy-25,26,27-trinor eupha-8-ene-24-oate, isomericadienediol, 25,26,27-trinorTirucall-8-ene-3 β -ol-4-acid, dammarendiol II (4), eupha-8,24-diene-3-ol-26-al, Inonotusane C, eupha-8,24-diene-3 β -ol-7,11-dione, inoterpene A, inoterpene B, and eupha-24-methylene-8-ene-3 β -ol-7,11-dione	Terpenoids	(S.-Y. Wang <i>et al.</i> 2018)
	Latex	HPLC	Euphorol K, Euphorol J, Kansuinone	Terpenoids	(Wang Huang <i>et al.</i> 2019)
	Latex	HPLC	Euphoresins A, Euphoresins B,	Diterpenes	(Wang Li <i>et al.</i> 2019)
	Latex	HPLC	Euphorblin A, Euphorblin B, Euphorblin C, Euphorblin D, Euphorblin E, Euphorblin F, Euphorblin G, Euphorblin H, Euphorblin I, Euphorblin J, Euphorblin K, Euphorblin L, Euphorblin M, Euphorblin , Euphorblin O, Euphorblin P , Euphorblin Q	Terpenoids	(Zhao <i>et al.</i> 2021)
	Latex	Column chromatography	12-deoxyphorbol-13-angelate-20-acetate, 12-deoxyphorbol-13-isobutyrate-20-acetate, 7-p-methoxyphenylacetate-3,8,12-triacetate ingol, resiniferatoxin, deglucosyl euphorbioside A, euphorbioside A	Terpenoids	(Ourhzif <i>et al.</i> 2022)
	Latex	Column chromatography	catechol, protocatechuic acid, 3,4 dihydroxy-phenylacetic acid	Phenolic	(Ourhzif <i>et al.</i> 2022)
	Dried latex	HPLC	Euphorblin A, euphorblin D, euphorblin L, euphorblin N, euphorblin Q		(Zhao <i>et al.</i> 2018)
	Latex	UHPLC-HRMS	2-Deoxy-16-hydroxyphorbol 13,16-diacyl derivatives, 12-Deoxy-16-hydroxyphorbol 20-acetate 13,16-diacyl derivatives, 12-Deoxyphorbol 13-acyl derivatives, 12-Deoxyphorbol 20-acetate 13-acyl derivatives, 12,20-Dideoxyphorbol 13-acyl derivatives		(Ezzanad <i>et al.</i> 2023)
	Latex	UHPLC-MS	Euphatexols A, Euphatexols B Eremopetasitenin A1	Triterpenoids Sesquiterpene	(Qi <i>et al.</i> 2019) (Saleem <i>et al.</i> 2019)
	Aerial	UHPLC-MS	Lusitani coside	Phenolic	(Saleem <i>et al.</i> 2019)
		UHPLC-MS	Fraxetin	Coumarin	(Saleem <i>et al.</i> 2019)
		UHPLC-MS	Megastachine	Alkaloid	(Saleem <i>et al.</i> 2019)

Root	UHPLC-MS UHPLC-MS	Peruviroside dichotosinin, abruquinone B, kaempferol 3-(6"-acetylglucoside)-7-glu coside, kaempferide 5-glucoside-7-glucuronide and herbacetin 8 acetate	Glycoside Flavanoids	(Saleem <i>et al.</i> 2019)
Root	UHPLC-MS	Dihydroferulic acid 4-sulfate, ellagic acid and li cochalcone A	Phenolic	(Saleem <i>et al.</i> 2019)
Aerial	LC-MS/MS	D- (+)-Malic acid, Suberic acid, Citraconic acid	Organic acid	(Hassan <i>et al.</i> 2023)
Aerial	LC-MS/MS	Chlorogenic acid, Rosmarinic	Phenol	(Hassan <i>et al.</i> 2023)
Aerial	LC-MS/MS	Aesculetin	Coumarin	(Hassan <i>et al.</i> 2023)
Aerial	LC-MS/MS	Quercetin-3-glucuronide, Kaempferol-3-glucuronide, Hesperetin-7-O-neohesperidoside, Hesperetin, Isoquercitrin, Quercetin-3-D-xyloside, (+)-Taxifolin, Quercetin, Apigenin, Isorhamnetin-3-O-glucoside, Quercetin-4'-glucoside, Phlorizin, Quercitrin, Luteolin, Naringenin		(Hassan <i>et al.</i> 2023)
Aerial	GCMS	cis-4-Methylcyclohex-3-ene-1,2-diol	Monoterpenes	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	cis-Sesquisabinene hydrate, Patchoulane, (-)-Caryophyllene oxide	Sesquiterpenes	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	cis-Phytol, Phytol	Diterpenes	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	1-Tetradecene, (cis)-2-nonadecene, Tridecane	Alkanes	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	Heneicosanoic acid, methyl ester, Linoleic acid, methyl ester, Oleic acid, methyl ester, cis-Oleic Acid	Fatty acid	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	1-Tridecanol, 11-Hexadecen-1-ol, (Z), 1-Hexadecanol, E-7-Tetradecenol	Alcohols	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	Oxirane, [(dodecyloxy)methyl], Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate	Epoxides	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	1,2-Benzenedicarboxylic acid, dibutyl ester, Octacosanoic acid, 2,4,6,8-tetramethyl-, methyl ester	Esters	(Hassan <i>et al.</i> 2023)
Aerial	GCMS	7,8-Epoxylanostan-11-ol,3-acetoxy, 9,19-Cyclolanostan-3-ol, acetate, (3 α)-	Terpenoids	(Hassan <i>et al.</i> 2023)

<i>E. tirucalli</i>	Aerial	HPLC	Glutinol, Friedelan-3-ol, Friedooleanan-3-ol, Lupenone, Lupeol acetate, Glutinyl acetate,	Triterpenoids	(Hujon <i>et al.</i> 2022)
	Aerial		D:A-Friedoolean-28-acetate, 3 beta hydroxyl, Friedooleanan-3-acetate		
			Tricosane, Octacosane, Hentriacontane, Tritriacontane, Hexacosane, Heptacosane, Tetratriacontane, Cyclotetacosane, 3-Octadecene,-Eicosene, 1-Dococene	Alkanes	
	Aerial	HPLC	Ferulic acid	Phenol	(De Araújo <i>et al.</i> 2014)
	Aerial		1-O-galloyl- D-glucoside, 1,2,3-tri-O- galloyl- D- glu co – side, pedunculagin, 1 2,3-(S)-hexahydroxydiphenoyl- D- glucopyranosid, gallic acid, putranjivain A, 3 corilagin, casuarin, putranjivain B, 3,3 -di-O-methyl gallic acid, quercitrin, rutin, 5- desgalloylstarchyurin, 3,3 ,4-tri-O-methyl- 4 -O-rutinosyl ellagic acid	Phenol	(Lin <i>et al.</i> 2001)
	Aerial	HPLC	12-O-(2E,4E,6E,8E-tetradecatetraenoyl)-13-O-isobutyroyl-4b- deoxyphorbol , 13-O-acetyl-12-O-(2Z,4E-octadienoyl)-4b- deoxyphorbol, 13-O-acetyl-12-O-(2Z,4E-octadienoyl)-4a- deoxyphorbol , 4b-deoxy-phorbol-13-acetate, 4a-deoxy-phorbol-13-acetate , 3-O-(2,4,6,8-tetradecatetraenoyl) ingenol) euphol/tirucalol, lumen-3-one (B), lupeol, glutinol e friedeline	Diterpenoid	(Weng <i>et al.</i> 2022)
	Aerial	GC-MS, ESI-(-)-FT-ICR MS and (-)-ESI-LTQ-MS/MS.		Triterpenes	(de Souza <i>et al.</i> 2023)
	Aerial	GC-MS, ESI-(-)-FT-ICR MS and (-)-ESI-LTQ-MS/MS.	Ellagic acid	Phenol	(de Souza <i>et al.</i> 2023)
	Latex	GCMS	4- (allyloxy) -2- methyl-2-pentanol	Ether Alcohol	(Stracke <i>et al.</i> 2021)
	Latex	GCMS	lanosterol and 4H-Piran-4-one,	Terpenoids	(Stracke <i>et al.</i> 2021)
	Latex	GCMS	2,3-dihydro-3,5-dihydroxy- 6-methyl	Heterocyclic Organic Compound	
	Stem	GCMS	lanosta-8,24-dien-3-ol, (3 β),	Terpenoids	(Yusoff <i>et al.</i> 2017)
	Stem	GCMS	(23S)-ethylcholest-5-en-(3 β)-ol	Sterol	(Yusoff <i>et al.</i> 2017)
	Stem	GCMS	Linoleic acid	Fatty acid	

<i>E. peplus</i>	Stem	GCMS	Viminalol	Sesquiterpenoid	(Yusoff <i>et al.</i> 2017)
	Whole plant	HPLC	Euphopepluanone L, Paralianone A, paralianone B, paralianone C, paralianone D, pepluanol A, pepluanol B, pepluanol C, pepluanol D, pepluanol E, pepluanol F, pepluanol G, pepluanol H), 5,8,14-triacetoxy-3- benzoyloxy-15- hydroxy-9-oxoparaplane 5,8,9,15-tetraacetoxy- 3-ben-zyloxy-11,16-dihydroxypepluane, 5,8,11,15-tetraacetoxy- 3-benzoyloxy-9,16-dihydroxypepluane , 5,8,9,11,15-pen- taacetoxy-3-benzoyloxy-16-hydroxypepluane ,7 and peplua-none	Diterpenoid	(Min <i>et al.</i> 2021)
	Aerial	HPLC	Simiarenol, 1-hexacosanol, β -sitosterol, and β -sitosterol-3-O- glucoside	Terpenoids	(Amin <i>et al.</i> 2017)
<i>E. helioscopia</i>	Whole plant	HPLC	11,12-didehydro-8a,14-dihydro-7-oxo-helioscopinolide A, 7a- hydroxy-8a,14- dihydro jolkinolide E, 8b-acetyl-paralianone D, helioscopinolide A, 11-hydroxy-ent-abiet-8,11,13-trien-15-one, paralianone, paralianone D	Diterpenoid	(Chen <i>et al.</i> 2021)
	Whole plant	HPLC	7-9R,14-triacetoxy-3- benzoyloxy-12-,15-epoxy-11-hydroxyjatropa-5E, 14 β -acetoxy-3 β -benzoyloxy-7 β ,9R,15 β -trihydroxyjatropa-5E,11E-die, 7 β ,9R,14 β -triacetoxy-3 β -benzoyloxy-15 β ,17- dihydroxyjatropa-5E,11E-die, 14R,15 β -diacetoxy-3 β ,7 β - dibenzoyloxy-17- hydroxy-9-oxo-2 β H,13 β Hjatropa-5E,11E- diene, s: euphorin (3a), euphorin A, euphorin B (2a), euphorin G, euphohe-liosnoid A, eupoheliosnoid B, eupoheliosnoid C, euphoscopin A, euphoscopin B, euphoscopin C (4a), euphoscopin E,7 euphoscopin J, helioscopinolide A (5) liosnoid D, euphorin, euphorins B, euphorins C, euphoscopins A—C, euphoscopins(F and J, epi euphoscopins A and B, eupohelio-scopin A, helioscopinolide B, 2a-hydroxy helioscopinolide B, hemistepsin , γ 4,5-dihydroblu-menol A, aglycone of icariside B2,	Diterpenoids	(Lu <i>et al.</i> 2008)
	Whole plant	HPLC	licochalcone A, 2,4,4-trihydroxy-chalcone , echinatia, licochalcone B, glabrone , 4,5,7-trihydroxyflavanone, euphelionolide A, euphelionolide B, 3 α ,9,17- trihydroxyjolkinolide E, 3 β ,9,17-trihydroxyjolkinolide E, euphelionolide F, 6a-hydroxyhelioscopinolide H, Euphelionolide H, Euphelionolide I, Euphelionolide J, Euphelionolide K, Euphelionolide L, Euphelionolide M, Euphelionolide N, 16-epi-18- hydroxy-abbeokutone, . Eupheliotriol A, Eupheliotriol B, 3a,9,18- trih 3a,7b-dihydroxyjolkinolide E, ent-16b,17-dihydroxyatisan-3- one, eurifoloid Q, ingenol, 20-O-acetylingenol	Flavonoids	(Zhang <i>et al.</i> 2006)
	Whole plant	HPLC		Diterpenoids	(Wang <i>et al.</i> 2018)

<i>E. marginata</i> <i>E. pulcherrima</i>	Whole plant	HPLC	Helioscopinolides A, B and C,	Diterpenes	(Shizuri <i>et al.</i> 1983)
	Whole plant	HPLC	Euphopias A-C (1-3),	Diterpenoids	(Shi <i>et al.</i> 2020)
	Whole plant	HPLC	Euphoscopin A (1), epieuphoscopin A, euphornin G, euphohelioscopin H, euphohelionone I, euphohelioscopin J, euphohelioscopin K	Diterpenoids	(Yamamura <i>et al.</i> 1989)
	Whole plant	HPLC	Helioster-penoids A and B (1 and 2),		(Mai <i>et al.</i> 2017)
	Seed		Euphzcopin A, euphzcopin B, Euphzcopin C, euphzcopin D, 3-de-O-acetyl euphoran R, euphorans E and N	Diterpenoid	(Qiu <i>et al.</i> 2024)
	Leaves	HPTLC	9,19-cycloart-23-ene-3J,25-diol, 9,19-cycloart-25-ene-3JJ,24-diol	Triterpenoids	(Liu <i>et al.</i> 2023)
	Stem bark		3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one (1), 2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one (2)		(Smith-Kielland <i>et al.</i> 1996)
	Whole plant	GCMS	3-Fluorophenyl 2-fluoro-6-(trifluoromethyl)benzoate, 1,2-Dimethyl-3-(prop-1-en-2-yl)cyclopentane, 4a,8,8a-Trimethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8a octahydronaphthalene	Others	(Rauf <i>et al.</i> 2022)
	Whole plant	GCMS	2-(tert-Butyl)-6-methyl-4H-1,3-dioxin-4-one, 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione, 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione	Flavonoid	(Sharif <i>et al.</i> 2015)
	Whole plant	GCMS	4-(((Tetrahydrofuran-2-yl)methyl)amino)-1-oxaspiro[4.5]dec-3-en-2-one, O-(3-(tert-Butyl)cyclohexa-2,4-dien-1-yl) (6-methoxypyridin-2-yl)(methyl)carbamothioate, (E)-1,2-Bis(5-methylbenzo[d]oxazol-2-yl)ethene	Alkaloid	(Sharif <i>et al.</i> 2015)
	Whole plant	GCMS	Bis(4-methylheptan-3-yl) phthalate, Menthyl acetate, 2,4,4-Trimethylpentyl 2-ethylbutanoate, 2,2,6-Trimethyl-7-(prop-1-en-2-yl)cyclooctane-1,5-dione, Heptan-3-yl isobutyl phthalate, Butyl heptan-3-yl phthalate, Bromophenylheptylphthalate, Oleamide, Bis(2-ethylhexyl) phthalate, Diisobutyl phthalate, Diisobutyl phthalate, Dibutyl phthalate, Heptan-4-yl isobutyl phthalate, Dibutyl phthalate, Diisobutyl phthalate, 5-Methyl-5-(4,8,12-trimethyltridecyl)dihydrofuran-2(3H) one, Bis(2-ethylhexyl) phthalate	Wax	
	Whole plant	GCMS	2,4-Di-tert-butylphenol	Phenol	(Sharif <i>et al.</i> 2015)
	Whole plant	GCMS	4,4,6a,6b,8a,11,11,14b-Octamethyl	Steroid	

<i>E. amygdalooides</i>	Whole plant	GCMS	1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b icosahydropicen-3-ol, 4,4,6a,6b,8a,11,11,14b-Octamethyl 1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b icosahydropicen-3-ol, 4,4,6a,6b,8a,11,11,14b-Octamethyl 1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12b,13,14,14a,14b icosahydropicen-3-ol, (8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5- Ethyl-6-methylheptan 2-yl)-10,13-dimethyl- 2,3,4,7,8,9,10,11,12,13,14,15,16,17 tetradecahydro-1H- cyclopenta[a]phenanthren-3-yl nonadecanoate, 2a,5a,8,8- Tetramethyl-3-(6-methylheptan-2- yl)hexadecahydrocyclopenta[a]cyclopropane[e]phenanthrene Lup-20(29)-en-3-ol, acetate, 4-(3-Hydroxy-3-methylpentyl)- 3,4a,8,8 tetramethyldecahydronaphthalen-1-ol, 3a- (Hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en 2- yl)icosahydro-1H-cyclopenta[a]chrysene-9-ol. Eupulcherol A (9)-8a-((benzoyloxy)methyl)-2-methoxy-4,9-dimethyltetrahydro- 4H,5H-2,4a-methanobenzo[d] [1,3] dioxine-4-carboxylate	Saponin	(Sharif <i>et al.</i> 2015)
	Leaves, stems,	HPLC, LC-MS-MS	(Hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en 2- yl)icosahydro-1H-cyclopenta[a]chrysene-9-ol. Eupulcherol A (9)-8a-((benzoyloxy)methyl)-2-methoxy-4,9-dimethyltetrahydro- 4H,5H-2,4a-methanobenzo[d] [1,3] dioxine-4-carboxylate (Zagrosin I), ((9)-4-hydroxy-2-methoxy-4,9-dimethyltetrahydro- 4H,8aH-2,4a-methanobenzo[d] [1,3] dioxin-8a-yl) methyl <u>benzoate</u> (Zagrosin II), and (9)-2-methoxy-4,9-dimethyl-8a- (phenoxy methyl) tetrahydro-4H,5H-2,4a- methanobenzo[d][1,3]dioxin-4-yl 4-methylpentanoate (Zagrosin III).	Triterpenoid Terpenoid	(Yu <i>et al.</i> 2020) (Pasdaran <i>et al.</i> 2025)
<i>E. characias</i>	Leaves, stem		3-rhamno-side-, 3-arabinoside		(Appendino <i>et al.</i> 2000)
<i>E. macroclada</i>	Whole plant	HPLC	Gallic acid, quercetin, chlorogenic acid, caffeic acid,	Phenol	(Taib <i>et al.</i> 2022)
	Whole plant	HPLC	Kaempferol, myricetin	Flavonoid	(Taib <i>et al.</i> 2022)
<i>E. craspedia</i>	Whole plant	HPLC	Ellagic acid, ferulic acid, gallic acid, chlorogenic acid, caffeic acid,	Phenol	(Taib <i>et al.</i> 2022)
	Whole plant	HPLC	Kaempferol, myricetin	Flavonoid	(Taib <i>et al.</i> 2022)
<i>E. falcata</i>	Whole plant	HPLC	Ellagic acid, gallic acid, chlorogenic acid, caffeic acid,	Phenol	(Taib <i>et al.</i> 2022)
	Whole plant	HPLC	Quercetin	Flavonoid	(Taib <i>et al.</i> 2022)
<i>E. falcata</i> <i>E. dendroides</i>	Whole plant	HPLC	Gallic acid, chlorogenic acid, caffeic acid, kaempferol, myricetin, quercetin	Phenol	(Taib <i>et al.</i> 2022)
	Aerial	LC-ESI-MS/MS	Kaempferol, myricetin, quercetin Luteolin, quercetin-3-O- β -d-glucuronopyranoside, kaempferol- 3-O- β -d-glucuronopyranoside, Isorhamnetin-3-O-pentoside, Quercetin-3-O- hexuronide 6"-O-methyl ester, Kampferol-3-O- hexuronide 6"-O-methyl ester,	Flavonoid Flavonoid	(Taib <i>et al.</i> 2022) (Hassan 2022)
<i>E. dendroides</i>	Aerial	LC-ESI-MS/MS	Vanillin, gallic acid, <i>trans</i> -caffeic acid, protocatechuic acid	Phenol	(Hassan, 2022)

<i>E. wallichii</i>	Leaves	GCMS, NMR	3b-hydroxycycloart-24-ene-23-methyl ether, palmitic acid, oleic acid, lupeol, 24-methylene cycloartan-3 β -ol, β -sitosterol, cycloart-23-ene-3 β ,25-diol monoacetate, cycloart-23-ene-3 β ,25-diol, 3 β -hydroxy-cycloart-23-ene-25 methyl ether, 24 R/S-3b-hydroxy-25-methylene cycloartan-24-ol	Triterpenoid	(Hassan <i>et al.</i> 2022)
		HPLC	Luteo.6-arabinose 8-glucose, luteo.6-glucose 8-arabinose, apig.6-arabinose 8-glactose, apig.6-rhamnose 8-glucose, luteo.7-glucose, narengin, rutin, hespiridin, quercetin-3-O-glucoside, rosmarinic acid, apig.7-O-neohespiroside, kamp.3,7-dirhamnoside, apig.7-glucose, querctrin, querctrin, naringenin, hespirtin, kampferol, rhamnetin, aepgnin, acacetin.	Flavonoid	(Ali <i>et al.</i> 2025)
<i>E. thymifolia</i>	Whole plant	HPLC	Wallkaurane A, Wallkaurane B, Wallkaurane C, Wallkaurane D, wallkaurane E, Wallatisane A, Wallatisane B, Wallatisane C, wallatisane D, ent-kaurane-16 β ,17,19- 172 triol-3-one, ent-kaurane-3-oxo-16 α ,17-diol, ent-16 β -H-3-oxokauran-17-ol pseudoguaianolide, minimolide B, 4-oxo-2-ethoxy-6-tigloyloxy-pseudoguai-8,12-olide, 6-O-angeloylphenolin, 6-O-tigloyl-11,13-dihydrohelenalin, megastigmane, dihydropophasei acid, corchoionoside C, w ent-abietane diterpene, phorbol-13-actate	Triterpenoid	(Wang <i>et al.</i> 2023)
<i>E. laurifolia</i> <i>E. prostrata</i>	Aerial Leaves	TLC, NMR	12-Deoxyphorbol-13-acetate Quercetin, isoquercitin, 2-O-galloyl-4,6-S-hydroxy-diphenoyl-D-glucose, strictinin, tellimagarandin I, casuarectin, pedunculagin, corilagin, geranin, rugosin F, euphorbins G, euphorbins H	Diterpenoid Flavonoids	(Avila <i>et al.</i> 2010) (Yoshida <i>et al.</i> 1994)

Biological evaluation of the isolated compounds from genus *Euphorbia*

Anti-inflammatory activities

The molecular foundation underlying the anti-inflammatory properties of a pure compound Tyrosine kinase receptors are activated by various diseases and stressors, therefore stimulating IKKs. Furthermore, active IKKs phosphorylate the dormant I κ B α -NF- κ B complex. A phosphorylated variant of I κ B α undergoes ubiquitylation and is ultimately degraded. The compound extract inhibits the translocation of the active form of NF- κ B into the nucleus. Which facilitates the expression of genes associated with adhesion molecules, receptors, chemokines, and cytokines, all of which contribute to cell growth, proliferation, and differentiation. Arachidonic acid (7) can be transformed into prostaglandins by the action of Cox2; but a pure substance inhibits this process. This inflammation is induced by prostaglandins (Dogara, 2023). Lanostan 8-24 dien, 3 b-ol (0.3%), found in *E. lactea* latex, demonstrates a topical anti-inflammatory effect *in vivo*, through a mechanism associated with neutrophil migration (Fernandez-Arche *et al.* 2010). From *E. resinifera*, Euphatexol (1-5) exhibited moderate anti-inflammatory activity with IC₅₀ values of 22, 48, 21, 38 and 41 μ M, respectively (Li *et al.* 2022). In the model of LPS-induced RAW264.7 macrophage cells, NO production was carried out, and Wallkaurane A from *E. wallichii* displayed an IC₅₀ value of 4.21 μ M (Wang *et al.* 2023). Pseudoguaianolides from *E. thymifolia* had substantial activity with IC₅₀ values ranging from 0.41 to 15.32 μ M and shown inhibitory effects against LPS-induced NO generation in BV-2 microglial cells (Liu *et al.* 2019). Paralianone C, paralianone D, pepluanol G, 15,8,14-triacetoxy-3-benzoyloxy-15-hydroxy-9-oxoparaplane, and 5,8,9,11,15-pentaacetoxy-3-benzoyloxy-16-hydroxypepluane from *E. peplus* revealed inhibitory activity on NO inhibition in the lipopolysaccharide (LPS)-stimulated mouse macrophage cellular model with IC₅₀ values of 33.7, 38.3, 36.6, 29.9, and 37.1 μ M (Wan *et al.* 2016). Euphopias A-C (1-3) from *E. helioscopia*, markedly inhibited lactate dehydrogenase (LDH) release (IC₅₀ = 11.5, 5.4, and 9.4 μ M) and IL-1 β expression (IC₅₀ = 7.6, 4.1, and 10.2 μ M) in comparison to the positive control MCC950, a selective NLRP3 inflammasome inhibitor (IC₅₀ = 28.9 and 15 μ M) (Shi *et al.* 2020). The anti-pyroptosis activity showed that Euphzcopin C, euphzcopin D from *E. helioscopia* in a dose-dependent manner, drastically lower LDH release with IC₅₀ values of 8.96 μ M and 7.75 μ M (Qiu *et al.* 2024).

Antibacterial activities

From *E. resinifera*, euphorbioside -9-(4-methylamino-benzoate) exhibited the highest activities against Gram positive bacteria, *S. aureus* (31 μ gm/L) and *B. subtilis* (42 mg/L), and moderate antifungal activity against *C. albicans* (74 μ g/L), while euphorbioside-9-(2-methylamino-benzoate) demonstrated a moderate activity against Gram-positive microbes (37-38 μ g/mL). Euphorbioside-9-(3-dimethylamino-benzoate) and euphorbioside-9-(4-dimethylamino-benzoate) showed only weak and non-specific effects on all the microbes (MICs >100 μ g/mL) (Farah *et al.* 2014). At concentrations of 10 μ M, 50 μ M, and 100 μ M, 12-deoxyphorbol-13-isobutyrate-20-acetate from *E. resinifera* reduced the growth of *A. carbonarius* by 25% (Ourhzif *et al.* 2022). The compound demonstrated an impact that caused damage to DNA (Dogara, 2022). Additionally, oxidative stress is more especially, reactive oxygen species (ROS) was produced as a result of this action, disrupting the metabolic process. Furthermore, the cellular membrane was disrupted by the crude extract, which allowed cellular components to flow out.

Antiviral activities

From *E. lactea*, Euphlactenoid A, exhibited anti-HIV-1 activity with IC₅₀ values of 1.17 μ M (SI = 16.54) and 13.10 μ M (SI = 1.93), respectively (Zhao *et al.* 2023). From *E. resinifera*, Euphorblin E exhibited the growth of yellow leaf curl virus (TYLCV), with an inhibition zone of 71.7% at a dose of 40 μ g/mL (Zhao *et al.* 2021).

Enzyme Inhibitory activities

The mechanism of action is enzymatic inhibition. The identified flavonoids are dual-target inhibitors with substantial urease-inhibitory (with IC₅₀ values lower than the standard thiourea) and tyrosinase-inhibitory (in one case, the activity of a compound was as potent as alpha-kojic acid) behaviors. This implies that they have the potential to interfere with the biology pathways performed by these enzymes. The results indicated that 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one, and 2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one from *E. pulcherrima* demonstrate significant urease inhibitory activity, with IC₅₀ values of 15.3 μ M and 19.0 μ M, respectively, whereas the positive control thiourea exhibited an IC₅₀ of 21.0 μ M. Likewise, these compounds were assessed for their effects on the tyrosinase enzyme; findings indicated that 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one, exhibits considerable inhibitory action, as seen by its IC₅₀ values of 48.7 μ M, whereas 2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one (2) displayed a moderate effect with an IC₅₀ value of 74.8 μ M, in comparison to the standard (alpha-kojic acid, IC₅₀ = 47.6 μ M) (Rauf *et al.* 2022).

Anticancer activities

The cytotoxic efficacy of the compounds on keratinocytes was evaluated *in vitro*, employing ingenol mebutate as a positive control. Among the isolated compounds from *E. trigona*, two ingenane derivatives shown significantly greater cytotoxic action (IC₅₀ values of 0.39 μ M and 0.32 μ M, respectively) on keratinocytes compared to ingenol mebutate (IC₅₀ value of 0.84 μ M) (Hammadi *et al.* 2021). From *E. lactea*, friedelin, friedelan-3 β -ol, taraxerol, and friedelan-3 α -ol demonstrated a dose-dependent cytotoxicity against HepG2, HN22, and HCT116, exhibiting a greater effect on cancer cells compared to non-transformed cells. Of the four compounds, friedelan-3 β -ol demonstrated the highest potency, exhibiting the most significant inhibitory effect on HN22 and HepG2 cells (Wongprayoon *et al.* 2022). The cytotoxicity of compounds 1-10 from *E. resinifera* against the MCF-7, U937, and C6 cancer cell lines was assessed; however, none exhibited activity [32]. From *E. resinifera*, Euphorol K was the most potent against MCF-7 (5.48 mM) and C6 (6.79 μ M) cells, whereas Euphorol J showed moderate activity on all the cell lines (IC₅₀ around 37-47 mM) and Kansuinone showed the least activity with IC₅₀ values of 46.99 and 90.21 mM against MCF-7 and U937 cells, respectively (Wang Huang *et al.* 2019). Euphoresins A showed weak activity with IC₅₀ values of 85.87 μ M (MCF-7), 87.36 μ M (U937), and >100 μ M (C6). Euphoresins B also showed weak activity with IC₅₀ values of 96.89 μ M (MCF-7), 94.89 μ M (U937), and 8.31 μ M (C6) (Wang Li *et al.* 2019). The assessment of cytotoxicity was conducted utilising Ehrlich ascites tumour cells. The IC₅₀ is around 7.5 μ M, and the IC₉₀ is approximately 13.5 μ M for 9,19-cycloart-25-ene-3,11,24-diol from *E. pulcherrima*. The 3,11,25-diol molecule exhibits a 50% reduction in activity (Smith-Kielland *et al.* 1996). In comparison to vinblastine (15.17 μ M) as a positive control, quercetin-3-O- β -d-glucuronopyranoside from *E. dendroides* showed impressive inhibitory actions against OVK-18 with an IC₅₀ value of 10.35 μ M and MCF-7 with an IC₅₀ of 6.09 μ g/mL (Hassan, 2022). Against HepG2, Huh-7, KLM-1, 1321N1, and HeLa cell lines, 3b-hydroxycycloart-24-ene-23-methyl ether from *E. dendroides* showed good to weak selective cytotoxic effects, with IC₅₀ values of 20.67, 16.24, 22.59, 25.9, and 40.50 μ M, respectively. 3b-hydroxycycloart-24-ene-23-methyl ether (**1**), 24-methylene cycloartan-3 β -ol, cycloart-23-ene-3 β ,25-diol monoacetate (**8**), 3 β -hydroxy-cycloart-23-ene-25-methyl ether, 24 R/S-3b-hydroxy-25-methylene cycloartan-24-ol exhibited notable cytotoxic effects with IC₅₀ values ranging from <0.44 to 54.05 μ M [71]. The IC₅₀ of Zagrosin I from *E. amygdalooides* on MCF-7 cells treated for 48 hours was determined to be 1.5 μ g/mL. Zagrosin II and III demonstrated cytotoxic effects on MCF-7 cells treated for 48 hours, with IC₅₀ values of 14.04 and 12.50 μ g/mL, respectively. The IC₅₀ values for Zagrosin I, Zagrosin III, and Zagrosin II on human fibrosarcoma (HT1080) were 115.5 μ g/mL, 16.81 μ g/mL (after 48 hours of treatment), and 142.7 μ g/mL (after 72 hours of therapy), respectively (Pasdaran *et al.* 2025). Various concentrations (0.001 μ M, 1 μ M, 10 μ M, and 100 μ M) of 7-p-methoxyphenylacetate-3,8,12-triacetate ingol (**3**) from *E. resinifera* have demonstrated a substantial reduction in the viability percentage of MCF7 breast cancer cells subjected to escalating concentrations of the compound (Ourhzif *et al.* 2022). 11,12-didehydro-8a,14-dihydro-7-oxo-helioscopolide A (**1**), 7a-hydroxy-8a,14- dihydro jolkinolide E (**2**), 8b-acetyl-paralianone D (**3**), helioscopinolide A (**4**), 11-hydroxy-ent-abieto-8,11,13-trien-15-one (**5**), paralianone (**6**) and paralianone D (**7**) from *E. peplus* were tested on (Leukaemia HL-60, lung cancer A-549, liver cancer SMMC-7721, breast cancer MCF-7, and colon cancer SW480 at the concentration of 40 μ M which has no activity (Chen *et al.* 2021).

Cytotoxicity: The killie-fish were susceptible to different compounds from *Euphorbia trigona*; the most potent was Wallkaurane B, (LC₅₀ = 0.0023 ppm), compound **1** (LC₅₀ = 0.066 ppm), compound **3** (LC₅₀ = 0.076 ppm), and lastly Wallkaurane D (LC₅₀ = 10 ppm) (Tada *et al.* 1989). In 178 RAW264.7 cells, Wallkaurane A, Wallkaurane B, Wallkaurane C (3), Wallkaurane D, wallkaurane E (**5**), Wallatisane A, Wallatisane B (**7**), Wallatisane C, wallatisane D, ent-kaurane-16 β ,17,19- 172 triol-3-one, ent-kaurane-3-oxo-16 α ,17-diol and ent-16 β -H-3-oxokauran-17-ol from *E. wallichii* exhibited no cytotoxicity (IC₅₀ > 50 μ M) (Wang *et al.* 2023).

Other activities

From *E. peplus*, antileishmanial inhibition of Simiarenol and hexacosanol showed IC₅₀ =20.24, β -sitosterol 34.87 and β -sitosterol-3-O-glucoside 32.05 μ g/mL respectively (Amin *et al.* 2017). Eupulcherol A from *E. pulcherrima* exhibited anti-Alzheimer's disease (AD) bioactivity, potentially delaying paralysis in transgenic AD models *Caenorhabditis elegans* (Yu *et al.* 2020).

Clinical trials

Euphorbia is characterized by a wide variety and potency of bioactivity. Throughout history, an assortment of species has been involved in folk medicine systems across the world and used topically and internally as therapeutic tools to treat diverse diseases and management of some conditions. Research has confirmed traditional applications, and clinical research is beginning to unlock the therapeutic potential of *Euphorbia* extract to manage specific pathophysiological conditions (Table 3).

Table 3. Clinical trials of the genus *Euphorbia*

Species	Plant parts	Sample size	Diseases	Duration	Summary of major findings	Reference
<i>E. prostrata</i>	Tablet 100 mg (Sitcom)	120	Hemorrhoids	12 weeks	After two weeks, 82% (99 individuals) of the treated patients reported that their bleeding had completely stopped. Six more patients received treatment for two weeks, bringing the overall success rate to 87%. Additionally, 90% of patients reported less anal discomfort and 73% reported less itching after the treatment. No patients complained of any negative drug side effects. Three months later, at a follow-up visit, none of the patients indicated that their symptoms had returned. Nevertheless, it was shown that 46% (37 out of 79 patients) still had hemorrhoids after evaluation.	(Gupta 2011)
	Whole plant dry extract 100 mg tablets	1836	Bleeding Hemorrhoids	2 weeks	The proportion of patients who developed bleeding decreased by 85.4% (89.3% to 3.9%), pain by 88.7% (80.1% to 4.7%), swelling by 88.8% (60.4% to 6.2%) and congestion by 91.0 % (47.9% to 4.2%). As per physician determination, the total improvement was 27.7% with 63.2% being moderate. On the same note, patient judgments came out quite well with 27.5% of them reporting total improvement and 63.6% moderate improvement.	(Bakhshi <i>et al.</i> 2008)
	Sitcom tablet (100 mg), cream 1%w/w	100	Hemorrhoids During Pregnancy	8 weeks	There was a decrease in symptoms, and this was observed to be fairly even across the time period. After eight weeks, complete cessation of rectal bleeding (100% reduction) and a decrease of 77.6% pain during defecation was attained. Itching and discharge were removed completely and swelling by 84.5%. In postpartum follow-ups and two weeks later, greater than 90 % to 100 % of patients exhibited good or excellent overall improvements with no adverse events in any of the mothers or their newborns	(Porwal <i>et al.</i> 2024)

	Extract 100 mg	30	Hemorrhoids	2 weeks	The baseline value scores, which included bleeding (0.97), pain (0.60), itching (0.47), exudation (0.13), and swelling (0.43), started to decline on day four. After seven days, bleeding (0.15), pain (0.12), itching (0.15), exudation (0.15), and swelling (0.19) decreased, and by day fourteen, the symptoms of bleeding (0.0), pain (0.08), and swelling (0.08) were nearly cured, while itching (0.00) and exudation (0.00) vanished entirely. (Ekakitie 2024)
	100 mg plus calcium dobesilate 500 mg	140	Varicose veins	12 weeks	Leg discomfort, swelling, tingling, numbness, and itching all showed substantial improvements from baseline at the 3-month follow-up (mean change: -2.9 [69%], [57%], [68%], [67%] and [74%], respectively; P = 0.0001). More than 90% of patients had good-to-excellent treatment progress at follow-up, and 58.3% of patients had fully healed ulcers. (Porwal <i>et al.</i> 2025)
<i>E. peplus</i>	Sap	36	Human nonmelanoma skin cancers	3 days	A total of 48 skin cancer lesions were treated topically with 100–300 µL of <i>E.peplus</i> sap for three days, once a day. (Ramsay <i>et al.</i> 2011)
<i>E. hirta</i>		125	Dengue	3 months	There was a rise in platelets in more than 70% of patients. Significant reduction in fever and flu-like symptoms after taking the extract for 24 hours (Mir <i>et al.</i> 2012)
<i>E. caducifolia</i>	Oil	30	Cracked feet		In terms of symptoms like pain-related cracking (P < 0.001), dryness (P < 0.001), and itching (P < 0.001), the study produced statistically significant findings. (Gupta <i>et al.</i> 2018)

The synthesized clinical trials provide data on the efficacy of various *Euphorbia* species with the primary focus on the inflammatory and vascular-related conditions hemorrhoids, varicose veins, and dermatological diseases. A significant proportion of the therapeutic effects recorded in the clinical trials can be channeled to certain groups of compounds found in *Euphorbia* species. Triterpenoids, including epi-friedelinyl acetate and taraxerol, which are present in the species like *E. trigona*, have exhibited significant anti-inflammatory and cytotoxicity activity, which is consistent to the clinical evidence of decreased hemorrhoidal swelling, pain, and bleeding. *Euphorbia* species contain flavonoids and polyphenols that are thought to defend against oxidative damage and vaso protective benefits, which may explain the observed enhancement of vascular integrity among patients with hemorrhoids and varicose veins. The observed reversal of thrombopenia in patients of dengue when subjected to *E. hirta* could also be attributed to the high concentrations of phytochemicals such as quercetin and other flavonoids that have been shown to facilitate platelet aggregation and decrease capillary fragility. The Clinical efficacy of *Euphorbia*-based therapies is a direct correlation of plentiful and heterogeneous phytochemistry. This demonstrates not only the validity of past ethnobotanical uses but also demonstrates the prospect of *Euphorbia* species as sources of standardization of herbal treatments or of new molecular structures to be used as pharmaceutical agents in the future. Future studies ought to emphasize the compounds-specific mechanism of action, standardizing extractions, and larger clinical trials to exploit the potential of this genus of medicinal plants.

Conclusion

The molecular basis of this traditional use has been identified through studies of phytochemicals. Several of the traditional claims have substantial scientific backing *in vitro* and *in vivo* research has shown that the genus has substantial anticancer, antimicrobial, anti-inflammatory, antioxidant and antiviral properties. This substantial traditional and preclinical foundation has successfully translated into clinically validated applications for specific species. Most notably, rigorous clinical trials have established *E. prostrata* extract as an effective and well-tolerated treatment for hemorrhoids, *E. peplus* sap for human nonmelanoma skin cancers, *E. hirta* for increasing platelet count in dengue patients and *E. caducifolia* oil for treating cracked feet. The genus *Euphorbia* is a highly potential avenue of pharmacognostic research and drug discovery based on secondary metabolites. It has a vast chemical repertoire of various chemical compositions, which provides a good source of chemically diverse and clinically important compounds. It is also essential to conduct structure-activity relationship studies to determine the molecular characteristics that endow activity and to provide a means of rationally developing new derivatives. Pre-clinical research in other species needs to be transferred into effective randomized controlled clinical trials to confirm traditional practices, determine safe and effective doses and eventually incorporate these potent natural resources into contemporary evidence-based therapies. This genus therefore presents an interesting potential source of lead compounds to be developed as future chemotherapeutic and chemo preventive agents.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: Not applicable

Competing interests: Not applicable

Funding: Not applicable

Author contributions: C.F.S. collected the data, analyzed, and wrote the text. S.Z. participated in the theoretical background, monitoring data collection and analysis, helping with discussions, and wrote the final version of the text.

Literature cited

Ahmed AA, Couladis M, Mahmoud AA, de Adams A, Mabry TJ. 1999. Ingol diterpene ester from the latex of *Euphorbia lactea*. Fitoterapia 70 (2):140-143.

Ali FT, El-Gneady FF, Ahmed FA, Abd El-Sattar NE, Mostafa MM, El-Adl K, Elhady MM. 2025. Exploration of phytochemical components, bioactivity based fractionation, and in silico hmg-coa reductase inhibitory effect of *Euphorbia dendroides* chloroform extract. Natural Product Research 1-9.

Alotaibi B, Elekhnawy E, El-Masry TA, Saleh A, Alosaimi ME, Alotaibi KN, Negm WA. 2024. Antibacterial potential of *Euphorbia canariensis* against *Pseudomonas aeruginosa* bacteria causing respiratory tract infections. Artificial Cells, Nanomedicine, and Biotechnology 52 (1):261-269.

Althobaiti AT. 2023. Taxonomic studies on family Euphorbiaceae based on some morphological, biochemical and molecular characteristics. Journal of Advanced Zoology 44.

Amin E, Moawad A, Hassan H. 2017. Biologically-guided isolation of leishmanicidal secondary metabolites from *Euphorbia peplus* L. Saudi Pharmaceutical Journal 25 (2):236-240.

Amaghri S, Akdad M, Slaoui M, Eddouks M. 2022. Traditional uses, pharmacological, and phytochemical studies of *Euphorbia*: A review. Current Topics in Medicinal Chemistry 22 (19):1553-1570.

Anjaneyulu V, Rao GS, Connolly J. 1985. Occurrence of 24-epimers of cycloart-25-ene-3 β , 24-diols in the stems of *Euphorbia trigona*. Phytochemistry 24 (7):1610-1612.

Anju V, Rameshkumar KB. 2022. Phytochemical investigation of *Euphorbia trigona*. Journal of the Indian Chemical Society 99 (1):100253.

Appendino G, Belloro E, Tron GC, Jakupovic J, Ballero M. 2000. Polycyclic diterpenoids from *Euphorbia characias*. Fitoterapia 71 (2):134-142.

Avila L, Perez M, Sanchez-Duffhues G, Hernández-Galán R, Muñoz E, Cabezas F, Quiñones W, Torres F, Echeverri F. 2010. Effects of diterpenes from latex of *Euphorbia lactea* and *Euphorbia laurifolia* on human immunodeficiency virus type 1 reactivation. Phytochemistry 71 (2-3):243-248.

Bakhshi GD, Langade DG, Desai VS. 2008. Prospective, open label study of *Euphorbia prostrata* extract 100 mg in the treatment of bleeding haemorrhoids. Bombay Hospital Journal 50(4):577-583

Benjamaa R, Moujanni A, Kaushik N, Choi EH, Essamadi AK, Kaushik NK. 2022. *Euphorbia* species latex: A comprehensive review on phytochemistry and biological activities. Frontiers in Plant Science 13:1008881.

Bussmann RW, Paniagua-Zambrana NY, Kikvidze Z, Mehdiyeva N, Alizade VM, Mursal N, Salimov R, Batsatsashvili K, Müller L, Maisaia I, Sikharulidze S, Tchelidze D, Fayvush G, Aleksanyan A. 2025. *Euphorbia allepica* L., *Euphorbia amygdaloides* L., *Euphorbia boissieriana* (Woronow) Prokh., *Euphorbia esula* L., *Euphorbia glareosa* Pall. ex Bieb., *Euphorbia iberica* Boiss., *Euphorbia macroceras* Fisch. & C.A. Mey., *Euphorbia macroclada* Boiss., *Euphorbia marschalliana* Boiss., *Euphorbia sequieriana* Neck. - EUPHORBIACEAE in: Bussmann RW, Paniagua-Zambrana NY, Kikvidze Z. (eds). Ethnobotany of Mountain Regions - Ethnobotany of the Caucasus, pp. 2425-2446, Springer, Cham. doi: 10.1007/978-3-031-91369-3_30.

Bussmann RW, Paniagua-Zambrana NY, Njoroge GN. 2021. *Euphorbia candelabrum* Welw. *Euphorbia tirucalli* IL EUPHORBIACEAE. In: Bussmann RW. (ed) Ethnobotany of the Mountain Regions of Africa, pp. 525-532. Springer International Publishing: Cham. doi: 10.1007/978-3-319-77086-4_80-1.

Chen Y-N, Lu Q-Y, Li D-M, Li Y-Y, Pu X-X, Li B-T, Tang X-H, Tang H-Y, Liu S, Yang L. 2021. Three new diterpenoids from *Euphorbia peplus*. Natural Product Research 35 (21):3901-3907.

Christodoulakis NS, Mamoucha S, Termentzi A, Fokialakis N. 2015. Leaf structure and histochemistry of the hardy evergreen *Euphorbia characias* L. (Mediterranean spurge). Flora-Morphology, Distribution, Functional Ecology of Plants 210:13-18.

da Silva Ribeiro JE, Nunes EN, Souza RS, da Cruz DD, de Lucena RFP. (2021). *Euphorbia tirucalli* L. Euphorbiaceae. In Pavia de Lucena RF, Dias da Cruz D (eds). Ethnobotany of the mountain regions of Brazil, pp. 387-391. Springer, Cham.

De Araújo KM, De Lima A, Silva JdN, Rodrigues LL, Amorim AG, Quelemes PV, Dos Santos RC, Rocha JA, De Andrade ÉO, Leite JRS. 2014. Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of *Euphorbia tirucalli* L. Antioxidants 3 (1):159-175.

de Souza LS, Luz Tosta C, de Oliveira Borlot JRP, Varricchio MC, Kitagawa RR, Filgueiras PR, Kuster RM. 2023. Chemical profile and cytotoxic evaluation of aerial parts of *Euphorbia tirucalli* L. On gastric adenocarcinoma (ags cells). Natural Product Research 37 (24):4267-4273.

Dogara AM. 2022. Biological activity and chemical composition of *Detarium microcarpum* Guill. & Perr.—a systematic review. Advances in Pharmacological and Pharmaceutical Sciences (1):7219401.

Dogara AM. 2023. A systematic review on the biological evaluation of *Calotropis procera* (Aiton) Dryand. Future Journal of Pharmaceutical Sciences 9 (1):16.

Dogara AM, Hama HA, Ozdemir D. 2024. Update on the potential of *Punica granatum* L. Traditional uses and pharmacological uses: A review. Advances in Pharmacological and Pharmaceutical Sciences 1:6523809.

Durán-Peña MJ, Flores-Giubi ME, Botubol-Ares JM, Escobar-Montaño F, Macías-Sánchez AJ, Echeverri LF, Collado IG, Hernández-Galán R. 2017. Lathyrane diterpenes from the latex of *Euphorbia laurifolia*. *Natural Product Communications* 12 (5):1934578X1701200507.

Echeverría J, Paniagua Zambrana NY, Bussmann RW. 2020. *Euphorbia klotzschii* Oudejans var. *klotzschii*. In: Paniagua Zambrana NY, Bussmann RW (eds) Ethnobotany of Mountain Regions – Ethnobotany of the Andes, pp. 837-840. Springer International Publishing, Cham. doi: 10.1007/978-3-319-77093-2_119-1.

Ekakitie E. 2024. *Euphorbia cerifera* Cera (candelila) emollient properties, uses and effectiveness in skincare products. *Journal of Knowledge Learning and Science Technology* ISSN: 2959-6386 (online) 3 (3):225-234.

Evans F, Kinghorn A. 1977. A comparative phytochemical study of the diterpenes of some species of the genera *Euphorbia* and *Elaeophorbia* (Euphorbiaceae). *Botanical Journal of the Linnean Society* 74 (1):23-35.

Ezzanad A, De los Reyes C, Macías-Sánchez AJ, Hernández-Galán R. 2023. Isolation and identification of 12-deoxyphorbol esters from *Euphorbia resinifera* Berg latex: Targeted and biased non-targeted identification of 12-deoxyphorbol esters by uhplc-hrmse. *Plants* 12 (22):3846.

Ezzanad A, Gómez-Oliva R, Escobar-Montaño F, Díez-Salguero M, Geribaldi-Doldan N, Dominguez-Garcia S, Botubol-Ares JM, Reyes Cdl, Durán-Patrón R, Nunez-Abades P. 2021. Phorbol diesters and 12-deoxy-16-hydroxyphorbol 13, 16-diesters induce tgf α release and adult mouse neurogenesis. *Journal of Medicinal Chemistry* 64 (9):6070-6084.

Farah H, Echchahad A, Lamiri A. 2014. Semi-synthesis and antimicrobial activities of some new euphorbioside derivatives. *International Journal of Chemical and Techological Research* 6:763-767.

Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Tron GC, Appendino G. 2002. Bisnorsesquiterpenoids from *Euphorbia resinifera* Berg. and an expeditious procedure to obtain resiniferatoxin from its fresh latex. *European Journal of Organic Chemistry* 1:71-78.

Fernandez-Arche A, Saenz M, Arroyo M, De la Puerta R, Garcia M. 2010 Topical anti-inflammatory effect of tirucallol, a triterpene isolated from *Euphorbia lactea* latex. *Phytomedicine* 17 (2):146-148.

Gafforov Y, Rašeta M, Zafar M, Makhkamov T, Yarasheva M, Chen J-J, Zhumagul M, Wang M, Ghosh S, Abbasi AM. 2024. Exploring biodiversity and ethnobotanical significance of *Solanum* species in Uzbekistan: Unveiling the cultural wealth and ethnopharmacological uses. *Frontiers in Pharmacology* 14:1287793.

Ghout A, Zellagui A, Gherraf N, Demirtas I, Ayse Sahin Y, Boukhenaf M, Lahouel M, Nieto G, Akkal S. 2018. Antiproliferative and antioxidant activities of two extracts of the plant species *Euphorbia dendroides* L. *Medicines* 5 (2):36.

Girin M, Paphassarang S, David-Etève C, Chaboud A, Raynaud J. 1993. Determination of ingenol in homoeopathic mother tinctures of *Euphorbia* species by high-performance liquid chromatography. *Journal of Chromatography A* 637 (2):206-208.

Gupta N, Vishnoi G, Wal A, Wal P. 2013. Medicinal value of *Euphorbia tirucalli*. *Systematic Reviews in Pharmacy* 4 (1):40.

Gupta P. 2011. The efficacy of *Euphorbia prostrata* in early grades of symptomatic hemorrhoids—a pilot study. *European Review for Medical & Pharmacological Sciences* 15:2.

Gupta S, Acharya R. 2018. Management of padadari (cracked feet) with rakta snuhi (*Euphorbia caducifolia* Haines.) based formulation: An open-labeled clinical study. *AYU (An International Quarterly Journal of Research in Ayurveda)* 39 (4):208-212.

Hammadi R, Kúsz N, Dávid CZ, Behányi Z, Papp L, Kemény L, Hohmann J, Lakatos L, Vasas A. 2021. Ingol and ingenol-type diterpenes from *Euphorbia trigona* miller with keratinocyte inhibitory activity. *Plants* 10 (6):1206.

Hassan A, Yaqoob U, Nawchoo IA, Gulzar S, Mohi-Ud-Din G, Nazir S, Ashraf A. 2016. Conspectus of phytochemical constituents of *Euphorbia wallichii* Hook. f.: A review. *Research Review Journal Botany* 5:24-31.

Hassan AR. 2022. Chemical profile and cytotoxic activity of a polyphenolic-rich fraction from *Euphorbia dendroides* aerial parts. *South African Journal of Botany* 147:332-339.

Hassan AR, Ashour A, Amen Y, Nagata M, El-Toumy SA, Shimizu K. 2022. A new cycloartane triterpene and other phytoconstituents from the aerial parts of *Euphorbia dendroides*. *Natural Product Research* 36 (3):828-836.

Hassan AZ, Sweenam H-tM, Shaker KH, Zohair MM, Ashour WE, Abd-Alla HI. 2023. Phytochemical analysis and antimicrobial activity of *Euphorbia milii*. Egyptian Journal of Chemistry 66 (13):461-473.

Hergenhahn M, Adolf W, Hecker E. 1975. Resiniferatoxin and other esters of novel polyfunctional diterpenes from *Euphorbia resinifera* and *unispina*. Tetrahedron Letters 16 (19-20):1595-1598.

Hergenhahn M, Kusumoto S, Hecker E. 1984. On the active principles of the spurge family (Euphorbiaceae) extremely skin-irritant and moderately tumor-promoting diterpene esters from *Euphorbia resinifera* Berg. Journal of cancer research and clinical oncology 108 (1):98-109.

Hmidouche O, Bouftini K, Chafik A, Khouri S, Rchid H, Rahimi A, Mimouni M, Maarouf E, Zaakour F, Nmila R. 2023. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of *Euphorbia resinifera* O. Berg. (b): A review. Journal of Zoological and Botanical Gardens 4 (2):364-395.

Hujon F, Saral AM. 2022. Chemical investigation of epicuticular wax obtained from *Euphorbia milii* leaves. SN Applied Sciences 4 (4):122.

Jassbi AR. 2006. Chemistry and biological activity of secondary metabolites in *Euphorbia* from Iran. Phytochemistry 67 (18):1977-1984

Kemboi D, Peter X, Langat M, Tembu J. 2020. A review of the ethnomedicinal uses, biological activities, and triterpenoids of *Euphorbia* species. Molecules 25 (17):4019.

Kgosiemang IKR, Lefojane R, Adegoke AM, Ogunyemi O, Mashele SS, Sekhoacha MP. 2025. Pharmacological significance, medicinal use, and toxicity of extracted and isolated compounds from *Euphorbia* species found in southern Africa: A review. Plants 14 (3):469.

Kumar S, Malhotra R, Kumar D. 2020. *Euphorbia hirta*: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacognosy reviews 4 (7):58.

Li M-M, Qi Y-R, Feng Y-P, Liu W, Yuan T. 2021. Four new lanostane triterpenoids from latex of *Euphorbia resinifera*. Zhongguo Zhong Yao Za Zhi 47:44-4748.

Li M-M, Qi Y-R, Feng Y-P, Liu W, Yuan T. 2022. Euphatexols c–g, five new triterpenoids from the latex of *Euphorbia resinifera*. Journal of Asian Natural Products Research 24 (4):311-320.

Li Y-J, Ji T-F, Zhao J, Gu Z-Y. 2021. Chemical constituents of triterpenoids from *Euphorbia resinifera*. Zhongguo Zhong Yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica 46 (17):4433-4437.

Lin LJ, Kinghorn AD. 1983. Three new ingenane derivatives from the latex of *Euphorbia canariensis* L. Journal of Agricultural and Food Chemistry 31 (2):396-400.

Lin SJ, Yeh CH, Yang LM, Liu PC, Hsu FL. 2001. Phenolic compounds from formosan *Euphorbia tirucalli*. Journal of the Chinese Chemical Society 48 (1):105-108.

Liu B, Bussmann RW, Batsatsashvili K, Kikvidze Z. 2020. *Euphorbia esula* L.; *Euphorbia fischeriana* Stendel; *Euphorbia rapulum* Kar. and Kir.; *Euphorbia* sp. In: Batsatsashvili K, Kikvidze Z, Bussmann RW. (eds) Ethnobotany of Mountain Regions Central Asia and Altai. Springer International Publishing International Publishing. doi: 10.1007/978-3-319-77087-1_59-1.

Liu J-L, Yu M, Liao H-B, Liu T, Tan Y-H, Liang D, Zhang G-J. 2019. Sesquiterpenes and diterpenes from *Euphorbia thymifolia*. Fitoterapia 139:104408.

Liu W-X, Zhang Y-J, Zhou M, Zhao P. 2023. A new ingol diterpenoid from the seeds of *Euphorbia marginata* Pursh. Natural Product Research 37 (1):63-67.

Lu Z-Q, Guan S-H, Li X-N, Chen G-T, Zhang J-Q, Huang H-L, Liu X, Guo D-A. 2008. Cytotoxic diterpenoids from *Euphorbia helioscopia*. Journal of Natural Products 71 (5):873-876.

Mahendiran A, Gopal N, Duraisamy N, Rajamani R. 2023. A comprehensive literature review on pharmacological effects of *Euphorbia milii* (crown of thorns). Advances in Pharmacology Journal 8 (4):94-107.

Mai Z-P, Ni G, Liu Y-F, Li L, Shi G-R, Wang X, Li J-Y, Yu D-Q. 2017. Heliosterpenoids a and b, two novel jatrophane-derived diterpenoids with a 5/6/4/6 ring system from *Euphorbia helioscopia*. Scientific Reports 7 (1):4922.

Mali PY, Panchal SS. 2013. A review on phyto-pharmacological potentials of *Euphorbia thymifolia* L Ancient Science of Life 32 (3):165-172.

Mallon R, Onrubia M, Lota F, Corral P, Lorrain B, Michoux F. 2014. In vitro propagation methods of the succulent plant *Euphorbia resinifera* and quantification of its major compounds. *Planta Medica* 80 (16):P2F2.

Min X-Y, Chen Y-N, Li D-M, Mu Q-Y, Zhang Z-T, Fang X. 2021. Chemical constituents of *Euphorbia peplus*. *Biochemical Systematics and Ecology* 98:104307.

Mir M, Khurshid R, Aftab R. 2012. Management of thrombocytopenia and flu-like symptoms in dengue patients with herbal water of *Euphorbia hirta*. *Journal of Ayub Medical College Abbottabad* 24 (3-4):6-9.

Miranda FJ, Alabadi JA, Ortí M, Centeno JM, Piáón M, Yuste A, Sanz-Cervera JF, Marco JA, Alborch E. 1998. Comparative analysis of the vascular actions of diterpenes isolated from *Euphorbia canariensis*. *Journal of Pharmacy and Pharmacology* 50 (2):237-241.

Mustafa I, Faisal MN, Hussain G, Muzaffar H, Imran M, Ijaz MU, Sohail MU, Iftikhar A, Shaukat A, Anwar H. 2021. Efficacy of *Euphorbia helioscopia* in context to a possible connection between antioxidant and antidiabetic activities: A comparative study of different extracts. *BMC Complementary Medicine and Therapies* 21 (1):62.

Nielsen PE, Nishimura H, Otvos JW, Calvin M. 1977. Plant crops as a source of fuel and hydrocarbon-like materials. *Science* 198 (4320):942-944.

Nordal A, Benson A. 1969. Phorbic acid biosynthesis in the latex vessel system of *Euphorbia*. *Plant Physiology* 44 (1):78-84.

Ourhzif E-M, Ketatni EM, Akssira M, Troin Y, Khouili M. 2021. Crystal structure, hirshfeld surface analysis and dft studies of euphorbiaside monohydrate a major bisnorsesquiterpene isolated from *Euphorbia resinifera* latex. *Journal of Molecular Structure* 1241:130511.

Ourhzif E-M, Ricelli A, Stagni V, Cirigliano A, Rinaldi T, Bouissane L, Saso L, Chalard P, Troin Y, Khouili M. 2022. Antifungal and cytotoxic activity of diterpenes and bisnorsesquiterpenoides from the latex of *Euphorbia resinifera* berg. *Molecules* 27 (16):5234.

Özbilgin S, Çitogl GS. 2012. Uses of some *Euphorbia* species in traditional medicine in turkey and their biological activities. *Turkish Journal of Pharmaceutical Sciences* 9 (2).

Pan L, Yu K-B, Peng S-L, Zhou Y, Ding L-S. 2006. Ent-3 β , 16-dihydroxyisopimar-7-ene-2, 15-dione: A new tricyclic diterpenoid from the roots of *Euphorbia wallichii*. *Structure Reports* 62 (4):o1643-o1644.

Paniagua-Zambrana NY, Bussmann RW, Kikvidze Z. 2025. *Euphorbia cyparissias* L. - EUPHORBIACEAE in: Bussmann RW, Paniagua-Zambrana NY, Kikvidze Z. (eds) Ethnobotany of the Mountain Regions of Eastern Europe, pp. 1111-1128. doi: 10.1007/978-3-030-98744-2_XXX-1.

Pasdaran A, Azarpira N, Aghdaie MH, Zare M, Sheidaie N, Fard FH, Hamedi A. 2025. Three new spirocyclic terpenoids from *Euphorbia amygdaloides* exhibit cytotoxicity against cancerous cell lines through early and late apoptosis. *Arabian Journal of Chemistry* 18 (1):106049.

Porwal A, Gandhi P, Mokashi-Bhalerao N, Borkar N, Khobragade K, Borkar Sr NE. 2024. Efficacy and safety of oral *Euphorbia prostrata* tablet and topical cream in the management of hemorrhoids during pregnancy: Results from a prospective multicenter study. *Cureus* 16 (2).

Porwal A, Gandhi P, Purandare N, Purandare S, Indore S, Pawar V. 2025. Management of varicose veins with sitcom forte[®] tablet (Euphorbia prostrata 100 mg and calcium dobesilate 500 mg) and sitcom[®] cream (Euphorbia prostrata dry extract 1% w/w): A single-arm prospective multi-centric efficacy and safety study. *Indian Journal of Surgery* 87 (2):351-359.

Qi Y, Liu W, Chen Y, Guan M, Yuan T. 2019. Euphatexols a and b, two unusual euphane triterpenoids from the latex of *Euphorbia resinifera*. *Tetrahedron Letters* 60 (49):151303.

Qiu X, Zhang Y, Xu Y-J, Liang Z-D, Dai X-C, Xiao W-L, Zhang X-J, Li X-L. 2024. Euphzcopins a- d, macrocyclic diterpenoids with potential anti-inflammatory activity from *Euphorbia helioscopia*. *Fitoterapia* 173:105821.

Rammal H, Farhan H, Mohsen H, Hijazi A, Kobeissy A, Daher A, Badran B. 2013. Antioxidant, cytotoxic properties and phytochemical screening of two Lebanese medicinal plants. *International Research Journal of Pharmacology* 4 (5):132-136.

Ramsay J, Suhrbier A, Aylward J, Ogbourne S, Cozzi SJ, Poulsen M, Baumann K, Welburn P, Redlich G, Parsons P. 2011. The sap from *Euphorbia peplus* is effective against human nonmelanoma skin cancers. *British Journal of Dermatology* 164 (3):633-636.

Rauf A, Raza M, Humayun Khan M, Hemeg HA, Al-Awthan YS, Bahattab O, Bawazeer S, Naz S, Basoglu F, Saleem M. 2022. In vitro and in silico studies on clinically important enzymes inhibitory activities of flavonoids isolated from *Euphorbia pulcherrima*. *Annals of Medicine* 54 (1):495-506.

Riina R, Peirson JA, Geltman DV, Molero J, Frajman B, Pahlevani A, Barres L, Morawetz JJ, Salmaki Y, Zarre S. 2013. A worldwide molecular phylogeny and classification of the leafy spurge, *Euphorbia* subgenus *esula* (Euphorbiaceae). *Taxon* 62 (2):316-342.

Saleem H, Zengin G, Locatelli M, Mollica A, Ahmad I, Mahomoodally FM, Abidin SAZ, Ahemad N. 2019. In vitro biological propensities and chemical profiling of *Euphorbia milii* Des Moul (Euphorbiaceae): A novel source for bioactive agents. *Industrial Crops and Products* 130:9-15.

Sharif H, Mukhtar M, Mustapha Y, Lawal A. 2015. Preliminary investigation of bioactive compounds and bioautographic studies of whole plant extract of *Euphorbia pulcherrima* on *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhi*, and *Pseudomonas aeruginosa*. *Advances in Pharmaceutics* (1):485469.

Shi Q-Q, Zhang X-J, Wang T-T, Wang Q, Sun T-T, Amin M, Zhang R-H, Li X-L, Xiao W-L. 2022. *Euphorbia* a-c: Three rearranged jatrophane diterpenoids with tricyclo [8.3. 0.02, 7] tridecane and tetracyclo [11.3. 0.02, 10.03, 7] hexadecane cores from *Euphorbia helioscopia*. *Organic Letters* 22 (20):7820-7824.

Shi Q-W, Su X-H, Kiyota H. 2008. Chemical and pharmacological research of the plants in genus *Euphorbia*. *Chemical reviews* 108 (10):4295-4327.

Shizuri Y, Kosemura S, Yamamura S, Ohba S, Ito M, Saito Y. 1983. Isolation and structures of helioscopinolides, new diterpenes from *Euphorbia helioscopia* L. *Chemistry Letters* 12 (1):65-68.

Smith-Kielland I, Dornish J, Malterud K, Hvistendahl G, Rømming C, Bøckmann O, Kolsaker P, Stenstrøm Y, Nordal A. 1996. Cytotoxic triterpenoids from the leaves of *Euphorbia pulcherrima*. *Planta medica* 62 (4):322-325.

Stracke MP, Tusset BTK, Franzin F. 2021. Extraction and characterization of latex from the *Euphorbia tirucalli*. *International Journal of Development Research* 11 (3):45406-45415

Tada M, Seki H. 1989. Toxic diterpernes from *Euphorbia trigona* (Saiunkaku: An indoor foliage plant in Japan). *Agricultural and biological chemistry* 53 (2):425-430.

Taib TM, Aloush RH, AlSoufi ASM. 2022. Chemical classification of some species *Euphorbia* in central and northern Iraq. *Egyptian Academic Journal of Biological Sciences, H Botany* 13 (2):245-251.

Talbaoui A, El Hamdaoui L, Bouyahya A, El Moussaouiti M, Bakri Y. 2020. Chemical composition, in vitro cytotoxic, and antibacterial activities of Moroccan medicinal plants *Euphorbia resinifera* and *Marrubium vulgare*. *Biointerface Research in Applied Chemistry* 10 (6):7343-7355.

Upadhyay RR, Hecker E. 1975. Diterpene esters of the irritant and cocarcinogenic latex of *Euphorbia lactea*. *Phytochemistry* 14 (11):2514-2516.

Velázquez-Martí B, Gaibor-Cházvez J, Niño-Ruiz Z, Narbona-Sahuquillo S. 2018. Complete characterization of pruning waste from the lechero tree (*Euphorbia laurifolia* L.) as raw material for biofuel. *Renewable Energy* 129:629-637.

Wan L-S, Chu R, Peng X-R, Zhu G-L, Yu M-Y, Li L, Zhou L, Lu S-Y, Dong J-R, Zhang Z-R. 2016. Pepluane and paraliane diterpenoids from *Euphorbia peplus* with potential anti-inflammatory activity. *Journal of Natural Products* 79 (6):1628-1634.

Wang S-Y, Huang C, Sun R-K, Lu L-N, Liang H-G, Gao L, Huang J, Wang J-H, Yang B-F. 2019. New tirucallane triterpenoids from the dried latex of *Euphorbia resinifera*. *Phytochemistry Letters* 29:220-224.

Wang S-Y, Li G-Y, Zhang K, Wang H-Y, Liang H-G, Huang C, Huang J, Wang J-H, Yang B-F. 2018. Triterpenoids from Uygur medicine latex of *Euphorbia resinifera*. *Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi=*. *China Journal of Chinese Materia Medica* 43 (18):3688-3693.

Wang S-Y, Li G-Y, Zhang K, Wang H-Y, Liang H-G, Huang C, Huang J, Wang J-H, Yang B-F. 2019. New ingol-type diterpenes from the latex of *Euphorbia resinifera*. *Journal of Asian Natural Products Research* 21 (11):1075-1082..

Wang S, Liang H, Zhao Y, Wang G, Yao H, Kasimu R, Wu Z, Li Y, Huang J, Wang J. 2016. New triterpenoids from the latex of *Euphorbia resinifera* Berg. *Fitoterapia* 108:33-40

Wang W-P, Jiang K, Zhang P, Shen K-K, Qu S-J, Yu X-P, Tan C-H. 2018. Highly oxygenated and structurally diverse diterpenoids from *Euphorbia helioscopia*. *Phytochemistry* 145:93-102.

Wang Y, Jiang Q, Sun D, Zhang N, Lin Y, Li H, Chen L. 2023. Ent-kauranes and ent-atisanes from *Euphorbia wallichii* and their anti-inflammatory activity. *Phytochemistry* 210:113643.

Webster GL. 1994. Synopsis of the genera and suprageneric taxa of Euphorbiaceae. *Annals of the Missouri Botanical Garden* 33-144.

Weng H-Z, Tian Y, Zhang J-S, Huang J-L, Tang G-H, Yin S. 2022. A new tiglane-type diterpenoid from *Euphorbia tirucalli*. *Natural Product Research* 36 (20):5380-5386.

Wongprayoon P, Leelasart S, Jantham J, Pootaeng-On Y, Oekchuae S, Limpachayaporn P, Rayanil K-o, Charoensuksai P. 2022. A triterpenoid friedelan-3 β -ol isolated from *Euphorbia lactea* exhibited cytotoxic activity against hn22 cells by inducing an s-phase cell cycle arrest. *Journal of Applied Pharmaceutical Science* 12 (10):31-48.

XU S-h, XU W, LI Y-y, HU Y-k, LU Y-t, WANG Z, ZHAO Y. 2017. Separation and identification of chemical constituents of petroleum ether extract from *Euphorbia lactea*. *Journal of Yunnan University: Natural Sciences Edition* 39 (5):851-855.

Yamamura S, Shizuri Y, Kosemura S, Ohtsuka J, Tayama T, Ohba S, Ito M, Saito Y, Terada Y. 1989. Diterpenes from *Euphorbia helioscopia*. *Phytochemistry* 28 (12):3421-3436.

Yang D-S, Peng W-B, Li Z-L, Wang X, Wei J-G, He Q-X, Yang Y-P, Liu K-C, Li X-L. 2014. Chemical constituents from *Euphorbia stracheyi* and their biological activities. *Fitoterapia* 97:211-218.

Yang Y, Berry PE. 2011. Phylogenetics of the *Chamaesyce* clade (*Euphorbia*, Euphorbiaceae): Reticulate evolution and long-distance dispersal in a prominent c4 lineage. *American Journal of Botany* 98 (9):1486-1503.

Yeşil Y, Inal I. 2021. Ethnomedicinal plants of hasankeyf (batman-turkey). *Frontiers in Pharmacology* 11:624710.

Yoshida T, Namba O, Kurokawa K, Amakura Y, Liu Y-Z, Okuda T. 1994. Tannins and related polyphenols of Euphorbiaceous plants. Xii. Euphorbins g and h, new dimeric hydrolyzable tannins from *Euphorbia prostrata* and *Euphorbia makinoi*. *Chemical and Pharmaceutical Bulletin* 42 (10):2005-2010.

Yu C-X, Wang R-Y, Qi F-M, Su P-J, Yu Y-F, Li B, Zhao Y, Zhi D-J, Zhang Z-X, Fei D-Q. 2020. Eupulcherol a, a triterpenoid with a new carbon skeleton from *Euphorbia pulcherrima*, and its anti-alzheimer's disease bioactivity. *Organic & Biomolecular Chemistry* 18 (1):76-80.

Yusoff E, Ahmad A, Mohamad S, Muhammad NF. 2017. Gc-ms analysis of some volatile constituents extracted from stem of *Euphorbia tirucalli* Linn. *Archives of Orofacial Science* 12 (1).

Zhang W, Guo Y-W. 2006. Chemical studies on the constituents of the Chinese medicinal herb *Euphorbia helioscopia* L. *Chemical and Pharmaceutical Bulletin* 54 (7):1037-1039.

Zhao N-D, Ding X, Song Y, Yang D-Q, Yu H-L, Adelakun TA, Qian W-D, Zhang Y, Di Y-T, Gao F. Identification of ingol and rhamnolane diterpenoids from *Euphorbia resinifera* and their abilities to induce lysosomal biosynthesis. *Journal of Natural Products* 2018.81 (5):1209-1218.

Zhao N-D, Li Y-L, Song Y, Yang B-J, Ding X, Gao F, Ye J, Hao X-J, Zhang Y, Li S-L. 2021. Ten new nortriterpenes from *Euphorbia resinifera* and their anti-tomato yellow leaf curl virus activities. *Fitoterapia* 153:104989..

Zhao Y, Hua C, Sha Y-o, Wu P-Q, Liu Q-F, Lu L, Zhou B, Jiang S-b, Fan Y-Y, Yue J-M. 2023. Diterpenoids from *Euphorbia lactea* and their anti-hiv-1 activity. *Phytochemistry* 213:113745